introduction to fusion energy research - psfc...

68
January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research Prospects, promises and problems: An introduction to the physics and policies behind fusion energy Anne E. White Assistant Professor, Department of Nuclear Science and Engineering, MIT whatisfusion.org

Upload: duongduong

Post on 26-Mar-2018

221 views

Category:

Documents


4 download

TRANSCRIPT

January 14, 2014 MIT PSFC IAP Seminar Series

Introduction to Fusion Energy Research

Prospects, promises and problems: An introduction to the physics and policies behind fusion energy

Anne E. WhiteAssistant Professor, Department of NuclearScience and Engineering, MIT

whatisfusion.org

January 14, 2014 MIT PSFC IAP Seminar Series 2

Overview of this talk

• Introduction to fusion

• Inertial confinement fusion

• Magnetic confinement fusion

• Survey of research programs around the world

• The Future

January 14, 2014 MIT PSFC IAP Seminar Series 3

FUSION

Nuclear Fusion is a physical process, combing light nuclei (e.g. hydrogen) to make heavier nuclei (e.g. helium). Process that powers the stars.

Fusion Energy Research refers to an entire branch of science dedicated to harnessing fusion processes; to build a fusion reactor, and build a fusion power plant

There has been tremendous progress in fusion energy research in recent years

Fusion energy research pushes frontiers of science and technology

Fusion energy research is an exciting, fast-moving international research area

January 14, 2014 MIT PSFC IAP Seminar Series 4

Matter and Energy

The equivalence is described by the famous equation*

where E is energy, m is mass, and c is the speed of light.

*Nature 438, 1096-1097 (22 December 2005) | doi:10.1038/4381096a; Published online 21 December 2005

January 14, 2014 MIT PSFC IAP Seminar Series 5

Four Fundamental Forces of Nature Strong force:Holds atomic nucleus together

Weak Force:Needed to build up heavy nuclei in periodic table;Transforms quarks

ElectromagnetismInteractions between chargedparticles, exchange of photons

GravityAttraction of objects with mass to each other

1

1/137

10-6

60-39

Weaker

Stronger

January 14, 2014 MIT PSFC IAP Seminar Series 6

• Electromagnetic force:when you rub balloon on your hair,

when you play with magnets, when you use a battery…

• Electromagnetic force: holds atoms together in molecules, holds molecules together (chemistry)

• Gravitational force:objects dropped fall to earthMoon orbits earthEarth orbits sunhttp://csep10.phys.utk.edu/astr161/lect/history/newtongrav.html

January 14, 2014 MIT PSFC IAP Seminar Series 7

• The nucleus contains protons (+) and neutrons (no charge)

• Protons (+) in nucleus want to repel each other due to electromagnetic forces

• Nucleus is held together by the strong force (nuclear force)

• Powerful enough at atomic scale to overcome repulsion of protons (+)

Oxygen Atom

Oxygen Nucleus

Nuclear forces:

January 14, 2014 MIT PSFC IAP Seminar Series 8

Four Fundamental Forces of Nature Strong force:Holds atomic nucleus together

Weak Force:Needed to build up heavy nuclei in periodic table;Transforms quarks

ElectromagnetismInteractions between chargedparticles, exchange of photons

GravityAttraction of objects with mass to each other

1

1/137

10-6

60-39

Weaker

StrongerForces of natureare harnessed totransform energy fromone form to another

January 14, 2014 MIT PSFC IAP Seminar Series 9

Units to measure energy and power

“Joule” or “J” is a unit of Energy

“Watt” or “W” is a unit of power

Power is energy used per second 1 Watt =

Your 60 Watt light bulb uses 60 Joules of energy per second

1 Joule1 second

A “60 W equivalent” CFLActually is only 13 W :Same time, less power, less $

A 60 W incandescent light bulb, tungstenfilament

January 14, 2014 MIT PSFC IAP Seminar Series 10

Hard hit baseball (100 mph)1000 Joules

Lifting World Series Trophyabove your head (30 lbs)150 Joules

Hard thrown football (60 mph) 60 Joules

How much energy is a “Joule” anyway ?

