investigation of locomotive electrodynamic braking

24
VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Lionginas LIUDVINAVIČIUS INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING SUMMARY OF DOCTORAL DISSERTATION TECHNOLOGICAL SCIENCES, TRANSPORT ENGINEERING (03T) Vilnius 2012

Upload: others

Post on 03-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Lionginas LIUDVINAVIČIUS INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

SUMMARY OF DOCTORAL DISSERTATION TECHNOLOGICAL SCIENCES, TRANSPORT ENGINEERING (03T)

Vilnius 2012

Page 2: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

Doctoral dissertation was prepared at Vilnius Gediminas Technical University in 2008–2012. Scientific Supervisor

Prof Dr Habil Leonas Povilas LINGAITIS (Vilnius Gediminas Technical University, Technological Sciences, Transport Engineering – 03T).

The dissertation is being defended at the Council of Scientific Field of Transport Engineering at Vilnius Gediminas Technical University: Chairman

Prof Dr Habil Marijonas BOGDEVIČIUS (Vilnius Gediminas Technical University, Technological Sciences, Transport Engineering – 03T).

Members: Prof Dr Žilvinas BAZARAS (Kaunas University of Technology, Tech-nological Sciences, Transport Engineering – 03T), Prof Dr Habil Roma RINKEVIČIENĖ (Vilnius Gediminas Technical University, Technological Sciences, Electrical and Electronic Engineer-ing – 01T), Assoc Prof Dr Stasys SLAVINSKAS (Aleksandras Stulginskis Universi-ty, Technological Sciences, Transport Engineering – 03T), Prof Dr Habil Bronislovas SPRUOGIS (Vilnius Gediminas Technical University, Technological Sciences, Transport Engineering – 03T).

Opponents: Assoc Prof Dr Algirdas JANULEVIČIUS (Aleksandras Stulginskis University, Technological Sciences, Transport Engineering – 03T), Prof Dr Habil Algimantas Juozas POŠKA (Vilnius Gediminas Tech-nical University, Technological Sciences, Electrical and Electronic Engi-neering – 01T).

The dissertation will be defended at the public meeting of the Council of Scien-tific Field of Transport Engineering in the Senate Hall of Vilnius Gediminas Technical University at 9 a.m. on 11 January 2013. Address: Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. Tel.: +370 5 274 4952, +370 5 274 4956; fax +370 5 270 0112; e-mail: [email protected] The summary of the doctoral dissertation was distributed on 10 December 2012. A copy of the doctoral dissertation is available for review at the Library of Vil-nius Gediminas Technical University (Saulėtekio al. 14, LT-10223 Vilnius, Lithuania).

© Lionginas Liudvinavičius, 2012

Page 3: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Lionginas LIUDVINAVIČIUS

LOKOMOTYVŲ ELEKTRODINAMINIO STABDYMO EFEKTYVUMO TYRIMAS

DAKTARO DISERTACIJOS SANTRAUKA TECHNOLOGIJOS MOKSLAI, TRANSPORTO INŽINERIJA (03T)

Vilnius 2012

Page 4: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

Disertacija rengta 2008–2012 metais Vilniaus Gedimino technikos universitete. Mokslinis vadovas prof. habil. dr. Leonas Povilas LINGAITIS (Vilniaus Gedimino technikos universitetas, technologijos mokslai, transporto inžinerija – 03T).

Disertacija ginama Vilniaus Gedimino technikos universiteto Transporto inžinerijos mokslo krypties taryboje: Pirmininkas

prof. habil. dr. Marijonas BOGDEVIČIUS (Vilniaus Gedimino tech-nikos universitetas, technologijos mokslai, transporto inžinerija – 03T). Nariai: prof. dr. Žilvinas BAZARAS (Kauno technologijos universitetas, technologijos mokslai, transporto inžinerija – 03T), prof. habil. dr. Roma RINKEVIČIENĖ (Vilniaus Gedimino techni-kos universitetas, technologijos mokslai, elektros ir elektronikos inžinerija – 01T), doc. dr. Stasys SLAVINSKAS (Aleksandro Stulginskio universi-tetas, technologijos mokslai, transporto inžinerija – 03T), prof. habil. dr. Bronislovas SPRUOGIS (Vilniaus Gedimino techni-kos universitetas, technologijos mokslai, transporto inžinerija – 03T).

Oponentai: doc. dr. Algirdas JANULEVIČIUS (Aleksandro Stulginskio univer-sitetas, technologijos mokslai, transporto inžinerija – 03T), prof. habil. dr. Algimantas Juozas POŠKA (Vilniaus Gedimino technikos universitetas, technologijos mokslai, elektros ir elektronikos inžinerija – 01T).

Disertacija bus ginama viešame Transporto inžinerijos mokslo krypties tarybos posėdyje 2013 m. sausio 11 d. 9 val. Vilniaus Gedimino technikos universiteto senato posėdžių salėje. Adresas: Saulėtekio al. 11, LT-10223 Vilnius, Lietuva. Tel.: (8 5) 274 4952, (8 5) 274 4956; faksas (8 5) 270 0112; el. paštas [email protected] Disertacijos santrauka išsiuntinėta 2012 m. gruodžio 10 d. Disertaciją galima peržiūrėti Vilniaus Gedimino technikos universiteto bibliotekoje (Saulėtekio al. 14, LT-10223 Vilnius, Lietuva). VGTU leidyklos „Technika“ 2051-M mokslo literatūros knyga.

