introduction to nonlinear dynamics, fractals, and chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf ·...

25
Introduction to Nonlinear Dynamics, Fractals, and Chaos Wieslaw M. Macek (1,2) (1) Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszy´ nski University, W´ oycickiego 1/3, 01-938 Warsaw, Poland; (2) Space Research Centre, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warsaw, Poland e-mail: [email protected], http://www.cbk.waw.pl/macek Universit ` a della Calabria, May 2011

Upload: truongnhu

Post on 14-Mar-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Introduction to Nonlinear Dynamics, Fractals,and Chaos

Wiesław M. Macek(1,2)

(1) Faculty of Mathematics and Natural Sciences, CardinalStefan Wyszynski University, Woycickiego 1/3, 01-938 Warsaw, Poland;

(2) Space Research Centre, Polish Academy of Sciences,Bartycka 18 A, 00-716 Warsaw, Poland

e-mail: [email protected], http://www.cbk.waw.pl/∼macek

Universita della Calabria, May 2011

Page 2: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Objective

The aim of the course is to give students an introduction to the new developmentsin nonlinear dynamics and fractals. Emphasis will be on the basic concepts of stability,bifurcations and intermittency, based on intuition rather than mathematical proofs. Onsuccessful completion of this course, students should understand and apply the theoryto simple nonlinear dynamical systems and be able to evaluate the importance ofnonlinearity in various environments.

Universita della Calabria, May 2011 1

Page 3: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Plan of the Course1. Introduction

• Dynamical and Geometrical View of the World• Fractals• Stability of Linear Systems

2. Nonlinear Dynamics

• Attracting and Stable Fixed Points• Nonlinear Systems: Pendulum

3. Fractals and Chaos

• Strange Attractors and Deterministic Chaos• Bifurcations

Universita della Calabria, May 2011 2

Page 4: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

4. Strange Attractors

• Stretching and Folding Mechanism• Baker’s Map• Logistic Map• Henon Map

5. Conclusion: importance of nonlinearity and fractals

Universita della Calabria, May 2011 3

Page 5: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Universita della Calabria, May 2011 4

Page 6: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Universita della Calabria, May 2011 5

Page 7: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Fractals

A fractal is a rough orfragmented geometrical objectthat can be subdivided inparts, each of which is (at leastapproximately) a reduced-sizecopy of the whole.

Fractals are generally self-similar and independent ofscale (fractal dimension).

Universita della Calabria, May 2011 6

Page 8: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

If Nn is the number of elements ofsize rn needed to cover a set (C is aconstant) is:

Nn =C

rnD , (1)

then in case of self-similar sets:Nn+1 =C/(rn+1)

D,and hence the fractal similaritydimension D is

D = ln(Nn+1/Nn)/ ln(rn/rn+1). (2)

• Cantor set D = ln2/ ln3• Koch curve D = ln4/ ln3• Sierpinski carpet D = ln8/ ln3• Mengor sponge D = ln20/ ln3• Fractal cube D = ln6/ ln2

Universita della Calabria, May 2011 7

Page 9: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Stability of Linear Systems

Two-Dimensional System(xy

)=

(a 00 −1

)(xy

)Solutions

x(t) = xoeat

y(t) = yoe−t

Universita della Calabria, May 2011 8

Page 10: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Attracting and Stable Fixed PointsWe consider a fixed point x∗ of a system x = F(x), where F(x∗) = 0.

We say that x∗ is attracting if there is a δ > 0 such that limt→∞

x(t) = x∗

whenever |x(0)− x∗‖ < δ: any trajectory that starts within a distance δ of x∗ isguaranteed to converge to x∗.

A fixed point x∗ is Lyapunov stable if for each ε > 0 there is a δ > 0such that ‖x(t) − x∗‖ < ε whenever t ≥ 0 and ‖x(0) − x∗‖ < δ : alltrajectories that start within δ of x∗ remain within ε of x∗ for all positive time.

Universita della Calabria, May 2011 9

Page 11: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Nonlinear Systems: Pendulum

Universita della Calabria, May 2011 10

Page 12: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Attractors

An ATTRACTOR is a closed set A with the properties:

1. A is an INVARIANT SET:any trajectory x(t) that start in A stays in A for ALL time t.

2. A ATTRACTS AN OPEN SET OF INITIAL CONDITIONS:there is an open set U containing A (⊂U) such that if x(0) ∈U , then thedistance from x(t) to A tends to zero as t→ ∞.

3. A is MINIMAL:there is NO proper subset of A that satisfies conditions 1 and 2.

STRANGE ATTRACTOR is an attracting set that is a fractal: has zeromeasure in the embedding phase space and has FRACTAL dimension.Trajectories within a strange attractor appear to skip around randomly.

Dynamics on CHAOTIC ATTRACTOR exhibits sensitive (exponential)dependence on initial conditions (the ’butterfly’ effect).

Universita della Calabria, May 2011 11

Page 13: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Deterministic ChaosCHAOS (χαoς) is

• NON-PERIODIC long-term behavior• in a DETERMINISTIC system• that exhibits SENSITIVITY TO INITIAL CONDITIONS.

We say that a bounded solution x(t) of a given dynamical system isSENSITIVE TO INITIAL CONDITIONS if there is a finite fixed distance r > 0such that for any neighborhood ‖∆x(0)‖ < δ, where δ > 0, there exists (atleast one) other solution x(t) + ∆x(t) for which for some time t ≥ 0 we have‖∆x(t)‖ ≥ r.

There is a fixed distance r such that no matter how precisely one specifyan initial state there is a nearby state (at least one) that gets a distance raway.

Given x(t) = {x1(t), . . . ,xn(t)} any positive finite value of Lyapunov

exponents λk = limt→∞

1t

ln∣∣∣∆xk(t)∆xk(0)

∣∣∣, where k = 1, . . .n, implies chaos.

Universita della Calabria, May 2011 12

Page 14: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Universita della Calabria, May 2011 13

Page 15: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Types of Bifurcations

Universita della Calabria, May 2011 14

Page 16: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Bifurcation Diagram for the Logistic Map

Universita della Calabria, May 2011 15

Page 17: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

IntermittencyIn dynamical systems theory: occurrence of a signal that alternatesrandomly between long periods of regular behavior and relatively shortirregular bursts. In other words, motion in intermittent dynamical system isnearly periodic with occasional irregular bursts.

Pomeau & Manneville, 1980

Universita della Calabria, May 2011 16

Page 18: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Intermittent Behavior

Universita della Calabria, May 2011 17

Page 19: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Bifurcation and Intermittency

Universita della Calabria, May 2011 18

Page 20: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Universita della Calabria, May 2011 19

Page 21: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Horseshoe Map

Universita della Calabria, May 2011 20

Page 22: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Henon Map

Universita della Calabria, May 2011 21

Page 23: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Baker’s Map

Universita della Calabria, May 2011 22

Page 24: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Conclusions

• Fratal structure can describe complex shapes in the real word.

• Nonlinear systems exhibit complex phenomena, including bifurcation,intermittency, and chaos.

• Strange chaotic attractors has fractal structure and are sensitive to initialconditions.

Universita della Calabria, May 2011 23

Page 25: Introduction to Nonlinear Dynamics, Fractals, and Chaosusers.cbk.waw.pl/~macek/ind_uc2011.pdf · Introduction to Nonlinear Dynamics, Fractals, and Chaos Wiesław M. Macek(1;2) (1)

Bibliography

• S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, 1994.• E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993.• H. G. Schuster, Deterministic Chaos: An Introduction, VCH Verlagsgesellschaft, Weinheim 1988.

Universita della Calabria, May 2011 24