January 14, 2014 11

50 Million

kJ/g

350 Million

kJ/g

Chemical Energy

mii.org

15 kJ/g

40 kJ/g

20kJ/g

Nuclear Energy

FISSION FUSION

January 14, 2014 MIT PSFC IAP Seminar Series 12

•Electromagnetic force: Burning materials breaks chemical bonds releasing stored energy

• Coal power plant•Your car’s gas engine• Your fireplace

•Gravitational force: Falling water transforms potential energy into kinetic energy

• Hydroelectric power plant

•Nuclear Force: Uranium interacts with low energy neutrons, breaking apart via fission reactions

• Fission power plant

Matter and Energy

Most of the Energy in the US is produced from gas and coalcauses problems of pollution, climate change effects

January 14, 2014 MIT PSFC IAP Seminar Series 13

January 14, 2014 MIT PSFC IAP Seminar Series 14

Global Energy Production per Year~ 4 x 1020 J

The US contributes 25% of this total~ 1020 J/year per person in the US~ 10 kW per person in the US per

year

Fusion energy can contribute to solvingworld’s energy problems

Humans use a lot of energy

Fission refers to breaking apart heavier nuclei to make lighter nuclei

Nuclear binding energy is released in the process

January 14, 2014 MIT PSFC IAP Seminar Series 15

50 Million

kJ/g

• A low energy neutron(room temperature)

•Because neutron is neutral, it caninteract at close range with a bigpositive (+) charged nucleus

•Excited nucleus will split apart, releasing nuclear energy in the process, and more neutrons

•Produced neutrons cancause another fission reaction

•Chain reaction

Fission is so easy, the Earth has done it naturally!

January 14, 2014 MIT PSFC IAP Seminar Series 16

• Oklo (former Republic of Gabon) Uranium ore samples showed lower 235U concentrations than found elsewhere; lower than normal

• Depletion of 235U through fission only way this could have happened

• Oklo had 235U underground, in water,… 2 Billion years ago, there was a natural nuclear (fission) reactor

• Other evidence: Neodymium (Nd) & Ruthenium(Ru) isotopes from ore match reactor concentrations notnatural abundances

2 Billion year-old fossil

http://www.ans.org/pi/np/oklo/

http://www.wired.com/wiredscience/2010/06/early-multicellularity/

Fusion to make fusion power plants …

January 14, 2014 MIT PSFC IAP Seminar Series 17

Hughes IAP 2013

Fusion to make fusion power plants …

January 14, 2014 MIT PSFC IAP Seminar Series 18

Hughes IAP 2013

19

Pros

• Abundant, high energy density fuel (D + Li)

• No greenhouse gases (nor NOX, SOX, particulate emission)

• Safe – no chain reaction, ~1 sec worth of fuel in device at any one time

• Minimal “afterheat”, no nuclear meltdown possible

• Residual radioactivity small; products immobile and short-lived

• Minimal proliferation risks

• Minimal land and water use

• No seasonal, diurnal or regional variation – no energy storage issue

Cons

• We don’t know how to do it yet (turns out to be a really hard problem)

• Capital costs will be high, unit size large (but with low operating costs)

1/15/2014

Why Fusion?

MIT PSFC IAP Seminar Series

20 1/15/2014

Why is Fusion so hard?

Fusion is the opposite process of fission

January 14, 2014 MIT PSFC IAP Seminar Series 21

Fusion cannot happennaturally on Earth

Fusion is hot!

• Fusion requires light nuclei, isotopes of hydrogen D and Tto get very close to each other

• To overcome the electromagneticforce of repulsion (+) vs. (+)the nuclei must have a lotof energy

Temperature of D and T fuel mustbe > 100 Million degrees

You may have heard of cold fusion…

January 14, 2014 MIT PSFC IAP Seminar Series 22

“cold” compared to millions of degrees needed for hot fusion (e.g. the sun)

Cold fusion gained attention after reports in 1989 by Stanley Pons and Martin Fleischmann,With electrochemical device fusion…

And again in 2002 when Rusi Taleyarkhan and collaborators claimed to have observed evidence of sonofusion…