© Lionginas Liudvinavičius, 2012

Page 5: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

5

Introduction

Topicality of the problem. A rapid social and economic development of the European Union countries, their technical progress, world trade globalisa-tion tendencies of the world trade, generate a huge demand for high-quality transportation services. The countries of the Western Europe, being concerned about safety, environment, sustainable use of the electrical energy and other resources, use economic and legal measures to encourage and further develop transportation of passengers and loads by railways. The main instrument for the solution of electrical energy and other resources saving is the locomotives elec-trodynamic braiking system railway transport perfection. This doctoral thesis is devoted for the solution of the above-mentioned situations.

The research subject. The principles of control of electrodynamic braking energy flows for the locomotives with DC/DC, AC/DC, DC/AC, AC/AC systems.

The main goal and objectives of the work. The main goal of the paper is to conduct theoretical and experimental investigation of energy control systems in DC/DC, AC/DC, DC/AC, AC/AC locomotives and catenary system and evaluate the level of effectiveness of their energy use, to substantiate expansion of the energy control range for regenerative braking of the electric powered locomotives, electric trains, metro, tramways and a possibility of regenerative braking in diesel-electric locomotives.

In order to achieve the purpose of the research the following objectives need to be accomplished:

1. To analyze world’s scientific publications investigating effectiveness of electrodynamic braking systems in locomotives. To analyze the prob-lems of theoretical and practical application and methods of their solu-tion.

2. To investigate new energy control systems in DC/DC, AC/DC, DC/AC, AC/AC locomotives and catenary systems.

3. To investigate theoretical presumption and submit practical solutions for realization of regenerative braking in diesel-electric locomotives. 4. To create the new model of energy control in electrodynamic braking

systems of non-traditional electric powered train. 5. To design non-traditional energy control systems in DC/DC, AC/DC,

DC/AC, AC/AC locomotives and catenary system and mathematical model of effectiveness of their energy.

Research methods – regressive analysis, mathematical modeling and global optimization methods are used in this thesis.

Page 6: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

6

Novelty of the work The following results new to the sciences of transport and electrical engineering were obtained while preparing the doctoral thesis:

1. Theoretical presumptions for realization of practical solutions for the use of the entire kinetic energy of locomotives during electrodynamic braking were submitted.

2. Mathematical relation and graphic curves of the use of regenerative braking energy were developed. 3. Theoretical presumptions for realization of practical solutions for regen-

erative braking in diesel-electric locomotives were submitted. 4. The non-traditional energy control systems in DC/DC, AC/DC, DC/AC,

AC/AC locomotives and catenary systems will minimize consumption of electricity and fuel in locomotives by 25–30%. 5. The application of mathematical model enables the calculation non-traditional electric powered train electrodynamic braking system control parameters of deviation distribution.

Practical value of the work results. The results of this thesis provide an opportunity to realize the practical solutions of regenerative braking in diesel-electric locomotives. The obtained results can enable the design of new generation locomotives with DC/DC, AC/DC, DC/AC, AC/AC systems or performing modernization of the existing ones by introducing energy saving systems in them. To design non-traditional energy saving system in the catenary system. To minimize consumption of electricity and fuel in locomotives by 25–30%.

Defended propositions 1. Design of energy saving systems in non-traditional locomotives con-sumption of electricity and fuel in locomotives would reduce by 25–30%.

2. New regenerative braking energy control systems in the traction rolling-stock can be applied in locomotives with DC/DC, AC/DC, DC/AC, AC/AC systems.

3. A possibility of regenerative braking will be created in diesel-electric locomotives and diesel electric powered trains.

4. Application of mathematical model of the parameters of electrodynamic braking energy control system in non-traditional electric powered train.

Approval of the results of the work. 13 scientific articles have been published on the topic of this Doctoral Thesis: five articles in scientific magazines, included into the list of “Science Citation Index Expanded (Web of Science)”, one article in other magazines referred to in international data bases,

Page 7: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

7

four articles in reviewed scientific magazines in English, German or French, 3 articles in reviewed materials of an international conference held in Lithuania. The results of the research conducted in the doctoral thesis were presented

at 4 international research conferences: the international conference held in 2008 in Katowice (Poland); the international conference TRANSBALTICA 2009, held in 2009 in Vilnius (Lithuania); the international conference TRANSBALTICA 2011 held in 2011 in Vilnius; the international conference held in 2011 in Katowice.

The scope of the research work. The doctoral thesis consist from: the introduction, five major chapters and general conclusions, the list of literature and reference sources, list of publications of the author relevant to the topic of this thesis, and an addendum.

The total volume of this thesis is 154 pages without addendum; there are 75 numbered formulas, 79 figures, and 21 tables used. 100 literature sources have been used for the doctoral thesis. Addendum is shows in the CD.

1. Locomotives electrodynamic braking systems analysis In the analysis is proposed and the results of research works, performed

both nationally, and on the international level, conducted on the topic of effectiveness of electrodynamic braking of locomotives and hybrid cars. The review of scientific literature includes the theoretical and practical aspects of locomotive electrodynamic braking. The investigated scientific papers were devoted to examination of possibilities of use of the new energy control elements – supercapacitors.

