introduction to quantum information processingjyard/qic710/f17/qic710lec20-2017.pdf3 separable...

24
1 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Jon Yard QNC 3126 [email protected] http://math.uwaterloo.ca/~jyard/qic710 Lecture 20 (2017)

Upload: others

Post on 07-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

1

Introduction to

Quantum Information ProcessingQIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Jon Yard

QNC 3126

[email protected]

http://math.uwaterloo.ca/~jyard/qic710

Lecture 20 (2017)

Page 2: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

2

Entanglement

Page 3: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

3

Separable statesA density matrix 𝜌𝐴𝐡 is separable if there exist

probabilities 𝑝(π‘₯) and density matrices 𝜌π‘₯𝐴, 𝜌π‘₯

𝐡 such that

𝜌𝐴𝐡 =

π‘₯

𝑝 π‘₯ 𝜌π‘₯𝐴 βŠ—πœŒπ‘₯

𝐡 .

If 𝜌𝐴𝐡 is not separable, then it is called entangled.

Note: if 𝜌𝐴𝐡 is separable, exists a decomposition with

𝜌π‘₯𝐴 = πœ“π‘₯ βŸ¨πœ“π‘₯ȁ

𝐴, 𝜌π‘₯𝐡 = πœ“π‘₯ βŸ¨πœ“π‘₯ȁ

𝐡.

Operational meaning: separable states can be prepared

starting with only classical correlations.

Page 4: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

4

Separable?

Theorem [Horodeckis β€˜96]: 𝜌𝐴𝐡 is entangled iff there

exists a positive (but not completely positive) linear map

π’œ on ℂ𝑑×𝑑 such that (π’œ βŠ— 𝑖𝑑)(𝜌𝐴𝐡) is not positive

semidefinite.

We have already seen examples of positive-but-not-

completely positive maps, such as…

Proof (Easy direction – only if): Let π’œ be any positive map. If

𝜌𝐴𝐡 =

π‘₯

𝑝 π‘₯ 𝜌π‘₯𝐴 βŠ—πœŒπ‘₯

𝐡

is a separable density matrix, then

π‘₯

𝑝 π‘₯ π’œ(𝜌π‘₯𝐴) βŠ— 𝜌π‘₯

𝐡

is still positive semidefinite. Interpretation: every entangled

state is broken by some non-physical positive map.

Page 5: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

5

Separable?Example: The Werner state

𝜌𝐴𝐡 = 1 βˆ’ π‘πœ™+ βŸ¨πœ™+ȁ + Θπœ™βˆ’βŸ©βŸ¨πœ™βˆ’Θ + πœ“+ βŸ¨πœ“+ȁ

3+ 𝑝 πœ“βˆ’ βŸ¨πœ“βˆ’Θ

has a Positive Partial Transpose (PPT) 𝑇 βŠ— 𝑖𝑑 𝜌𝐴𝐡 β‰₯ 0

iff 𝑝 ≀1

2, where 𝑇 is the transpose map 𝑇 𝑀 = 𝑀𝑇.

It turns out that the PPT test is sufficient to decide

entanglement, i.e. the Werner state is entangled iff 𝑝 > 1/2.

In fact, the PPT test is sufficient to decide whether an

arbitrary 2 Γ— 2 or 2 Γ— 3 density matrix is entangled.

Page 6: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

6

Separable?

Fundamental problem: Given a description of 𝜌𝐴𝐡, (i.e.

as a 𝑑2 Γ— 𝑑2 matrix), determine whether it is separable or

entangled.

Bad news: This problem is NP-hard [Gurvits ’02].

Good news: There exists [BCY’12] an efficient

(quasipolynomial-time exp πœ–βˆ’2𝑂(log 𝑑 2) algorithm for

deciding this given a promise that 𝜌𝐴𝐡 is either separable

or a constant distance (in β€– β€–2-norm) from separable.

β€–πœŒ βˆ’ πœŽβ€–2 = Tr 𝜌 βˆ’ 𝜎 2

Page 7: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

7

How entangled?(brief)

Page 8: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

8

Entanglement measures

Some nice properties for such a measure to satisfy:

1) Invariant under local unitaries

2) Non-increasing under Local Operations and Classical

Communication (LOCC)

3) Monogamous

4) Additive

5) Faithful

An entanglement measure is a function 𝐸 𝜌𝐴𝐡 on bipartite

density matrices 𝜌𝐴𝐡 that quantifies, in one way or another,

the amount of bipartite entanglement in 𝜌𝐴𝐡.

Last time, we saw two examples for pure states:

β€’ Schmidt rank

β€’ Entanglement entropy

Page 9: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

9

Monogamy of entanglement

Many nice entanglement measures are monogamous:

The more 𝐴 is entangled with 𝐡, the less it can be

entangled with 𝐢.

𝐸(𝜌𝐴𝐡1) + 𝐸(𝜌𝐴𝐡2) ≀ 𝐸(𝜌𝐴𝐡1𝐡2).Implies that quantum correlations cannot be shared.

Application of this idea: Quantum Key Distribution.

Extreme example: 𝜌𝐴𝐡1𝐡2 = πœ™ βŸ¨πœ™Θπ΄π΅1 βŠ—πœŒπ΅2, where πœ™ = 00 + 11 is a Bell state

1 + 0 ≀ 1

Page 10: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

10

Entanglement of formation

Entanglement of formation: How much entanglement

does it take, on average, to create a single copy of 𝜌𝐴𝐡?