Claimed that their apparatus produced heat (energy) of a magnitude only explained by anuclear process –SCIENCE FICTION

http://www.economist.com/science/displayStory.cfm?story_id490

You may have heard about a teen building a fusion reactor in the basement…or the garage…

January 14, 2014 MIT PSFC IAP Seminar Series 23

“Conrad Farnsworth, Wyoming Teen, Builds Nuclear Fusion Reactor In Garage”

http://www.huffingtonpost.com/2013/02/04/conrad-farnsworth-builds-nuclear-fusion-reactor-garage_n_2616998.html

Conrad built a fusion reactor.SCIENCE FICTIONConrad built a device that generated fusion reactions. SCIENCE FACT

Fusion reactions are produced in table top (small)devices all the time. You too can build an – look here: http://www.fusor.net/. Or here http://iec.neep.wisc.edu/

The neutrons generated are used in a variety of applications … but NOT FUSION ENERGY

http://iec.neep.wisc.edu/

Table top fusion does happen…and it is very useful !

January 14, 2014

Compact Neutron Generators for Medical, Homeland Security, and Planetary Exploration, Reijonen, J, roceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee: 49–53

Naranjo, B., Gimzewski, J. & Putterman, S. Nature 434, 1115−1117 (2005); doi:10.1038/nature03575 24

Shoot beams of atomic nuclei at other atoms

Fusion of deuterium atoms (D + D) results in the formation of a He-3 ion and a high energy neutron

Neutron generators have applications in medicine, security, and materials analysis.

•Used to determine quality of oil •Used in homeland security, airport luggage screens•medical applications, medical research•Laboratory neutron source for other experiments

Can’t make these fusion devicesinto fusion reactors*

For fusion energy applications,Fusion must be hot. 100 Mill degrees!

*known physics

MIT PSFC IAP Seminar Series

25 1/15/2014 AEWhite NUF 2013

When you heat anything to 100 Million degrees you create a new state of matter - PLASMA

26

PLASMAS behave in very complicated ways,Need new branch of physics to deal with this

• Very hot (minimum 5 eV; 60,000°K)

– Electrons stripped from atomic nuclei

– Excellent electrical conductivity

– Significant interaction with electromagnetic fields and radiation

• Quasi-neutral

– But small deviations lead to strong plasma-generated electric and magnetic fields

• The quest for controlled fusion energy led to the rapid development of the science of plasma physics

– Important for understanding of astrophysics, space sciences, etc.

January 14, 2014 MIT PSFC IAP Seminar Series 27

• Gravitational Confinement (300 W/m3)

– In a deep gravitational well, even fast particles are trapped.

– Very slow: E ~ 106 years, burn-up time = 1010

years

• Inertial Confinement (1028 W/m3)

– Heat and compress plasma to ignite plasma before constituents fly apart.

– Works for the H-bomb

• Magnetic Confinement (107 W/m3)

Uses the unique properties of ionized

particles in a magnetic field

Sun

NIF

ITER

Hold hot (1 Million degree) plasma together for fusion

January 14, 2014 MIT PSFC IAP Seminar Series 28

Overview of this talk

• Introduction to fusion

• Inertial confinement fusion

• Magnetic confinement fusion

• Survey of research programs around the world

• The Future

January 14, 2014 MIT PSFC IAP Seminar Series 29

Using inertia to confine a plasma

National Ignition Facility (NIF)

NIF from the outside looks like a giant metal sphere withmetal port holes

NIF on the inside has many instruments aimed at the tinyplasma in center that will beignited

https://lasers.llnl.gov/

Recipe for Inertial Confinement FusionRecipe from https://lasers.llnl.gov/programs/nic/icf/

• Hollow, spherical plastic capsule about two millimeters in diameter

• Fill it with 150 micrograms (less than one-millionth of a pound) of a mixture of D and T

• Lasers generate 500 trillion watts over 20 billionths of a second —the equivalent of five million million 100-watt light bulbs

• Focus all that laser power onto the surface of the capsule, making a very dense, very hot plasma

• Wait ten billionths of a second – then ignition.