2. Research of the existing situation of locomotives electrodynamic braking systems and related perspectives Traction rolling stock of public limited company “Lietuvos geležinkeliai”

is given in Fig. 1. The thesis analysis only such traction rolling stock, where electrical power is used. The Fig. 1 shows a number of locomotives, drive type and analysis of electrodynamic braking systems.

The performed analysis showed that traction rolling stock fleet of public limited company consists of: 314 sections without electrodynamic braking systems – 84% and 59 sections with rheostat braking systems – 16%. The fleet of traction rolling stock consists of the locomotives given in the table, where electrical gears are used. In total LG has 373 locomotives, where the electrical power are used. Only 16% of the rheostat systems have been mounted in locomotives, where the train kinetic power becomes heat in braking resistors. Though LG operates 18 electrical locomotives ER-9M and 4 AC/AC current

Page 8: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

8

system electrical trains EJ-575, no one uses recuperation braking system. Structural scheme of the traditional structure AC/AC current system electrical traction locomotive recuperation braking and mechanical characteristics of asynchronous traction engine are given in Fig. 2.

Fig. 1. LG characteristics of traction rolling-stock fleet

Fig. 2. Structural diagram for regenerative braking of AC/AC system electric traction locomotive and speed–torque characteristics of asynchronous traction motor

The mechanical characteristics set in quadrant II shows that: A ‒

recuperation is absent in the range of speeds, because the voltage of the asynchronous traction engine operating on generator mode is lower than the catenary voltage; B ‒ recuperation is present in the range of speeds, because the voltage of the asynchronous traction engine operating on generator mode is larger than the catenary voltage.

Page 9: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

9

Structural diagram for regenerative braking of AC/AC system electric traction locomotive and speed–torque characteristics of asynchronous traction motor shows regenerative braking diapason only ‒ B.

3. Locomotives electrodynamic braking experimental research Main goals of experimental researches is to perform practical experiments of

the latest traction rolling stock EJ-575 and ER-20 CF electrodynamic braking systems, owned by public limited company Lietuvos Geležinkeliai, and electro-dynamic braking systems and define the kinetic energy management efficiency, economic and other indicators. In order to achieve the major goal, an algorithm for the research of traction rolling stock EJ-575 and ER-20 CF electrical parame-ters have been developed, individual measurement diagrams have been developed to select analogous-discreet signal converters. Experimental researches have been carried out under actual conditions, i. e. all electric train EJ-575 dynamic parameters have been measured by personal computer using locomotive control programs of the companies Škoda Vagonka, Škoda Transportation and Siemens AG on the railway section N. Vilnia–Vilnius–Kaunas and Kaunas–Vilnius–N. Vilnia, locomotive ER-20 CF on the section Vaidotai–Radviliškis and Radviliškis–Vaidotai–Vaidotai. During the research experimental of locomoti-ve ER-20 CF kinetic energy in the electrodynamic braking mode is transformed to heat in braking resistors.

Experimental researches have been carried out under actual conditions, i. e. all electric train EJ-575 dynamic parameters have been measured by perso-nal computer using locomotive control programs of the companies Škoda Va-gonka, Škoda Transportation and Siemens AG on the railway section N. Vil-nia–Vilnius–Kaunas and Kaunas–Vilnius–N. Vilnia, locomotive ER-20 CF on the section Vaidotai–Radviliškis and Radviliškis–Vaidotai–Vaidotai.

The values of double-deck electric train EJ-575 energy management parameters for traction-electrodynamic braking mode have been measured by a personal computer Fig. 4. The electrodynamic braking energy management efficiency of electric train EJ-575 is shown Fig. 5 by braking capacity PB (t) variation diagrams. These diagrams show that in braking cycles: The appropriate areas defined by curves with the axis of abscissas describe the value of t1–t2, t3–t4 electrodynamic braking power PB(t) converting to heat in braking resistors. During the experimental researches it was identified that kinetic energy electrical trains EJ-575 during electrodynamic braking transformed to heat in braking resistors.

Page 10: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

10

Fig. 3. Diagram of research for EJ-575 electric train electrodynamic braking experimental parameters when PC is used

Fig. 4. Values of parameters of power control for EJ-575 two-stored electric train in traction and electrodynamic braking modes

Page 11: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

11

The parameters of double-deck electric train EJ-575 have been calculated in the electrodynamic braking cycles 1S and 2S and presented in Fig. 5.

Fig. 5. Curves for omhic power used by EJ-575 two-stored electric train from

the catenary system in traction and electrodynamic braking cycles: PT (t) – omhic power, kW; PB (t) – electrodynamic braking power, kW; t – time (s)

During the experimental researches it was identified that kinetic energy during electrodynamic braking transformed to heat in braking resistors related to train No. EJ 818 (22, 4%), train No. EJ 821 (36, 1%).

4. Non-traditional structure locomotive kinetic energy control systems Non-traditional structure AC/AC current system locomotive kinetic energy

control scheme (on the left – electric traction locomotives, on the right – locomotives with electric power) is presented in Fig. 6. Fig. 6 presents universal AC/AC current system locomotive kinetic energy

management system suitable to both electric traction locomotives and diesel locomotives. In order to expand the recuperation braking range in an electric traction locomotive, to implement recuperation braking system in a diesel locomotive, it is necessary to connect energy storage batteries to intermediate DC circuit through to directions energy control keys. AC/AC current system locomotive non-traditional kinetic energy management structure provides theoretical and practical conditions to expand the recuperation braking range in electric powered locomotives until the full stopping, when the range of speeds B – energy is returned to catenary, A – (Fig. 7) accumulated in energy storage batteries. AC/AC current system diesel-electric powered locomotive non-traditional kinetic energy management structure provides theoretical and practical conditions to implement the recuperation braking system, because

Page 12: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

12

energy return circuit is formed. Such a circuit does not exist in traditional structure diesel locomotives.

