introduction to spectrophotometry advancing science lab gettysburg college #531, #532, #534

26
INTRODUCTION TO INTRODUCTION TO SPECTROPHOTOMETRY SPECTROPHOTOMETRY Advancing Science Lab Advancing Science Lab Gettysburg College Gettysburg College #531, #532, #534 #531, #532, #534

Upload: isabella-hudson

Post on 24-Dec-2015

223 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

INTRODUCTION TO INTRODUCTION TO SPECTROPHOTOMETRYSPECTROPHOTOMETRY

Advancing Science LabAdvancing Science Lab

Gettysburg CollegeGettysburg College#531, #532, #534#531, #532, #534

Page 2: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

BACKGROUNDBACKGROUND

Spectrophotometry is a method of analyzing that Spectrophotometry is a method of analyzing that involves how light interacts with the atoms (or involves how light interacts with the atoms (or molecules) in a sample of matter. molecules) in a sample of matter.

Visible light is only a small portion of the entire Visible light is only a small portion of the entire electromagnetic spectrum and it includes the electromagnetic spectrum and it includes the colors commonly observed (red, yellow, green, colors commonly observed (red, yellow, green, blue and violet). The visible spectrum consists blue and violet). The visible spectrum consists of electromagnetic radiation whose wavelengths of electromagnetic radiation whose wavelengths range from 400 nm to nearly 800 nm.range from 400 nm to nearly 800 nm.

Page 3: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

BACKGROUNDBACKGROUNDwhite light is observed, what is actually seen is a

mixture of all the colors of light

Why do some substances appear colored?

When this light passes through a substance, certain energies (or colors) of the light are absorbed while other color(s) are allowed to pass

through or are reflected by the substance.

If the substance does not absorb any light, it appears white (all light is reflected) or colorless (all light is transmitted). A solution appears a

certain color due to the absorbance and transmittance of visible light. For example, a blue solution appears blue because it is absorbing all of

the colors except blue.

Page 4: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

BACKGROUNDBACKGROUND

A sample may also appear blue if all colors of light except yellow are transmitted. This is

because blue and yellow are complementary colors. (See the color wheel above.)

Page 5: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

BACKGROUNDBACKGROUND

The amount of light absorbed by a solution is The amount of light absorbed by a solution is dependent on the ability of the compound to dependent on the ability of the compound to absorb light (molar absorptivity), the distance absorb light (molar absorptivity), the distance through which the light must pass through the through which the light must pass through the sample (path length) and the molar sample (path length) and the molar concentration of the compound in the solution. concentration of the compound in the solution.

If the same compound is being used and the If the same compound is being used and the path length is kept constant, then the path length is kept constant, then the absorbance is directly proportional to the absorbance is directly proportional to the concentration of the sample.concentration of the sample.

Page 6: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectrophotometer Spectrophotometer

A spectrophotometer is used to provide a A spectrophotometer is used to provide a source of light of certain energy source of light of certain energy (wavelength) and to measure the quantity (wavelength) and to measure the quantity of the light that is absorbed by the sample. of the light that is absorbed by the sample.

Light Bulb Prism Filter Slit Sample Detector

Page 7: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectrophotometer Spectrophotometer The basic operation of the spectrophotometer includes a white light radiation source The basic operation of the spectrophotometer includes a white light radiation source

that passes through a that passes through a monochromatormonochromator. The monochromator is either a prism or a . The monochromator is either a prism or a diffraction grating that separates the white light into all colors of the visible spectrum. diffraction grating that separates the white light into all colors of the visible spectrum. After the light is separated, it passes through a After the light is separated, it passes through a filter filter (to block out unwanted light, (to block out unwanted light, sometimes light of a different color) and a sometimes light of a different color) and a slitslit (to narrow the beam of light--making it (to narrow the beam of light--making it form a rectangle). Next the beam of light passes through the form a rectangle). Next the beam of light passes through the samplesample that is in the that is in the sample holder. The light passes through the sample and the unabsorbed portion sample holder. The light passes through the sample and the unabsorbed portion strikes a strikes a photodetectorphotodetector that produces an electrical signal which is proportional to the that produces an electrical signal which is proportional to the intensity of the light. The signal is then converted to a readable output that is used in intensity of the light. The signal is then converted to a readable output that is used in the analysis of the sample. the analysis of the sample.