January 14, 2014 MIT PSFC IAP Seminar Series 30

Scientific Missions of NIFhttps://lasers.llnl.gov/

• National Security• Ensure the nation's security without

nuclear weapons testing• NIF replicates the conditions that

exist inside a thermonuclear weapon

• Energy for the Future• Fusion power plant based on laser

fusion/inertial confinement

• Understanding the Universe• How did the universe come into

being, and how did the stars and planets form? What happens in supernovas and black holes?

January 14, 2014 MIT PSFC IAP Seminar Series 31

Physics of materials under extreme pressures and temperatures: high energy density physics (HEDP)

wikipedia.org

Inertial Confinement Experiment in France:Laser Mégajoule (LMJ)

• Laser Mégajoule (LMJ), being constructed in France by the French nuclear science directorate (CEA). First experiments end of 2014.

• LMJ plans to deliver about 1.8 MJ of laser energy to its targets, similar to NIF, and achieve fusion gain of 10, like NIF (Charles Lion, Journal of Physics: Conference Series 244 (2010) 012003doi:10.1088/1742-6596/244/1/012003)

• LMJ is the largest ICF experiment to be built outside the US

• Like NIF, Laser Mégajoule's primary mission is to provide data to validate simulations used to maintain nuclear weapon stockpile integrity http://www-lmj.cea.fr/fr/lmj/index.htm

January 14, 2014 MIT PSFC IAP Seminar Series 32

• K. Mima, Journal of Physics: Conference Series 244 (2010) 012005

• Science China Technological Sciences July 2013, Volume 56, Issue 7, pp 1571-1588 Review on the recent progress of laser frontiers in China, ZunQi Lin et al.

• Journal of Physics: Conference Series Volume 112 Part 3 W Zheng et al 2008 J. Phys.: Conf. Ser. 112 032009 doi:10.1088/1742-6596/112/3/032009, Status of the SG-III solid-state laser facility

January 14, 2014 MIT PSFC IAP Seminar Series 33

Inertial Confinement Experiments in China, Russia, Japan, Korea…

http://rt.com/news/russia-superlaser-thermonuclear-weapon-123/

SG-II Operating in ChinaLarger SG-III construction

January 14, 2014 MIT PSFC IAP Seminar Series 34

Overview of this talk

• Introduction to fusion

• Inertial confinement fusion

• Magnetic confinement fusion

• Survey of research programs around the world

• The Future

January 14, 2014 MIT PSFC IAP Seminar Series 35

The Lorentz force law describes how charged particles move in the presence of a magnetic fields

F = ma q(v×B) = ma

Fast motion in all directionsif there is no magnetic field

Fast motion only along B-lineswhen magnetic field present

B-field provides confinement

Using magnetic fields to confine a plasma

January 14, 2014 MIT PSFC IAP Seminar Series 36

Many magnetic bottles can be built…Some are better than others at confinement.

Z-pinch (1950s-1960s) Reversed Field Pinch (1970s-present)

(present) Mirrors, pinches, combinations (1950s-Present)

January 14, 2014 MIT PSFC IAP Seminar Series 37

W7-X :A stellaratorin Germany

JET: A tokamak in England

Best devices for magnetically confining hot plasma

January 14, 2014 MIT PSFC IAP Seminar Series 38

From the outside, a tokamak looks like a giant metal donutwith the hot (100 Million degree) plasma fuel (D-T) inside

January 14, 2014 MIT PSFC IAP Seminar Series 39

Tokamaks have beaten every other confinement configuration todate on the quality of confinement and fusion energy production

• TFTR and JET with D-T fuelmade a lot of fusion energy

•Establishes basic “scientific feasibility”

•power out less than power in

•Q = 0.65 means you put in 25 MWto get 16 MW out

•Fusion self-heating, characteristic of a “burning plasma”, has yet to be explored

The technologies needed for net power must still be demonstrated.

January 14, 2014 MIT PSFC IAP Seminar Series 40

Magnetic fusion, hot thermonuclear fusion, in tokamaksis currently best path forward for fusion power plants

DEMO

efda.org

•Over 50 years of fusion research

•Key performance factors haveIncreased by factor of 10,000

•Current experiments nowonly factor of 10 away fromplasma conditions needed for a power plant

January 14, 2014 MIT PSFC IAP Seminar Series 41

Tokamak is the fusion device that EVERY countrypursuing fusion has chosen as the flagship experiment.