Fig. 6. Structural diagram of kinetic energy control for non-traditional structure AC/AC

system locomotives: on the left – electric traction locomotives, on the right – diesel-electric locomotive: Y1, Y2 – control signals

The author in the article (L. Liudvinavičius et al. 2010) offers to make a management system for non-traditional AC/AC current system diesel – electric powered locomotive electrodynamic braking energy flows as circuit diagram and asynchronous traction motor speed-torque characteristics presented in Fig. 7.

Fig. 7. Non-traditional of AC/AC current system diesel-electric powered locomotive electrodynamic braking energy flow management circuit diagram and asynchronous

traction motor speed-torque characteristics

Page 13: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

13

Non-traditional structure diesel-electric powered locomotive, recuperation braking energy will be used in B and A speed range. In a range of speeds ‒ B during recuperation braking energy will be returned to energy storage battery.

5. Electric train kinetic energy control systems formation and use of mathematical model

AC/AC current system non-traditional structure electric train energy control parameters. Economical usage, consumption from grid and accumulated in power energy storage batteries, stability of energy system-traction transformer parameters, locomotive operation life and other parameters depend upon the automatic management system (AMS). Instability of characteristics and their possible deviations from nominal values may be fully characterized by parameter reliability. Calculated AC/AC current system non-traditional structure electric traction energy management traction, electrodynamic braking (largest) parameter reliability P0. The most important parameters of empirical distributions are regarded the average (average feature value in a sample) and dispersion (or – average square deviation). Non-traditional structure electric train energy management electrodynamic braking system presented in graphs is given in Fig. 8. It is possible to describe electromechanical systems in a mathematic model by using a theory of graphs, whose basis is objective measurement of physical parameters. By analyzing the results of the measured and calculated non-traditional electric train energy and its computer management system it is possible to assess their value of parametric reliability P0 in potential (maximum). A theory of graphs is used to assess the value of parametric reliability P0. A rule of three sigma: if an accidental value X has been distributed as per normal law, then it is possible value form the average digresses no further than within 3 standard deviations (through 3 sigmas).

Three sigma methods is used for the determination of the maximum AC/AC non-traditional current system locomotive (electrical train) measured value ( ITr, UTr, Ud, PB , Ib, PΣ) deviations from the arithmetical average with the essence is that the maximum deviations of accidental values do not exceed – 3σ. Based on the theory of graphs, in a common case it is possible to write an equation, if one graph peak consists of a few links, then a peak signal is expressed in an amount:

1 1 2 2 1 11

... ' 'i j j i i ij ii

x k x k x k x k x k x k x=

= + + + + = +∑ . (1)

Page 14: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

14

Fig. 8. Diagram for electrodynamic braking system of power control in non-traditional structure electric train provided in charts

Page 15: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

15

A graph consists of the peaks coupled from arcs (edges). The arches diverted from the peak does not impact upon the signal xi value. A member kijx‘i, on the right side of the equation shows that an arch is

associated with a peak, which shows an internal system element relation, when a transfer ration equals to kij.. The equations are made as per theory of graphs:

2 1 3 2'x x x x= + + ; 7 1 4 7'x x x x= + + ; 3 1 4 11 3'x x x x x= + + + ; 8 12 8'x x x= + ; 11 3 12 10 11'x x x x x= + + + ; 9 2 12 9'x x x x= + + ;

5 1 4 5'x x x x= + + ; 6 1 7 6'x x x x= + + ; 12 7 12'x x x= + ; 2 6 3 11' 'x x x x= + + ; 10 8 9 12 10'x x x x x= + + + . (2) here: xi – comparative deviation of all the system output parameter; x’i – com-parative deviation of a separate element output parameter; ∆Ud – 4Q output voltage deviation of four quadrant converter from the given value in the equations defined as – x2. Four quadrant converter 4Q output parameter devia-tion x2 may be expressed through the deviations of other system elements. In this case, a polar equation:

2 1 4 2 3 5 8 9 10 11 12 21 (7 6 ' ' ' ' ' ' ' 4 ' 4 ' ).2x x x x x x x x x x x x= + + + + + + + + + +

(3) Similarly, an equation is formed for the analogous electrodynamical

braking power regulator: 2 1 4 6 7 9 112 ' ' ' ' .x x x x x x x= + + + + + (4)

Maximum probability density σ value is described by this functional subordination:

max1( ) .2f x =

σ π (5)

σ – probability density. Intermediate probability density values maybe expressed in:

( ) ( ).f x = ϕ σ (6) The parameters have been calculated for the non-traditional structure

electrical train energy control traction and electrodynamical braking system. Curves of distribution of non-traditional structure electrical train energy control traction and electrodynamical braking system parameters have been

presented in Fig. 9.

