introduction to c & c++

46
Introduction to C & C+ + Lecture 10 – Image Processing with OpenCV JJCAO

Upload: sef

Post on 22-Feb-2016

42 views

Category:

Documents


1 download

DESCRIPTION

Introduction to C & C++. Lecture 10 – Image Processing with OpenCV JJCAO. OpenCV ( Open  Source  C omputer  V ision) is a library of programming functions for real time computer vision . Supported Development Environment. Linux, Windows, Android GCC, Eclipse, Visual Studio, . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction to C & C++

Introduction to C & C++

Lecture 10 – Image Processing with OpenCV

JJCAO

Page 2: Introduction to C & C++

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision.

Page 3: Introduction to C & C++

Supported Development Environment

• Linux, Windows, Android• GCC, Eclipse, Visual Studio,

Page 4: Introduction to C & C++

Install OpenCV

1. Basic Info: http://opencv.willowgarage.com/wiki/InstallGuide

2. Necessary steps for Qt Creator (Similar with VS): http://www.laganiere.name/opencvCookbook/chap1.shtml

3. Installation in Windows (too much of details): http://opencv.itseez.com/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation

Page 7: Introduction to C & C++

1. Load an image (using imread)cv::Mat image;image = cv::imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file

if( img.empty() ) // Check for invalid input{std::cout << "Could not open or find the image" << std::endl ;return -1;}

Image formats supported: Bmp, jpg, png, tif, ppm, …

CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if present)

CV_LOAD_IMAGE_GRAYSCALE (0) loads the image as an intensity one

CV_LOAD_IMAGE_COLOR (>0) loads the image in the RGB format

Page 8: Introduction to C & C++

2. Create a named OpenCV window (using namedWindow)

cv::namedWindow( "Display window", CV_WINDOW_NORMAL|CV_WINDOW_FREERATIO );// Create a window for display.

CV_WINDOW_AUTOSIZE is the only supported one if you do not use the Qt backend. In this case the window size will take up the size of the image it shows. No resize permitted!CV_WINDOW_NORMALon Qt you may use this to allow window resize. The image will resize itself according to the current window size. By using the | operator you also need to specify if you would like the image to keep its aspect ratio (CV_WINDOW_KEEPRATIO) or not (CV_WINDOW_FREERATIO).

Page 9: Introduction to C & C++

3. Display an image in an OpenCV window (using imshow)

cv::imshow( "Display window", image ); // Show our image inside it.

cv::waitKey(0); // Wait for a keystroke in the window

• Because we want our window to be displayed until the user presses a key (otherwise the program would end far too quickly), we use the waitKey function whose only parameter is just how long should it wait for a user input (measured in milliseconds).

• Zero means to wait forever.

Page 10: Introduction to C & C++

Necessary Head Files#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>using namespace cv;using namespace std;

You’ll almost always end up using the:• core section, as here are defined the basic building blocks of the

library• highgui module, as this contains the functions for input, output

& GUI operations

Page 11: Introduction to C & C++

Necessary libraries

#ifdef _DEBUG#pragma comment(lib, "opencv_core230d.lib“ ) #pragma comment(lib, "opencv_highgui230d.lib“ ) #else#pragma comment(lib, "opencv_core230.lib“ ) #pragma comment(lib, "opencv_highgui230.lib“ ) #endif

Page 12: Introduction to C & C++

Congratulation!

Page 13: Introduction to C & C++

From C to C++• OpenCV has been around ever since 2001. In those days

the library was built around a C interface.– user is responsible for taking care of memory allocation and de-

allocation– Lots of old tutorials written in C

• Once your code start to grow larger & larger, more & more a struggle to handle this rather than focusing on solving your goal

• Finally C++– automatic memory management (more or less)– less to write, to achieve more

Page 14: Introduction to C & C++

class CV_EXPORTS Mat { public: // ... a lot of methods ... ... /*! includes several bit-fields: - the magic signature - continuity flag- depth - number of channels */

int flags; int dims; //! the array dimensionality, >= 2

int rows, cols; //! the number of rows and columns or (-1, -1) when the array has more than 2 dimensions

int* refcount; //! pointer to the reference counter; when array points to user-allocated data, the pointer is NULL// other members ...

