invited correlation-induced spectral (and other) changes

21
Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545 1 Invited Correlation-induced spectral (and other) changes Daniel F. V. James, Los Alamos National Laboratory Frontiers in Optics Rochester NY JMA3 • 10:00 a.m. Monday 11 October

Upload: yamal

Post on 08-Feb-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Invited Correlation-induced spectral (and other) changes. Daniel F. V. James, Los Alamos National Laboratory. Frontiers in Optics Rochester NY JMA3 • 10:00 a.m. Monday 11 October. average over random ensemble (or a time average). components of the E/M field (i,j =x,y,z). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

1

InvitedCorrelation-induced spectral

(and other) changes

Daniel F. V. James,

Los Alamos National Laboratory

Frontiers in OpticsRochester NY

JMA3 • 10:00 a.m. Monday 11 October

Page 2: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

2

Properties of Classical FieldsLocal properties-Intensity/spectrum-Polarization-Flux/momentum

Non-local properties-Interference

1 2 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4

Coherence Theory: unified theory of the optical field

1 2 3 4 components of the E/M field (i,j =x,y,z)

average over random ensemble(or a time average)

Γij r1,r2 ,τ( ) = Ei* r1, t( )E j r2 , t + τ( )

Correlation function: all the (linear) properties of the field:

Page 3: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

3

Correlation Functions are our Friends

• All the “interesting” quantities can be got from :

Γ

Pauli matrix

{u = unit vector normal to theplane of the field components

I r( ) = Γii r,r,0( )i

∑-Intensity

Sμ r( ) = σ ij(μ ) δ jk −u juk( )Γkl r,r,0( )

ij∑ δl i −ul ui( )

-Stokes parameters

γ12 τ( ) = Γij r1,r2 ,τ( ) / Γii r1,r1,0( ) Γ jj r2 ,r2 ,0( )

-Fringe visibility

• can be measured by interference experiments

Γ

Page 4: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

4

The Wolf Equations*

* E. Wolf, Proc. R. Soc A 230, 246-65 (1955)

Field Correlation function - (scalar approximation) -

Γ r1,r2 ,τ( ) = V * r1, t( )V r2 , t + τ( )

1 2 3 4 Scalar representation

of the E/M field

obeys the pair of equations-

∇12 −

1

c2∂2

∂τ 2

⎝ ⎜

⎠ ⎟Γ r1,r2 ,τ( ) = 0

∇22 −

1

c2∂2

∂τ 2

⎝ ⎜

⎠ ⎟Γ r1,r2 ,τ( ) = 0

Page 5: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

5

The Wolf Equations (II)• Correlation functions are dynamic quantities, which obey exact propagation laws.

• Coherence properties change on propagation.– van Cittert - Zernike theorem: spatial coherence in the far zone of an incoherent object.– laws of radiometry and radiative transfer.

• Quantities dependent on correlation functions do not obey simple laws.

Page 6: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

6

incoherent planar source

radiated field acquires transversecoherence

solid angle

Ωsource

Acoh

= λ2

/Ωsource

• van Cittert - Zernike Theorem in pictures

partially coherent planar source

radiation pattern has solid angle

• coherence and radiometry in pictures

Acoh

Ωrad = λ2

/ Acoh

Page 7: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

7

The Wolf Equations (II)• Correlation functions are dynamic quantities, which obey exact propagation laws.

• Coherence properties change on propagation.– van Cittert-Zernike theorem: spatial coherence in the far zone of an incoherent object.– Laws of radiometry and radiative transfer.

• Quantities dependent on correlation functions do not obey simple laws.

– Change of spectrum on propagation (“The Wolf Effect”).

– Change of polarization on propagation.– Change of what else on propagation?

Page 8: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

8

Space-Frequency DomainThe cross-spectral density

W r1,r2 ,ω( ) =1

2πΓ r1,r2 ,τ( )eiωτ dτ

−∞

∇12 + k2

( )W r1,r2 ,ω( ) = 0

∇22 + k2

( )W r1,r2 ,ω( ) = 0

obeys the equations -

k =ω c( )

Page 9: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

9

Solution (secondary sources)xyzρ1ρ2sourcer1r2R2R1

A

W r1,r2 ,ω( ) =

1

2π( )2

W0 ρ1,ρ2 ,ω( )A∫∫ ∂

∂z1

eikR1

R1

⎝ ⎜ ⎜

⎠ ⎟ ⎟∂∂z2

eikR2

R2

⎝ ⎜ ⎜

⎠ ⎟ ⎟d2ρ1d

2ρ2

Page 10: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

10

Far Zone

W r1u1, r2u2 ,ω( ) ≈k2eik r2−r1( )

2π( )2r1r2

cosθ1 cosθ2

× W0 ρ1,ρ2 ,ω( )A∫∫ eik u1.ρ1−u2 .ρ2( )d2ρ1d

2ρ2

ra → raua ua =1, a=1,2( )

Ra ≈ra −ρa.ua

• Remember Fraunhofer diffraction theory....