Page 16: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

16

Fig. 9. Distribution curves of parameters of power control in non-traditional structure electric train for traction and electrodynamic braking system

Here: σs – average quadratic energy control system deviation; σr – elect-rodynamical braking power regulator VS average quadrant deviation; fs(x) – automatic control system (AVS) deviation distribution functional curve; fr(x) – electrodynamic braking power regulator VS deviation distribution functional curve; fΣ(x) – total energy control system deviation distribution functional cur-ve. Using author propose electric train kinetic energy control systems mathe-matical model is possible to calculate deviation distribution function fΣ(x)

General conclusions 1. Railway energy system catenary DC: 750 V, 1500 V, 3000 V, AC: 15 kV, 16 2/3 Hz, 25 kV, 50 Hz are very different. In most cases, they are not ap-

plied to energy return to power systems. 2. Recuperation braking range in traditional electrical traction locomotives is

low – possible only in large speed-zones, i. e. when the voltage is larger than the catenary voltage under the traction motors operating in generator mode. 3. Recuperation braking in traditional structure locomotives with electrical gear is not possible, because there is no energy return circuit.

4. As per performed theoretical and experimental researches in electrical trains ER-9M, EJ-575, locomotives ER-20 CF, it has been defined that kinetic en-ergy is not used in ER-9M, and kinetic energy is used to brake a train in

Page 17: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

17

electrical trains EJ-575, locomotives ER-20 CF. However, during electro-dynamic braking process it is reduced in braking resistors. 5. During the experimental researches with electric train EJ-575 it was identi-

fied that 22,4%–36, 1% of kinetic energy during electrodynamic braking mode transformed to heat in braking resistors.

6. Traditional structure DC/DC, AC/DC, AC/AC current system diesel-electric powered locomotives direct and alternating current traction motors may on-ly be realized during the dynamic braking mode.

7. The performed experimental researches and calculations show that applying non-traditional locomotive kinetic energy management systems it is possi-ble to reduce about 30–35% of fuel or electrical energy consumption.

8. The author's proposed non-traditional locomotives kinetic energy manage-ment systems expand the options for recuperation braking energy control, provides theoretical and practical conditions to use the recuperation braking in locomotives with electrical power.

9. All non-traditional locomotives kinetic energy management systems intended to train kinetic energy use, which do not contradict to theoretical restrictions of traction motor operating in a generator mode and recuperation braking to be used in traction rolling stock with electric power large B and small A speed ranges.

10. Management system of four quadrants applied in electrical traction locomo-tives shows theoretical options of electric machines operating in motor or generator mode.

11. Using 4Q converters of four quadrants in non-traditional structure AC/DC, AC/DC current system electrical traction locomotives, recuperation braking may be used in large B and small A speed range. In a range of speeds ‒ B during recuperation braking energy will be returned to catenary, in range A – to energy accumulation batteries.

12. The following must be used to manage non-traditional structure of AC/AC current system locomotive kinetic energy management must: track profile coordinates received from GPS, Galileo, GLONNASS satellites.

The list of published works on the topic of the dissertation Liudvinavičius, L.; Lingaitis, L. P. 2007. Electrodynamic braking in high-speed rail transport // Transport, Vol. 22, No 3. p 178–186. ISSN 1648-4142 (Thomson ISI Web of Science). Liudvinavičius, L.; Lingaitis, L. P.; Dailydka, S.; Jastremskas, V. 2009. The aspect of vector control using the asynchronous traction motor in locomotives, Transport 24(4), p. 318–324 (Thomson ISI Web of Science).

Page 18: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

18

Liudvinavičius, L.; Lingaitis, L. P. 2010. New locomotive energy management systems, Maintenance and reliability = Eksploatacja I niezawodność / Polish Academy of Scienc-es Branch in Lublin 1: p. 35–41 ISSN 1507-2711 (Thomson ISI Web of Science). Liudvinavičius, L.; Lingaitis, L. P.; Bureika, G. 2011. Investigation on Wheel-sets Slip and Control Problems of Locomotives with AC Traction Motors // Eksploatacja i niezawodność=Maintenance and reliability / Polish Academy of Sciences Branch in Lublin. ISSN 1507-2711, Iss. 4, p. 21–28 (Thomson ISI Web of Science). Liudvinavičius, L.; Bureika, G. 2011. Theoretical and practical perspectives of diesel locomotive with dc traction motors wheel-sets’ slipping and sliding control // Transport. Volume 26 (4) p. 335–343 ISSN1648-4142 (Thomson ISI Web of Science). In the other editions Lingaitis, L. P.; Liudvinavičius, L. 2006. Electric drives of traction rolling stocks with AC motors, Transport 21(3) p. 223−229. Liudvinavičius, L.; Lingaitis, L. P. 2009a. Locomotive energy savings possibilities // Transport problems: International Scientific Journal, Volume 4, Issue 3, Part 1. ISSN 1896-0596. Gliwice, p. 35–41. Liudvinavičius, L.; Lingaitis, L. P. 2009b. New technical solutions of using rolling stock electrodynamical braking // Transport problems: International Scientific Journal, Vol-ume 4, Issue 2. ISSN 1896-0596. Gliwice, p. 23–35. Liudvinavičius, L.; Lingaitis, L. P. 2011a. Management of Locomotive Tractive Energy Resouces / Liudvinavičius, L.; Lingaitis, L. P. // Energy Management Systems Rijeka, Croatia: InTech, b). ISBN 9789533075792, p. 199–222. Liudvinavičius, L.; Lingaitis, L. P. 2011b. Locomotive kinetic energy managament // Transport problems: International Scientific Journal, Volume 6, Issue 3. ISSN 1896-0596. Gliwice, p. 135–142. Liudvinavičius, L.; Djakov, V. A.; Mirgorodskaja, A. I. 2009. Impact of electro-magnetic phenomena on automatics, telemechanics and traffic control systems in DC and AC contact network‘s power supply joint stations // Proceedings of the 6th Interna-tional Scientific Conference „TRANSBALTICA 2009“, April 22–23, 2009, Vilnius Gediminas Technical University, Lithuania. ISSN 2029-2376 print. ISSN 2029–2384 online. Vilnius: Technika, p. 129–133. Bureika, G.; Liudvinavičius, L. 2011. New approach to quantitative estimation of rail-way interoperability // Proceedings of the 7th International Scientific Conference „TRANSBALTICA 2011“, May 5–6, 2011, Vilnius Gediminas Technical University, Lithuania. ISSN 2029-2376 print. ISSN 2029–2384 online. Vilnius: Technika, p. 24–29. Liudvinavičius, L.; Gelumbickas, G. 2011. News generation electric multiple units ener-gy saving systems // Proceedings of the 7th International Scientific Conference