𝐸𝐹(𝜌𝐴𝐡) = min

𝑝 π‘₯ , πœ“π‘₯𝐴𝐡

π‘₯

𝑝 π‘₯ 𝑆 πœ“π‘₯𝐴 :

π‘₯

𝑝 π‘₯ πœ“π‘₯ πœ“π‘₯𝐴𝐡 = 𝜌𝐴𝐡

Faithful, not monogamous, not additive…

𝐸𝐢 𝜌𝐴𝐡 = limπ‘›β†’βˆž

1

𝑛𝐸𝐹 𝜌𝐴𝐡

βŠ—π‘› ≀ 𝐸𝐹(𝜌𝐴𝐡)

Entanglement cost: how much entanglement does it

take, per copy, to create many copies of 𝜌𝐴𝐡?

How much entanglement does it take to make 𝜌𝐴𝐡 using

LOCC?

Shor ’01, Hastings β€˜08: Can have 𝐸𝐢 < 𝐸𝐹 (explicit example?).

Faithful, not monogamous. Additive?

Page 11: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

11

Distillable entanglementHow much entanglement can be extracted from 𝜌𝐴𝐡, in

the limit of many copies?does it take, on average, to

create a single copy of 𝜌𝐴𝐡?

𝐸𝐷(𝜌𝐴𝐡) = the largest rate 𝑅 such that, by local operations

and classical communication, Alice and Bob can produce

𝑛𝑅 Bell states (ebits)

0⟩ȁ0 + 1 ȁ1⟩ 𝑛𝑅 =

π‘₯∈ 0,1 𝑛𝑅

π‘₯ ȁπ‘₯⟩

from πœŒπ΄π΅βŠ—π‘›

, with vanishing errors in the limit as 𝑛 β†’ ∞.

Page 12: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

12

Bound entanglementThere exist β€œbound entangled states” with 𝐸𝐷 < 𝐸𝐹[Horodeckis ’97]

Analogous to bound energy in thermodynamics.

Has 𝐸𝐷 = 0 since it is PPT. But it is entangled.

So 𝐸𝐷 not faithful.

Big open question: do there exist NPT bound entangled states?

Would imply 𝐸𝐷 not additive.

0 < π‘Ž < 1

Page 13: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

13

Squashed entanglementπΈπ‘ π‘ž 𝜌𝐴𝐡 = inf

𝜌𝐴𝐡𝐢𝐼(𝐴; 𝐡ȁ𝐢)

It is monogamous, additive and faithful!

Easy to show that πΈπ‘ π‘ž = 0 on separable states.

We don’t know how to compute it…

𝐼 𝐴; 𝐡 𝐢

Conditional mutual information

𝐼 𝐴; 𝐡 𝐢 = 𝐻 𝐴𝐢 + 𝐻 𝐡𝐢 βˆ’ 𝐻 𝐢 βˆ’ 𝐻(𝐴𝐡𝐢)Satisfies strong subadditivity 𝐼 𝐴; 𝐡 𝐢 β‰₯ 0 (not easy proof)

Generalizes mutual information

𝐼 𝐴; 𝐡 = 𝑆 𝐴 + 𝑆 𝐡 βˆ’ 𝑆(𝐴𝐡)

Page 14: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State redistribution problem

πœ“ 𝐴𝐡𝐢𝐷

Page 15: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State redistribution problem

πœ“ 𝐴𝐡𝐢𝐷

Page 16: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

Cost of state redistribution

[Devetak & Y. – PRL’08]

[Y. & Devetak – IEEE TIT ’09]

First known operational

interpretation of

quantum conditional

mutual information

𝐼 𝐢; 𝐷 𝐡 = 𝐻 𝐡𝐢 + 𝐻 π΅π·βˆ’π» 𝐡𝐢𝐷 βˆ’ 𝐻(𝐡)

𝐼 𝐢; 𝐷 𝐡 𝐼(𝐢; 𝐡)

𝐻(𝐢ȁ𝐡)

Page 17: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

Cost of state redistribution

[Devetak & Y. – PRL’08]

[Y. & Devetak – IEEE TIT ’09]

𝐼(𝐢; 𝐡)

𝐻(𝐢ȁ𝐡)

First known operational

interpretation of

quantum conditional

mutual information

𝐼 𝐢; 𝐷 𝐡 = 𝐻 𝐡𝐢 + 𝐻 π΅π·βˆ’π» 𝐡𝐢𝐷 βˆ’ 𝐻(𝐡)

𝐼 𝐢; 𝐷 𝐡

Page 18: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

Cost of state redistribution

[Devetak & Y. – PRL’08]

[Y. & Devetak – IEEE TIT ’09]

𝐼(𝐢; 𝐡)

𝐻(𝐢ȁ𝐡)

First known operational

interpretation of

quantum conditional

mutual information

𝐼 𝐢; 𝐷 𝐡 = 𝐻 𝐡𝐢 + 𝐻 π΅π·βˆ’π» 𝐡𝐢𝐷 βˆ’ 𝐻(𝐡)

𝐼 𝐢; 𝐷 𝐡

Page 19: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

Optimal protocol for state

redistribution

Explains the identity 𝑛

2𝐼 𝐢;𝐷 𝐡 =𝑛

2𝐼(𝐢; 𝐷ȁ𝐴)

Simple proof: decoupling via random unitaries:[Oppenheim – arXiv:0805.1065]

achieves different 1-shot quantities.

Applications:

β€’ Proof that πΈπ‘ π‘ž is faithful.

β€’ Proof of existence of quasipolynomial-time

algorithm for deciding separability.

β€’ Communication complexity

Let’s see how to prove a special case:

To emphasize the role of 𝐷 as a reference

system, relabel 𝐷 β†’ 𝑅

Page 20: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State merging

Page 21: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State merging

Page 22: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State merging

Page 23: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State merging

Page 24: Introduction to Quantum Information Processingjyard/qic710/F17/Qic710Lec20-2017.pdf3 Separable states A density matrix 𝜌 is separable if there exist probabilities 𝑝(π‘₯)and

State merging