Light Bulb Prism Filter Slit Sample Detector

Page 8: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

SpectrophotometerSpectrophotometer

The spectrophotometer displays this quantity in one of two ways:

(1)Absorbance -- a number between 0 and 2

(2) Transmittance -- a number between 0 and 100%.

The sample for a spectral analysis is prepared by pouring it into a cuvette which looks similar to a small test tube. A cuvette is made using a special optical quality glass that will itself absorb a minimal amount of the light. It is also marked with an indexing line so that it can be positioned in the light beam the same way each time to avoid variation due to the differences in the composition of the glass

Page 9: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

ExperimentExperiment

Viewing the Visible Spectrum

The spectrophotometer is designed to detect absorbances of light at different wavelengths when the light passes through a solution of some given concentration. Some compounds absorb more light at one wavelength than another, so the wavelength must be changed every time a different compound is being analyzed to achieve optimum results from a spectrophotometer. The wave-length of light is selected by adjusting the wavelength dial and read on the wavelength display.

In this lab, the color of light associated with each wavelength will be observed with the eye. The visible range of light is approximately 400 to 700 nm. The very ends of the visible spectrum will also be determined in this experiment. Please note that the accepted symbol for wavelength is the Greek letter lambda ().

Page 10: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Viewing the Visible Spectrum

Objective To observe the color of light emitted by the spectrophotometer

at various associated wavelengths.

Materials Needed:

A piece of white chalk approximately 1-2 cm long

Spectrophotometer

A cuvette/cuvette rack

Page 11: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Viewing the Visible Spectrum ProcedureProcedure (Best results are obtained by doing this experiment in a dimly lit room) (Best results are obtained by doing this experiment in a dimly lit room) Cut or rub one end of the piece of chalk to produce a 45o angle.Cut or rub one end of the piece of chalk to produce a 45o angle. Place the piece of chalk in a cuvette with the angle end directed up.Place the piece of chalk in a cuvette with the angle end directed up. Set the wavelength of the spectrophotometer to 425 nm. Be sure the filter switch is Set the wavelength of the spectrophotometer to 425 nm. Be sure the filter switch is

set to the left.set to the left. Place the cuvette in the spectrophotometer so the angle of the chalk faces to the right Place the cuvette in the spectrophotometer so the angle of the chalk faces to the right

of the spectrophotometer.of the spectrophotometer. Open the light slit by turning the transmittance adjustment knob (right knob) Open the light slit by turning the transmittance adjustment knob (right knob)

clockwise.clockwise. Look into the sample compartment and record on the data sheet the color of the light Look into the sample compartment and record on the data sheet the color of the light

striking the chalk.striking the chalk. Repeat Step 5 increasing the wavelength by 25 nm each time. Continue the process Repeat Step 5 increasing the wavelength by 25 nm each time. Continue the process

until reaching 675 nm. At 600 nm, move the filter lever (#11 in the diagram) to the until reaching 675 nm. At 600 nm, move the filter lever (#11 in the diagram) to the right.right.

While looking at the piece of chalk, slowly increase the wavelength to the point where While looking at the piece of chalk, slowly increase the wavelength to the point where the color is no longer seen. This is one end of the visible spectrum. Record this the color is no longer seen. This is one end of the visible spectrum. Record this wavelength value.wavelength value.

Adjust the wavelength back to 425 nm. While looking at the piece of chalk, slowly Adjust the wavelength back to 425 nm. While looking at the piece of chalk, slowly decrease the wavelength to the point where the color is no longer visible. This is the decrease the wavelength to the point where the color is no longer visible. This is the other end of the visible spectrum. Record this wavelength value. other end of the visible spectrum. Record this wavelength value.