Page 19: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

19

„TRANSBALTICA 2011“, May 5–6, 2011, Vilnius Gediminas Technical University, Lithuania. ISSN 2029-2376 print. ISSN 2029–2384 online. Vilnius: Technika, p. 91–94.

About the author Lionginas Liudvinavičius was born on 5 November 1952 in Naciūnai

village, Kėdainiai district. In 1975 he graduated from Electrical Power Faculty of Kaunas Politechnical Institutes (now Kaunas University of Technology ) and acquired engineer-electrician qualification. Production record of experience in railway transport mis 25 years. He started his production activities as supervisor by heading to a group of 60 people (in 1975–1983). In 1983–1991 he worked as head of electric train depot. In 1991–1995 he worked as head of locomotive service at state company “Lietuvos geležinkeliai”. In 1996–2000 he worked as head of Vilnius locomotive depot. He has prepared about 350 locomotives drivers, 90 bachelors and master in transport engineering. In 1998 he was awarded by badge of honour to rail-man under the order of Ministry of Transport and Communication, under order issued by general director of “Lietuvos geležinkeliai” he was awarded by second grade award badge for the merits to Lithuanian Railways. Lionginas Liudinavičius has been a member of Scientific Technical Society, a member of Railway Union, Railway expert.

At present – lector in railway transport department of Vilnius Gediminas Technical University.

LOKOMOTYVŲ ELEKTRODINAMINIO STABDYMO EFEKTYVUMO TYRIMAS

Mokslo problemos aktualumas. Europos Sąjungos šalių spartus socialinis ir ekonominis vystymasis, technikos raida, pasaulinės prekybos globalizacijos tendencijos sukelia didžiulį aukštos kokybės transporto paslaugų poreikį. Vaka-rų Europos šalys ekonominėmis ir teisinėmis priemonėmis dėl saugos, ekologi-jos bei elektros energijos ir kitų išteklių taupymo siekia skatinti keleivių ir kro-vinių vežimą geležinkeliu. Kaip pagrindinė elektros energijos ir kitų išteklių taupymo priemonė geležinkelio transporte yra lokomotyvų elektrodinaminio stabdymo sistemų tobulinimas. Šis disertacinis darbas kaip tik ir skiriamas mi-nėtiems uždaviniams spręsti.

Tyrimų objektas. DC/DC, AC/DC, DC/AC, AC/AC srovės sistemų loko-motyvų elektrodinaminio stabdymo energijos srautų valdymas. Darbo tikslas ir uždaviniai. Pagrindinis darbo tikslas ‒ teoriškai ir ekspe-

rimentiškai ištirti DC/DC, AC/DC, DC/AC, AC/AC srovės sistemos lokomoty-

Page 20: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

20

vų ir kontaktinio tinklo energijos valdymo principus bei įvertinti jų energijos naudojimo efektyvumo lygį, pagrįsti elektrovežių, elektrinių traukinių, metro, tramvajų rekuperacinio stabdymo energijos valdymo diapazono išplėtimą, re-kuperacinio stabdymo galimybę šilumvežiuose.

Darbo tikslui pasiekti darbe reikia spręsti šiuos uždavinius: 1. Išanalizuoti mokslo publikacijas, nagrinėjančias lokomotyvų elektrodi-

naminio stabdymo sistemų efektyvumą. Išnagrinėti teorines ir praktinio taikymo problemas ir jų sprendimo būdus. 2. Ištirti DC/DC, AC/DC, DC/AC, AC/AC srovės tipo lokomotyvų ir kon-

taktinio tinklo tradicines energijos valdymo sistemas ir pateikti teori-nius bei praktinius sprendimus jiems tobulinti.

3. Ištirti teorines prielaidas ir pateikti praktinius sprendimus rekuperaci-niam stabdymui šilumvežiuose realizuoti. 4. Sudaryti naują elektrinio traukinio elektrodinaminio stabdymo sistemos energijos valdymo matematinį modelį.

5. Sudaryti DC/DC, AC/DC, DC/AC, AC/AC srovės tipo lokomotyvų ir kontaktinio tinklo naujas energijos valdymo sistemas.

Tyrimų metodika. Darbe taikyti regresinės analizės, matematinio mode-liavimo, globalios optimizacijos metodai.