Image, Maul NUF 2008 talk

January 14, 2014 MIT PSFC IAP Seminar Series 42

The world is embarking on the experiment ITER

ITER is based on the 'tokamak' concept of magnetic confinement

Fuel—D and T — heated to temperatures in excess of 150 million°C, a hot plasma

Strong magnetic fields are used to keep the plasma away from the walls

Magnetic fields are produced by superconducting coils surrounding the vessel, and by an electrical current driven through the plasma

First plasma at this facility is sometimin 2020s.

January 14, 2014 MIT PSFC IAP Seminar Series 43

Scientific mission of the tokamak experiment ITER

ITER will demonstrate the scientific and technological feasibility of fusion energy.

January 14, 2014 MIT PSFC IAP Seminar Series 44

Scientific mission of the tokamak experiment ITER

ITER will demonstrate the scientific and technological feasibility of fusion energy.

•ITER will allow scientists to study reactor-scale burning plasmas and explore technical challenges related to the development of a power- producing fusion reactor.

•ITER will be the largest tokamak ever constructed and is designed to deliver up to 10 times more energy than it requires for plasma heating, Q = 10

•ITER will be constructed in France, using components fabricated by partner nations

January 14, 2014 MIT PSFC IAP Seminar Series 45

Every country developing fusion energy shares a common roadmap

e.g. JET

Existingtokamaks

ITER

DEMO“next step” facility

Fusion Power Plant

China's Fusion Engineering Test Reactor (CFETR)

Need intermediate step between ITER and DEMO: Fusion Technology Development

• ITER can explore many, but not all, technology problems facing MFE

• Long-life Blanket technology, how to capture energy from neutrons?

• High heat flux on plasma facing wall, advanced materials?

• Tritium control; retention and recycling, maintain tritium inventory

• Etc.January 14, 2014 MIT PSFC IAP Seminar Series 46

ITER

DEMO

?

January 14, 2014 MIT PSFC IAP Seminar Series 47

Overview of this talk

• Introduction to fusion

• Inertial confinement fusion

• Magnetic confinement fusion

• Survey of research programs around the world

• The Future

General Layout for a National Fusion Policy

• Broad Energy Policy: describes energy goals (environment, clean energy, self-sufficient, economics, etc.)

• Energy policy directed at innovation and competiveness (R&D)

• Specific policies related to nuclear energy development• Even more specific policy relevant for fusion

• Major Experiments in Fusion Roadmap• Domestic experiment – Inertial Confinement Fusion• Domestic experiment–Magnetic Confinement Fusion• ITER – magnetic confinement – under construction• A “next step facility” and/or international DEMO

January 14, 2014 MIT PSFC IAP Seminar Series 48

Europe

• Energy Policy: 2050 Roadmap • Horizon 2020: innovation and competiveness• EURATOM• EFDA

• Major Experiments in Fusion Roadmap• JET and W7X –magnetic confinement• LMJ – Inertial confinement Fusion (like NIF in US)• ITER – magnetic confinement – under construction• DEMO - planned

January 14, 2014 MIT PSFC IAP Seminar Series 49

January 14, 2014 MIT PSFC IAP Seminar Series 50

Energy Policy in Europe, 2050 Roadmap

• European Commission• Policy brochures website• http://europa.eu/pol/index_e

n.htm

• Main Goals:

• Cut greenhouse gas levels

• Cut energy consumption• Increase renewables in

energy mixhttp://www.greenprospectsasia.com

Energy Policy in Europe, Horizon 2020

• Horizon 2020 is the biggest EU Research and Innovation program ever

• Nearly €80 billion of funding available over 7 years (2014 to 2020) – in addition to private investment

• Meant to help streamline taking technology from the laboratories to market

• Horizon 2020 is aimed at securing Europe's global competitiveness

January 14, 2014 MIT PSFC IAP Seminar Series 51

• EURATOM Treaty: Covers fission and fusion (Euratom.org)

• EURATOM is second of two famous "Treaties of Rome” signed in Rome in March 1957.