Page 12: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Viewing the Visible SpectrumFrequency

(Hertz)Wavelength (nm) Observed Color

Notes

End of Spectrum

7.1 x 1014 425

6.7 x 1014 450

6.3 x 1014 475

6.0 x 1014 500

5.7 x 1014 525

5.5 x 1014 550

5.2 x 1014 575

5.0 x 1014 600

4.8 x 1014 625

4.6 x 1014 650

4.4 x 1014 675

End of Spectrum

Page 13: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectral Curve of Food ColoringSpectral Curve of Food Coloring

Background Information:A visible spectrophotometer can be used to learn why colored solutions appear a particular color. For example, WHY does blue food coloring appear blue? Simply put, the solution is blue because it transmits (and reflects) blue visible light more than it transmits other colors of visible light. In other words, blue food coloring absorbs blue visible light the least and absorbs other colors of light more.

When white light is observed, what is actually being seen is a mixture of all the colors of light. When this light passes through a substance, certain energies (or colors) the light are absorbed while other color(s) are allowed to pass through or are reflected by the substance. This is why some substances appear colored. The color that we see is the combination of energies of visible light which are not absorbed by the sample. If the substance does not absorb any light, it appears white or colorless.

Page 14: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

2. Spectral Curve of Food 2. Spectral Curve of Food ColoringColoring

A solution appears a certain color due to the absorbance and transmittance of visible light. For example, the blue solution appears blue because it is absorbing all of the colors except blue. A sample may also appear blue if all colors of light except yellow are transmitted (yellow is absorbed). This is because blue and yellow are complementary colors. Any two colors opposite each other on the color wheel (see figure above) are said to be complementary. The wavelength (numbers outside the wheel) associated with the complementary color is known as the wavelength of maximum absorbance. This is because in a colored solution the maximum amount of light is absorbed by the complementary color. Note: cyan = green.

Page 15: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectral Curve of Food ColoringSpectral Curve of Food ColoringHow a Spectrophotometer works: Inside the spectrophotometer [See Figure 1] is a light bulb which produces white light. The white

light is separated into the different colors of light by either a prism or a diffraction grating (An example of a grating is a CD ROM surface. The reflective surface has tiny grooves etched into it, which separate white

light, in a manner similar to light passing through a prism). After the light is separated, it passes through a filter (to block out unwanted

light, such as light of a different color) and a slit (to narrow the beam of light--making it in the shape of a rectangle). Next the beam of light passes through the sample that is in the sample holder. The amount

of light that passes through the sample is measured and the spectrophotometer displays this quantity in one of two ways:

Absorbance -- a number between 0 and 2. This is a measure of how much light is absorbed by the solution, in other words, now much

does not pass through.Transmittance -- a number between 0 % and 100 %. This is a measure of how much light passes through the solution (this is

transmitted light).

Page 16: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectral Curve of Food ColoringSpectral Curve of Food Coloring

The spectrophotometer is designed to detect the absorbance of light at different wavelengths (different colors) when the light passes through a solution of some given concentration. Some compounds absorb more light at one wavelength than another, so the wavelength must be changed every time a different compound is being analyzed to achieve optimum results from a spectrophotometer. The wavelength of light is selected by adjusting the wavelength dial and read on the wavelength display.

Page 17: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectral Curve of Food ColoringSpectral Curve of Food Coloring

Objectives: To measure the wavelengths of visible light that various colored solutions absorb. To plot a graph of wavelength versus absorbance and determine the maximum wavelength (λmax) for each sample. Using this information we will reason as to why each solution appears a particular color.

Materials:Visible spectrophotometer Distilled water in squeeze bottleFood coloring (red, blue, yellow and green) Tissues or KimwipesCuvettes Excel graphing programCuvette rack Plastic wrap

Page 18: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

Spectral Curve of Food ColoringSpectral Curve of Food Coloring

•Data Analysis: Now you will plot your data on a graph. (See separate instructions for Excel if you are using a computer to plot your data. Create a scatter graph and then choose the option that connects the dots to draw the curve). Wavelength is plotted on the x-axis and Absorbance is plotted on the y-axis. Remember to put units on your axes and to give your graph a title that tells the purpose of the graph.