Darbo mokslinis naujumas Rengiant disertaciją gauti šie transporto inžinerijos ir elektros inžinerijos mokslui nauji rezultatai:

1. Išnagrinėtos teorinės prielaidos ir pateikti praktiniai sprendimai visai lo-komotyvų kinetinei energijai naudoti elektrodinaminio stabdymo metu. 2. Sudarytos rekuperacinio stabdymo energijos valdymo matematinės ir grafinės priklausomybės.

3. Išnagrinėtos teorinės prielaidos ir pateikti praktiniai sprendimai rekupe-raciniam stabdymui šilumvežiuose realizuoti.

4. Sudarytos DC/DC, AC/DC, DC/AC, AC/AC srovės tipo lokomotyvų ir kontaktinio tinklo netradicines energijos valdymo sistemos sumažins elektros energijos, degalų sąnaudas 25−30 %.

5. Matematinio modelio pritaikymas leidžia apskaičiuoti netradicinės san-daros elektrinio traukinio elektrodinaminio stabdymo energijos valdy-mo sistemos parametrų skirstinio kreives.

Darbo rezultatų praktinė reikšmė. Darbo rezultatai suteikia galimybę praktiniams sprendimams rekuperaciniam stabdymui šilumvežiuose realizuoti. Iš gautų rezultatų galima sukurti DC/DC, AC/DC, DC/AC, AC/AC srovės sis-temų naujos kartos lokomotyvus arba modernizuoti eksploatuojamus, įdiegiant energijos taupymo sistemas. Sukurti kontaktinio tinklo netradicines energijos

Page 21: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

21

taupymo sistemas. Sumažinti lokomotyvų elektros energijos, degalų sunaudo-jimą 25−30 %. Ginamieji teiginiai 1. Sukūrus netradicinės sandaros lokomotyvų energijos valdymo sistemas

lokomotyvų elektros energijos, degalų sunaudojimas sumažės iki 25−30 %.

2. Naujos traukos riedmenų rekuperacinio stabdymo energijos valdymo sistemos gali būti taikomos DC/DC, AC/DC, DC/AC, AC/AC srovės sistemų lokomotyvuose.

3. Rekuperacinio stabdymo sistema bus realizuota šilumvežiuose ir dyze-liniuose traukiniuose su elektros pavara .

4. Taikant matematinį modelį galima apskaičiuoti netradicinės sandaros elektrinio traukinio energijos valdymo traukos, elektrodinaminio stab-dymo sistemos parametrus.

Darbo rezultatų aprobavimas. Disertacijos tema yra atspausdinta 13 mokslinių straipsnių: penki – mokslo žurnaluose, įtrauktuose į Science Citation Index Expanded (Web of Science) sąrašą, vienas – kitose tarptautinėse duomenų bazėse referuojamuose žurnaluose, keturi straipsniai recenzuojamuose mokslo žurnaluose anglų, vokiečių ar prancūzų kalbomis, 3 straipsniai recenzuojamoje Lietuvos tarptautinės konferencijos medžiagoje. Disertacijoje atliktų tyrimų rezultatai buvo paskelbti 4 tarptautinėse mokslinėse konferencijose.

Darbo struktūra. Disertaciją sudaro įvadas, penki skyriai ir bendrosios iš-vados, literatūros sąrašas ir šaltiniai, autoriaus publikacijų disertacijos tema sąrašas bei priedai.

Darbo apimtis yra 154 puslapiai be priedų, tekste panaudotos 75 numeruo-tos formulės, 79 paveikslai ir 21 lentelė. Rašant disertaciją buvo naudotasi 100 literatūros šaltinių. Priedai pateikti kompaktiniame diske.

Pirmajame skyriuje išanalizuoti pastarųjų metų moksliniai darbai, susiję su lokomotyvų frikcinių ir elektrodinaminio stabdymo sistemų tobulinimu, elekt-ros mašinų, statinių keitiklių sandara ir valdymu.

Antrajame skyriuje analizuojamos esamos tradicinės sandaros lokomotyvų su elektros pavara elektrodinaminio stabdymo sistemos, kurios vyrauja pasaulio geležinkeliuose.

Trečiajame skyriuje pateikiami praktiniai dviaukščių traukinių EJ-575, ši-lumvežių ER-20 CF elektrodinaminio stabdymo sistemų efektyvumo tyrimai ir gautos išvados.

Ketvirtajame skyriuje pateiktos netradicinių sandarų lokomotyvų elektro-dinaminio stabdymo sistemų sudarymo teorinės prielaidos ir praktiniai spren-dimai. Nagrinėjamos naujos lokomotyvų elektrodinaminio stabdymo sandaros sistemos, leidžiančios ženkliai sumažinti elektros energijos, degalų sąnaudas.

Page 22: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

22

Penktasis skyrius skirtas netradicinės sandaros elektrinio traukinio energijos valdymo elektrodinaminio stabdymo sistemos matematiniam modeliui sudaryti. Disertacijos pabaigoje pateikiamos bendrosios išvados.

Bendrosios išvados 1. Geležinkelio energetinės sistemos kontaktinio tinklo įtampos DC:

750 V, 1500 V, 3000 V, AC: 15 kV, 16 2/3 Hz, 25 kV, 50 Hz labai įvairios ir daugeliu atvejų nepritaikytos energijos grąžinimui energetinei sistemai. 2. Tradicinės sandaros elektrinės traukos lokomotyvuose rekuperacinio stabdymo diapazonas mažas – galimas tik didelių greičių zonoje, t. y. tik esant traukos variklių, veikiančių generatoriniu režimu, įtampai didesnei už kontaktinio tinklo įtampą.