Page 11: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

11

Quasi-Homogeneous Model Source*

*J. W. Goodman, Proc. IEEE 53, 1688 (1965); W. H. Carter and E. Wolf, J. Opt. Soc. Amer. 67, 785 (1977)

W0 ρ1,ρ2 ,ω( ) =

1 2 4 3 4 intensity

I0ρ1 + ρ2

2

⎛ ⎝ ⎜

⎞ ⎠ ⎟

1 2 4 3 4 spectral degree

of coherence

μ ρ2 −ρ1,ω( )

1 2 3 spectrum(spatiallyinvariant)

s 0 ω( )

ρ1

ρ2

slow functionfast function

ρ1

ρ2

μ =Imax −Imin

Imax +Imin

filters at ω0

Page 12: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

12

– spectrum is different from the source!

Far Zone Field Properties

S ru,ω( ) =2π( )2ω2 cos2 θ

c2r2s 0 ω( ) ˜ Ι 0 0( ) ˜ μ 0 ku⊥,ω( )

Spectrum

μ r1u1,r2u2 ,ω( ) = exp ik r2 − r1( )[ ] ˜ Ι 0 k u2⊥−u1⊥( )[ ] ˜ Ι 0 0( )

Spectral degree of coherence - fringe visibility

– spectral analogue of the van Cittert - Zernike theorem.

– measure visibility then invert Fourier transform - synthetic aperture imaging

2−D Fourier transform˜ I k( )=

1

(2π )2I ρ( )exp i k.ρ[ ]d 2 ρ∫∫

1 2 4 4 4 3 4 4 4

Page 13: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

13

Spectral Changes in Pictures

Acoh

Ωrad =λ2 /Acoh

excess blue light on axis

excess red light off axis

What if ? All wavelengths have same solid angle, and spectrum is the same.

Acoh∝λ2

Rigorously: . (The Scaling Law for spectral invariance*)

μ ρ,ω( ) = h kρ( )

*E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).

Page 14: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

14

Spectral Shifts*

z=δc ⎛ ⎝ ⎜

⎞ ⎠ ⎟2ζ 2

δ =width of spectral line

ζ =correlation length of source

• 3D primary source

* E. Wolf, Nature (London) 326, 363 (1986)

z= λ−λ0( ) λ0[ ]

• Fractional shift of central frequency of a spectral line

Page 15: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

15

Applications to Date*

* E. Wolf and D.F.V. James, Rep. Prog. Phys. 59, 771 (1996)

•Primary sources (i.e. random charge-current distributions).•Secondary sources (i.e. illuminated apertures).•Weak scatterers (First Born Approximation).•Atomic systems (correlations induced by radiation reaction).•Twin-pinholes (application to synthetic aperture imaging)

Page 16: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

16

Doppler-Like Shifts*

*D.F.V. James, M. P. Savedoff and E. Wolf, Astrophys.J. 359, 67 (1990).

• Broad-spectrum temporal fluctuating scatterer, with anisotropic spatial coherence

axis of strong anisotropy

incident light

scattered light

θ

θ0

z=cosθ

cosθ0−1

Page 17: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

17

Model AGN ?*

z=ε q+ 1−ε( )q−1

q=1−Ω0 4π( )cosθ

solid angleof lit cone

{

scatteringangle

{

ε =transverse coherence length

longitudinal coherence length

⎛ ⎝ ⎜ ⎞

⎠ ⎟2

*D.F.V. James, Pure Appl. Opt. 7, 959 (1998)

Page 18: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

18

Applications to Date*

* E. Wolf and D.F.V. James, Rep. Prog. Phys. 59, 771 (1996)

•Primary sources (i.e. random charge-current distributions).•Secondary sources (i.e. illuminated apertures).•Weak scatterers (First Born Approximation).•Atomic systems (correlations induced by radiation reaction).•Twin-pinholes (application to synthetic aperture imaging)•Dynamic scattering (Doppler-like shifts: cosmological implications?)

Page 19: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

19

*D.F.V. James, H. C. Kandpal and E. Wolf, Astrophys. J. 445, 406 (1995).H.C. Kandpal et al, Indian J. Pure Appl. Phys. 36, 665 (1998).

• Interferometry and imaging are equivalent.

Spatial Coherence Spectroscopy*

• Use spectral measurements to determine the coherence.

Page 20: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

20

Polarization Changes on Propagation*• Different polarizations have different spatial coherence properties

Acoh↔( ) ≠ Acoh

b( )

*A.K. Jaiswal, et al. Nuovo Cimento 15B, 295 (1973) [claims about thermal source are not correct]D.F.V. James, J. Opt. Soc. Am. A 11, 1641 (1994); Opt. Comm. 109, 209 (1994).

• Need to be very careful about using vector diffraction theory

Page 21: Invited Correlation-induced spectral (and other) changes

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM 87545

21

Conclusions• Shifts happen. Get used to it.

- Spatial Coherence (van Cittert - Zernike)

- Temporal Coherence/ Spectra

- Polarization

- Fourth-order (& higher) effects (e.g. photon counting statistics)

• Wolf equations are the only way to analyze the field!

Properties of the source Properties of the Field

Solvethe Wolf

EquationsSource Correlation function Field Correlation function