uchar* data; //! pointer to the data

};

Head

Page 15: Introduction to C & C++

Create a cv::Mat

Mat A, C; // creates just the header parts

A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // the method will allocate matrix (deep copy)

Mat B(A); // Use the copy constructor, without copying the data (shadow copy)C = A; // Assignment operator, shadow copy

Mat roi(A, Rect(10,10,100,100)); // select a ROI roi = Scalar(0,255,0); // fill the ROI with (0,255,0) (which is green in RGB space); the original A will be modified; see next page.

Page 16: Introduction to C & C++

cv::Scalar

template <typename _Tp> class Scalar_ : public Vec<_Tp, 4> { ... };

typedef Scalar_<double> Scalar;

Being derived from Vec<_Tp, 4> , Scalar_ and Scalar can be used just as typical 4-element vectors.

Page 17: Introduction to C & C++

Deep Copy

Mat F = A.clone(); Mat G; A.copyTo(G);

Now modifying F or G will not affect the matrix pointed by the Mat header.

Page 18: Introduction to C & C++

What you need to remember1. Output image allocation for OpenCV functions is automatic

(unless specified otherwise).– Example (next page)

2. No need to think about memory freeing with OpenCVs C++ interface.

3. The assignment operator and the copy constructor (ctor)copies only the header.

4. Use the clone() or the copyTo() function to copy the underlying matrix of an image.

Page 19: Introduction to C & C++

Output image allocation for OpenCV functions is automatic

• instead of writing:Mat color; ... Mat gray(color.rows, color.cols, color.depth()); cvtColor(color, gray, CV_BGR2GRAY);

• you can simply write:Mat color; ... Mat gray; cvtColor(color, gray, CV_BGR2GRAY);

Page 20: Introduction to C & C++

How to scan images, lookup table & time measurement

• How to go through each and every pixel of an image?• How is OpenCV matrix values stored?• How to measure the performance of our algorithm?• What are lookup tables and why use them?

1. Basic Mat info2. Storing methods3. Data type conversion4. Accessing Pixel Values

Page 21: Introduction to C & C++

a simple color reduction method

how_to_scan_images imageName.jpg divideWith [G]

if( argc == 4 && !strcmp(argv[3],"G") ) I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE); else I = imread(argv[1], CV_LOAD_IMAGE_COLOR);

uchar

CV_8U

CV_8U3

Page 22: Introduction to C & C++

Storing methods• How to store pixel values?– Color space

• Gray-level (Black-and-White)– unsigned 8-bit values– 0: black, 255: white

• RGB– A triplet of unsigned 8-bit values– [0, 0, 0]: black, [255, 0, 0]: red, [255, 255, 255]: white

• HSV, HLS, …, CIE– Data type

Page 24: Introduction to C & C++

Storing methods• How to store pixel values?– Color space

• Gray-level (Black-and-White)– unsigned 8-bit values– 0: black, 255: white

• RGB– A triplet of unsigned 8-bit values– [0, 0, 0]: black, [255, 0, 0]: red, [255, 255, 255]: white

• HSV, HLS, …, CIE– Data type

CV_8U - 8-bit unsigned integers ( 0..255 )CV_8S - 8-bit signed integers ( -128..127 )CV_16U - 16-bit unsigned integers ( 0..65535 )CV_16S - 16-bit signed integers ( -32768..32767 )CV_32S - 32-bit signed integers ( -2147483648..2147483647 )CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )

Page 25: Introduction to C & C++

Inquire Mat Info

1. int Mat::depth() const2. int Mat::channels() const3. int Mat::type() // mixture of depth & channels

– #define CV_8UC1 CV_MAKETYPE(CV_8U,1)– #define CV_8UC2 CV_MAKETYPE(CV_8U,2)– #define CV_8UC3 CV_MAKETYPE(CV_8U,3)– #define CV_8UC4 CV_MAKETYPE(CV_8U,4)– #define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))– …

4. size_t Mat::elemSize() // matrix element (pixel) size in bytes

– if the matrix type is CV_16SC3 , the method returns3*sizeof(short) or 6.