• The first treaty established a European Economic Community (EEC) and the second established a European Atomic Energy Community, better known as Euratom.

• (original signatories): Belgium, France, Italy, Luxembourg, the Netherlands, West Germany

• Still in effect in EU EURATOM is part of Horizon 2020• The yearly fusion budget is 145.6 Million Euro/year for FY 2014-2018.

January 14, 2014 MIT PSFC IAP Seminar Series 52

Energy Policy in Europe: Specific Nuclear Energy Policy

EFDA – international agreement

• EFDA = European Fusion Development Agreement

• Provides the umbrella for all fusion research laboratories in Europe.

• It is part of the EURATOM program of the European Commission

• 28 countries signed agreement to work on fusion as energy source for future in 1999

January 14, 2014 MIT PSFC IAP Seminar Series 53

www.efda.org

JET and ITER

China• 12th Five-year Plan on Greenhouse Emission Control (guofa [2011] No.

41)• Catalogue for the Guidance of Foreign Investment Industries (Amended

in 2011)• Several specific fusion policies

• Major Experiments in Fusion Roadmap• HL-2A upgrade – Magnetic confinement

(under construction)• EAST – Magnetic confinement (exists)• SG-II, SG-III (Inertial confinement)• ITER – magnetic confinement – under construction• China's Fusion Engineering Test Reactor (CFETR)

– magnetic confinement as “next step” • DEMO - planned

January 14, 2014 MIT PSFC IAP Seminar Series 54

January 14, 2014 MIT PSFC IAP Seminar Series 55

Energy Policy in China

• 12th Five-year Plan on Greenhouse Emission Control (guofa [2011] No. 41)

• Cut Carbon emissions• Promote low carbon economy

• Catalogue for the Guidance of Foreign Investment Industries (Amended in 2011)

• Promote energy savings and low emissions in industries

http://trackenergy.com.au/solar-energy-news/china-increasing-use-of-renewable-energy/

http://www.bbc.co.uk/news/science-environment-25623400

China is world leader in wind power production: 75GW now 200 GW in 2020

Fusion Policy in China: Highly dedicated to fusion energy R&D

Workforce development:April 2011 guideline issued, recommends the government subsidize at least 200 researchers to MFE PhD

• Ministry of Science and Technology• Ministry of Education, the Chinese

Academy of Sciences• China National Nuclear Corp.

January 14, 2014 MIT PSFC IAP Seminar Series 56

1. National Integration Design group for Magnetic Confinement Fusion Reactor was founded in 2011

2. The Experimental Advanced Superconducting Tokamak (EAST), is the world’s first fully superconducting tokamak

3. EAST was declared a “Mega Project of Scientific Research” by the Chinese government

National Experiments:

South Korea

• Energy Policy• Nuclear Policy• Specific Fusion Legislation!

• Major Experiments in Fusion Roadmap• KSTAR – operating, magnetic fusion• KDEMO – planned, magnetic fusion• ITER – under construction,

magnetic fusion

January 14, 2014 MIT PSFC IAP Seminar Series 57

KSTAR, or Korea Superconducting Tokamak Advanced Research

Korea aims at completing K-DEMO by 2037http://www.iter.org/newsline/255/1481

South Korea – laid first legal framework for fusion

• 2012 South Korean Ministry of Education, Science and Technology announced that developing technologies to build K-DEMO is decadal priority

• 2012 Law specifies construction of commercial fusion power plant between 2022 and 2036

• Gov. investment ~ 1 trillion won (US $941 million)

January 14, 2014 MIT PSFC IAP Seminar Series 58

• 1995 National Fusion R&D Master Plan

• 2005 National Fusion Energy Development Plan (FEDP)

• 2007 Boom in Fusion Policy• Fusion Energy Development

Promotion Law• Ratification of ITER Implementation

Agreement • Framework Plan of Fusion Energy

Development(First of two 5-Year National Plans)

Very quick overview of US Program

January 14, 2014 MIT PSFC IAP Seminar Series 59

• Fusion Energy Research in the US is organized under the Fusion Energy Science (FES) under the Department of Energy Office of Science.