3. Rekuperacinis stabdymas tradicinės sandaros šilumvežiuose su elektros pavara negalimas – nėra energijos grąžinimo grandinės. 4. Pagal atliktus teorinius ir eksperimentinius tyrimus elektriniuose traukiniuose ER-9M, EJ-575, šilumvežiuose ER-20 CF, nustatyta, kad ER-9M kinetinė energija nenaudojama, o elektriniuose traukiniuose EJ-575, šilumvežiuose ER-20 CF, kinetinė energija naudojama sąstatui stabdyti, tačiau elektrodinaminio stabdymo proceso metu gesinama stabdymo rezistoriuose.

5. Eksperimentiniais tyrimais nustatyta, kad 22,4 %–36,1 % elektrinio traukinio EJ-575 kinetinės energijos virto šiluma stabdymo rezistoriuose elektrodinaminio stabdymo metu.

6. Tradicinės sandaros DC/DC, AC/DC, AC/AC srovės sistemos šilumvežių nuolatinės ir kintamosios srovės traukos variklių elektrinis stabdymas gali būti realizuotas tik dinaminio stabdymo būdu. 7. Atlikti eksperimentiniai tyrimai ir skaičiavimai parodo, kad, taikant sukurtą netradicinę lokomotyvų kinetinės energijos valdymo sistemą, galima sumažinti iki 30–35 % degalų ar elektros energijos.

8. Autoriaus pasiūlytos netradicinės lokomotyvų kinetinės energijos valdymo sistemos išplečia rekuperacinio stabdymo energijos valdymo galimybes, sudaro teorines ir praktines prielaidas rekuperacinį stabdymą naudoti šilumvežiuose su elektros pavara.

9. Norint naudoti visą traukinio kinetinę energiją, pateiktos netradicinės lokomotyvų kinetinės energijos valdymo sistemos, kurios neprieštarauja elekt-ros mašinų, veikiančių generatorių režimu teoriniams apribojimams ir įgalina traukos riedmenyse su elektros pavara naudoti didelių B ir mažų A greičių dia-pazone rekuperacinį stabdymą.

Page 23: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

23

10. Keturių kvadrantų valdymo sistema, taikoma elektrinės traukos lokomotyvuose, sudaro teorines galimybes elektros mašinai veikti variklio ar generatoriaus režimais.

11. Netradicinės sandaros AC/DC, AC/AC srovės sistemos elektrinės traukos lokomotyvuose, naudojant keturių kvadrantų 4Q keitiklius, rekuperacinį stabdymą galima naudoti didelių B ir mažų A greičių diapazone. Greičių diapazone – B rekuperacinio stabdymo metu energija bus grąžinta į kontaktinį tinklą, A diapazone – į energijos kaupimo baterijas.

12. Netradicinės sandaros AC/AC srovės sistemos lokomotyvų kinetinei energijai valdyti tikslinga naudoti sistemas, kelio profilio pokyčio koordinates gaunant iš GPS, Galileo, GLONNASS palydovų.

Trumpos žinios apie autorių Lionginas Liudvinavičius gimė 1952 m. lapkričio 5 d. Kėdainių rajono Naciūnų kaime. 1975 m. baigė Kauno politechnikos institutą instituto (dabar

KTU) Elektrotechnikos fakultetą ir įgijo inžinieriaus elektriko kvalifikaciją. Gamybinis stažas geležinkelio transporte – 25 metai. Gamybinę veiklą

pradėjęs 1975 m., 1975–1983 metais vadovavo 60 žmonių kolektyvui ir ėjo cecho viršininko pareigas. 1983–1991 metais dirbo Elektrinių traukinių depo viršininku. 1991–1995 metais dirbo Valstybinės įmonės „Lietuvos geležinke-liai“ Lokomotyvų tarnybos viršininku. 1996–2000 metais ėjo Vilniaus lokomo-tyvų depo viršininko pareigas. Parengė apie 350 mašinistų, 90 transporto inži-nerijos bakalaurų ir magistrų. 1998 m. apdovanotas „Garbės geležinkelininko ženklu“, 2010 m. apdovanotas antrojo laipsnio ženklu už nuopelnus Lietuvos geležinkeliams. Lionginas Liudvinavičius yra mokslinės techninės draugijos, Geležinkelininkų sąjungos narys, geležinkelių transporto ekspertas.

Šiuo metu dirba lektoriumi Vilniaus Gedimino technikos universiteto Geležinkelių transporto katedroje.

Page 24: INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

24

Lionginas LIUDVINAVIČIUS INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING Summary of Doctoral Dissertation Technological Sciences, Transport Engineering (03T) Lionginas LIUDVINAVIČIUS LOKOMOTYVŲ ELEKTRODINAMINIO STABDYMO EFEKTYVUMO TYRIMAS Daktaro disertacijos santrauka Technologijos mokslai, transporto inžinerija (03T) 2012 12 10. 1,5 sp. l. Tiražas 70 egz. Vilniaus Gedimino technikos universiteto leidykla „Technika“, Saulėtekio al. 11, 10223 Vilnius, http://leidykla.vgtu.lt Spausdino UAB „Ciklonas“ J. Jasinskio g. 15, 01111 Vilnius