5. size_t Mat::elemSize1() // element size of a channel in bytes

– if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2.6. M.step[]7. size_t Mat::step1() // a matrix step divided by Mat::elemSize1()

Page 26: Introduction to C & C++

Accessing Pixel Values

1. The efficient way: c style access p = I.ptr<uchar>(i); p[j]

2. The iterator (safe) method3. On-the-fly address calculation with reference returning

I.at<uchar>(i,j)

• Performance Differencequite large (2560 X 1600) image

Page 27: Introduction to C & C++

Performance Difference

Debug

Release

Page 28: Introduction to C & C++

More efficient Algorithm

1. divide and multiplication operations are bloody expensive for a system.

2. cheaper operations such as a few subtractions, addition or in best case a simple assignment

3. limited number of input values, 256 to be exact in this problem

Page 29: Introduction to C & C++

Lookup table int divideWith; // convert our input string to number - C++ style stringstream s; s << argv[2]; s >> divideWith; if (!s) { cout << "Invalid number entered for dividing. " << endl; return -1; } uchar table[256]; for (int i = 0; i < 256; ++i) table[i] = divideWith* (i/divideWith);

Page 30: Introduction to C & C++

Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)

{ // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar));

int channels = I.channels();

int nRows = I.rows; int nCols = I.cols * channels;

if (I.isContinuous()) { nCols *= nRows; nRows = 1; }

int i,j; uchar* p; for( i = 0; i < nRows; ++i) { p = I.ptr<uchar>(i); for ( j = 0; j < nCols; ++j) { p[j] = table[p[j]]; } } return I; }

Page 31: Introduction to C & C++

Basic Mat Info

1. bool Mat::empty()2. size_t Mat::total()3. int Mat::rows, Mat::cols4. Size Mat::size()

Page 32: Introduction to C & C++

Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)

{ // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); const int channels = I.channels(); switch(channels) {

case 1: { MatIterator_<uchar> it, end; for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it) *it = table[*it]; break; }

case 3: { MatIterator_<Vec3b> it, end; for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it) { (*it)[0] = table[(*it)[0]]; (*it)[1] = table[(*it)[1]]; (*it)[2] = table[(*it)[2]]; } } } return I; }

Page 33: Introduction to C & C++

Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)

{ // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar));

const int channels = I.channels(); switch(channels) {

case 1: { for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ){ I.at<uchar>(i,j) = table[I.at<uchar>(i,j)]; } break; }

case 3: { Mat_<Vec3b> _I = I; for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ) { _I(i,j)[0] = table[_I(i,j)[0]]; _I(i,j)[1] = table[_I(i,j)[1]]; _I(i,j)[2] = table[_I(i,j)[2]]; } I = _I; break; } } return I;}

Page 34: Introduction to C & C++

The Core Function: cv::LUT()

LUT: replace all of given image values to some other values Mat lookUpTable(1, 256, CV_8U); uchar* p = lookUpTable.data; for( int i = 0; i < 256; ++i) p[i] = table[i]; for (int i = 0; i < times; ++i) cv::LUT(I, lookUpTable, J);

Page 35: Introduction to C & C++

Conclusion1. If possible, use the already made functions of OpenCV (instead

reinventing these).

2. The fastest method turns out to be the LUT function. This is because the OpenCV library is multi-thread enabled via Intel Threaded Building Blocks.

3. However, if you need to write a simple image scan prefer the pointer method. The iterator is a safer bet, however quite slower.

4. Using the on-the-fly reference access method for full image scan is the most costly in debug mode. In the release mode it may beat the iterator approach or not, however it surely sacrifices for this the safety trait of iterators.