• http://science.energy.gov/fes/

• There are three major domesticexperiments (all tokamaks)

• US is an ITER partner

• US has international collaborations on-going with EU, China, Japan, Korea, India, Russia …

Other ITER Partners also developing fusiondomestically

January 14, 2014 MIT PSFC IAP Seminar Series 60

• India

• Russia

• Japan

• More on US programin upcoming talks…

Prager, FPA meeting Dec 203

January 14, 2014 MIT PSFC IAP Seminar Series 61

Overview of this talk

• Introduction to fusion

• Inertial confinement fusion

• Magnetic confinement fusion

• Survey of research programs around the world

• The Future

Worldwide fusion research, many exciting activties

• Europe, Asia, US are aggressivelypursuing fusion research

• Fusion policy in Europe and Asia is mix of international treaties/agreements, investment strategies, domestic govmnt R&D, education, etc.

• ITER partners represent more than half the world’s population

January 14, 2014 MIT PSFC IAP Seminar Series 62

• Widely recognized that ITER may not be enough for fusion power development– fusion science, yes.– fusion technology, no. ITER

DEMO?

Plans for major domestic experiments to bridge gap between ITER and DEMO ?

January 14, 2014 MIT PSFC IAP Seminar Series 63

What is the US path to Fusion Energy Development?

Today, January 14th @ 2:00 PM

Developing a Road Map to Magnetic Fusion Energy

Dale Meade

A status report will be given on the early stages of a grass roots effort to develop a

framework for a US Road Map to Magnetic Fusion Energy

January 14, 2014 MIT PSFC IAP Seminar Series 64

Thank you!

Disney “Our Friend the Atom” 1956

References (if not listed on previous slides)

Korea Policy slides and figures from Dec 10th 2013 FPA-34th Meeting presentation by G. S. Lee (fire.pppl.gov)

China Policy slides and figures from Dec 10th 2013 FPA-34th Meeting presentation by Yaunxi Wan (fire.pppl.gov)

Japan Policy slides and figures from Dec 10th 2013 FPA-34th Meeting presentation by Hiroshi Horiike (fire.pppl.gov)

European (EDFA) Policy slides and figures from Dec 10th 2013 FPA-34th

Meeting presentation by Francesco Romanelli (fire.pppl.gov)

U.S. Road map slides from figures from Dec 10th 2013 FPA-34th Meeting presentations by Prager, Taylor and Porkolab (fire.pppl.gov)

January 14, 2014 MIT PSFC IAP Seminar Series 65

January 14, 2014 MIT PSFC IAP Seminar Series 66

Congress, Bills (from govtrack.us website, search “fusion”)

H. R. 15253 (93rd): A bill to authorize increased appropriations for the development of thermonuclear fusion power…Sponsor: Rep. Steele [R-CT2]. Not enacted

Increases appropriations for fiscal years 1975, 1976, 1977, and 1978 for the development of thermonuclear fusion power by the Atomic Energy Commission

H.R. 17538 (93rd): Fusion Energy Act (introduced Nov 26th, 1974 by Rep. Hanna (D-CA34)). Not enacted

Fusion Energy Act - Expresses the findings of Congress that the general welfare of the United States would be enhanced through the development of various applications of controlled fusion energy, commonly known as thermonuclear energy.

Increased energy production from nuclear power is neededto solve world energy problems, along with renewables

January 14, 2014 MIT PSFC IAP Seminar Series 67

•Fission Energy is Good! No Carbon emissions!

•US Government and private sector heavily involved in nuclear fission energy

•Policies:•safety and environmental regulations• R&D funding•national energy goals

•Since lat e1990s, govmnt committed to nuclear energy in policies…but

Disposal and storage of high-level nuclear waste major unresolved issue

Public opinion, has improved, but still wary of nuclear

January 14, 2014 MIT PSFC IAP Seminar Series 68

•A policy is a principle or protocol to guide decisions and achieve rational outcomes*

•Energy policy addresses energy issues •Research and development•Production•Distribution •Consumption

•The attributes of such policy •legislation (federal/state)•international treaties• incentives to investment• guidelines for use/taxation•other public policy techniques…

*wikipedia.com

Fleetceo.com