After you collect the data: handout-you will do the following data analysis

Page 19: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

3. PHYSICAL AND CHEMICAL 3. PHYSICAL AND CHEMICAL CHANGECHANGEBACKGROUND:

Physical change - a change to a substance, such as boiling, freezing, or breaking, that does not result in the formation of a new substance.Chemical change - a change to a substance, such as burning or rusting, that results in the formation of a new substance.Color change, bubbles and production of gas, heat and/or light given off, the formation of a precipitate, and odor changes are often observed as chemicals undergo change. Unfortunately, many of these clues may be observed for both chemical and physical changes. The best indication of a chemical change is evidence that a new substance, with different properties from the original substance, has formed, but even this is not always directly observable. One of the properties of most materials is the wavelength(s) of light that they will absorb. In this lab, you will measure the absorbance by obtaining a spectral curve of the materials before they are mixed and again after the mixture has been formed. The spectrophotometer will help you determine whether the color change shows formation of a completely new substance (a chemical change), or simple physical combination of two substances (a physical change).

Page 20: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

OBJECTIVES:

To produce spectral curves of solutions before they are combined and after they are combined.

To determine, by using the spectral curve, whether the color observed is a new product or a mixture of the original solutions that were combined.

To determine whether changes resulted in a chemical change or a physical change.

Page 21: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

MATERIALS:Spectronic Spec 20D spectrophotometerComputer with printer PipettesGraphing software KimWipesDistilled waterRed and blue food color1.0 M Hydrochloric AcidRed cabbage or black bean juiceGraduated cylinderCuvettes Cuvette rackSpectral Curve for Red Food ColorSpectral Curve for Blue Food Color

Page 22: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

PROCEDURE:

Mix 5 drops of red and 5 drops of blue food coloring into a cuvette and then dilute with about 5 ml of distilled water. Mix the solution by carefully tapping the bottom of the cuvette as demonstrated by your teacher.

Fill a second cuvette about halfway with distilled water. This will serve as a “blank”.

Obtain a spectral curve for the food coloring mixture from a wavelength of 350 nm to a wavelength of 675 nm and record the absorbance values in Data Table 1.

Page 23: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

Wavelength (nm) Absorbance Wavelength (nm) Absorbance

350 525

375 550

400 575

425 600

450 625

475 650

500 675

Data Table 1. Absorbance of Food Coloring Mixture

Page 24: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

Add ______ (determined by the instructor) drops of red cabbage or black bean juice to a cuvette and dilute with about 5 ml of distilled water.

Prepare another cuvette using ______ drops of red cabbage or black bean juice, dilute with about 5 ml of distilled water, and add a few drops of acid to the juice until you see a color change. Mix the solution by carefully tapping the bottom of the cuvette.

Obtain spectral curves for the juice, and juice/acid mixture and record them in Data Table 2.

Page 25: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

Wavelength (nm) Absorbance Juice AbsorbanceJuice/Acid

Wavelength (nm) Absorbance Juice AbsorbanceJuice/Acid

350 525

375 550

400 575

425 600

450 625

475 650

500 675

Data Table 2. Absorbances of Juice And Juice/Acid Mixture

Page 26: INTRODUCTION TO SPECTROPHOTOMETRY Advancing Science Lab Gettysburg College #531, #532, #534

PHYSICAL AND CHEMICAL PHYSICAL AND CHEMICAL CHANGECHANGE

Make scatter type graphs of your data, using graphing software or by hand, plotting wavelength on the X axis and absorbance on the Y axis. Compare the spectral curve of the mixture to the spectral curve(s) of unmixed substances to answer the following questions. (If using graphing software, use overlay techniques to compare the graphs. Instructions for Excel graphing are attached to this lab.)

Answer questions on question sheet with your handout.