Page 36: Introduction to C & C++

Type Conversion

#include <opencv2/imgproc/imgproc.hpp>

cvtColor(I, J, CV_RGB2GRAY);for( int i = 0; i < 0.5*I.rows; ++i)for( int j = 0; j < 0.5*I.cols; ++j ) {

//J.at<uchar>(i,j) = 0;J.at<float>(i,j) = 0;

}

Mat::convertTo()

Page 37: Introduction to C & C++

void Mat::convertTo(OutputArray m, int rtype, double alpha=1, double beta=0 )

• Converts an array to another datatype with optional scaling.• Parameters:

– m – Destination matrix. If it does not have a proper size or type before the operation, it is reallocated.

– rtype – Desired destination matrix type or, rather, the depth since the number of channels are the same as the source has. If rtype is negative, the destination matrix will have the same type as the source.

– alpha – Optional scale factor.– beta – Optional delta added to the scaled values.

• The method converts source pixel values to the target datatype. saturate_cast<> is applied at the end to avoid possible overflows:

Page 38: Introduction to C & C++

One More Example: gradientinfile='data\HappyFish.jpg';im = imread(infile);info = imfinfo(infile);if ~strcmp(info.ColorType,'grayscale') im = double(rgb2gray(im)) ;end[gx,gy] = gradient(im); figure;colormap(gray);imagesc(im);hold on;[x,y] = meshgrid(1:n,1:m);quiver(x, y, gx,gy);

Page 39: Introduction to C & C++

See the cvMatlab and cvMatlabTest example

void jj::gradient(cv::InputArray _src, cv::OutputArray _dst, int xorder){cv::Mat src=_src.getMat();_dst.create( src.size(), CV_MAKETYPE(src.depth(), src.channels()) ); cv::Mat dst = _dst.getMat();…}

Page 40: Introduction to C & C++

See the cvMatlab and cvMatlabTest example

• Difference in x direction// single channelMat src, dest; // same size, diff depthfor( int i = 0; i < src.rows; ++i)

for( int j = 1; j < src.cols-1; ++j ) {dest.at<uchar>(i,j) = (src.at<uchar>(i,j+1) - src.at<uchar>(i,j-1) ) /2.0;

}// 3 channelsdst.at<cv::Vec3b>(i,j)[0] = (src.at<cv::Vec3b>(i,j+1)[0] - src.at<cv::Vec3b>(i,j-1)[0] ) /2.0;

dst.col(j)=(src.col(j+1)-src.col(j-1))/2.0;

Page 41: Introduction to C & C++

Create a Mat object 1• Mat()Mat M(2,2, CV_8UC3, Scalar(0,0,255)); cout << "M = " << endl << " " << M << endl << endl;

• Create a matrix with more than two dimensionsint sz[3] = {2,2,2}; Mat L(3,sz, CV_8UC(1), Scalar::all(0)); // Specify its dimension, then pass a pointer containing the size for each dimension and the rest remains the same.

• Create a header for an already existing IplImage pointerIplImage* img = cvLoadImage("greatwave.png", 1); Mat mtx(img); // convert IplImage* -> Mat

Page 42: Introduction to C & C++

Create a Mat object 2• Create() functionM.create(4,4, CV_8UC(2)); cout << "M = "<< endl << " " << M << endl << endl;// You cannot initialize the matrix values with this construction. It will only reallocate its matrix data memory if the new size will not fit into the old one.

• MATLAB style initializer: zeros(), ones(), :eyes()Mat E = Mat::eye(4, 4, CV_64F); Mat O = Mat::ones(2, 2, CV_32F); Mat Z = Mat::zeros(3,3, CV_8UC1);

Page 43: Introduction to C & C++

Create a Mat object 3

• For small matricesMat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);

• Create a new header for an existing Mat object and clone() or copyTo() it

Mat RowClone = C.row(1).clone();

Page 44: Introduction to C & C++

Create a Mat object 4• Create a random matrix with randu()Mat R = Mat(3, 2, CV_8UC3); randu(R, Scalar::all(0), Scalar::all(255));cout << "R (default) = " << endl << R << endl << endl;

cout << "R (python) = " << endl << format(R,"python") << endl << endl;

cout << "R (csv) = " << endl << format(R,"csv" ) << endl << endl;…

Page 46: Introduction to C & C++

References

• OpenCV 2 Computer Vision Application Programming Cookbook, 2011.