indico.ph.tum.de · introduction from the previous talk... • you know what supersymmetry is and...

86
SUSY After the Higgs Discovery: Experimental Status and Perspectives Alexander Mann 7th Cluster Science Week 2nd – 5th December 2013

Upload: others

Post on 14-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY After the Higgs Discovery:Experimental Status and Perspectives

Alexander Mann

7th Cluster Science Week2nd – 5th December 2013

Page 2: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Introduction

From the previous talk. . .• You know what Supersymmetry is and what it’s good for.

• You’ve seen the Higgs discovery plots.

• Therefore I’ll skip the introduction.

Overview1 Is there a tension between SM Higgs and MSSM Higgs(es)?2 How do we search for SUSY?3 What are the implications of Higgs discovery for SUSY searches?

skip introduction. . .

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 2

Page 3: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Supersymmetry: What and Why

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 3

Page 4: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

What is Supersymmetry?

Basic idea of Supersymmetry (SUSY)

• Introducing an additional symmetry:

fermion∆s=1/2←−−−→ boson

• Only non-trivial extension of Poincarésymmetry group(Haag-Łopuszanski-Sohnius-Theorem)

• Requires basically doubling the particlecontent + more Higgs (MSSM)

Particles in the Standard Model and its minimalsupersymmetric extension (MSSM)

Where are all these particles?• Standard Model and SUSY particles:

same quantum numbers (except spin)• No SUSY particles observed yet• SUSY particles must be heavier⇒ SUSY is a broken symmetry

R-parity and phenomenology• SUSY allows proton to decay• Remedy: introduction of R-parity

• multiplicative quantum number• SM particles: R = +1,• SUSY particles: R = −1

• R-parity conserved• pair production of SUSY particles• lightest SUSY particle (LSP) stable

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 4

Page 5: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

What is Supersymmetry?

Basic idea of Supersymmetry (SUSY)

• Introducing an additional symmetry:

fermion∆s=1/2←−−−→ boson

• Only non-trivial extension of Poincarésymmetry group(Haag-Łopuszanski-Sohnius-Theorem)

• Requires basically doubling the particlecontent + more Higgs (MSSM)

Particles in the Standard Model and its minimalsupersymmetric extension (MSSM)

Where are all these particles?• Standard Model and SUSY particles:

same quantum numbers (except spin)• No SUSY particles observed yet• SUSY particles must be heavier⇒ SUSY is a broken symmetry

R-parity and phenomenology• SUSY allows proton to decay• Remedy: introduction of R-parity

• multiplicative quantum number• SM particles: R = +1,• SUSY particles: R = −1

• R-parity conserved• pair production of SUSY particles• lightest SUSY particle (LSP) stable

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 5

Page 6: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

What is Supersymmetry?

Basic idea of Supersymmetry (SUSY)

• Introducing an additional symmetry:

fermion∆s=1/2←−−−→ boson

• Only non-trivial extension of Poincarésymmetry group(Haag-Łopuszanski-Sohnius-Theorem)

• Requires basically doubling the particlecontent + more Higgs (MSSM)

Particles in the Standard Model and its minimalsupersymmetric extension (MSSM)

Where are all these particles?• Standard Model and SUSY particles:

same quantum numbers (except spin)• No SUSY particles observed yet• SUSY particles must be heavier⇒ SUSY is a broken symmetry

R-parity and phenomenology• SUSY allows proton to decay• Remedy: introduction of R-parity

• multiplicative quantum number• SM particles: R = +1,• SUSY particles: R = −1

• R-parity conserved• pair production of SUSY particles• lightest SUSY particle (LSP) stable

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 6

Page 7: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Why Supersymmetry?

• Dark Matter (DM)• Detected in bullet cluster and from rotation curves

of spiral galaxies• Baryonic matter (SM): ∼ 5%• Dark Matter: ∼ 27%• Dark Energy: ∼ 68%• Lightest SUSY particle:

natural candidate for Cold Dark Matter �• Hierarchy problem of the Higgs mass

• Higgs mass receives large loop corrections⇒ quadratic divergence

• Loop corrections from bosons and fermionscancel exactly in (unbroken) SUSY⇒ stabilization of Higgs mass at EWK scale �

• Extrapolation of running coupling constants• Grand Unified Theory: unification of forces• Expect intersection at GUT scale• Much better fulfilled if including SUSY �

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 7

Page 8: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Why Supersymmetry?

• Dark Matter (DM)• Detected in bullet cluster and from rotation curves

of spiral galaxies• Baryonic matter (SM): ∼ 5%• Dark Matter: ∼ 27%• Dark Energy: ∼ 68%• Lightest SUSY particle:

natural candidate for Cold Dark Matter �• Hierarchy problem of the Higgs mass

• Higgs mass receives large loop corrections⇒ quadratic divergence

• Loop corrections from bosons and fermionscancel exactly in (unbroken) SUSY⇒ stabilization of Higgs mass at EWK scale �

• Extrapolation of running coupling constants• Grand Unified Theory: unification of forces• Expect intersection at GUT scale• Much better fulfilled if including SUSY �

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 8

Page 9: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Why Supersymmetry?

• Dark Matter (DM)• Detected in bullet cluster and from rotation curves

of spiral galaxies• Baryonic matter (SM): ∼ 5%• Dark Matter: ∼ 27%• Dark Energy: ∼ 68%• Lightest SUSY particle:

natural candidate for Cold Dark Matter �• Hierarchy problem of the Higgs mass

• Higgs mass receives large loop corrections⇒ quadratic divergence

• Loop corrections from bosons and fermionscancel exactly in (unbroken) SUSY⇒ stabilization of Higgs mass at EWK scale �

• Extrapolation of running coupling constants• Grand Unified Theory: unification of forces• Expect intersection at GUT scale• Much better fulfilled if including SUSY �

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 9

Page 10: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Large Hadron Collider

Large Hadron Collider• Circular (synchrotron) hadron collider with 26.7 km circumference, successor of LEP

• Proton-proton collisions at√

s = 7 − 8 TeV (design: 14 TeV)

• Maximum instantaneous luminosity: 1034Hz/cm2 (design, record so far: 7 · 1033

Hz/cm2)

• Collision rate: up to 40 MHz, four interaction points

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 10

Page 11: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

ATLAS Detector

A Toroidal LHC ApparatuS

• Situated at Interaction Point 1 of the LHC, in a cavern 100 m below the surface

• Height: 25 m, length: 44 m, weight: 7 · 106kg

• 4π multi-purpose detector, mirror- and cylindrical symmetry, onion-like structureTracking detector, solenoid, electromagnetic and hadronic calorimeters, muon system

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 11

Page 12: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs Discovery

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 12

Page 13: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgs Discovery

Discovery• Official announcement of discovery on 4th July 2012• Discovery of a “new resonance in the search for the Standard Model Higgs boson”

• gradual process of confidence: “narrow resonance” . . . “a Higgs-like boson” . . . “a Higgs boson”• Since then lot of work to determine and measure:

• spin (SM: Higgs is a scalar particle)• parity (SM: Higgs is a CP-even state)• mass (SM: no prediction)• signal strength (check: compatible with SM predictions for given mass?)• couplings (check: compatible with SM predictions for given mass?)

Measurements

• July 2013: ATLAS paper ruling out JP = 0−, 1+, 1−, 2+ at confidence levels above 97.8 %

⇒ spin + parity �• Mass of the new boson is measured to be

• ATLAS: mH = 125.5 ± 0.2 (stat.)+0.5−0.6 (syst.) GeV (ATLAS-CONF-2013-014)

• CMS: mH = 125.7 ± 0.3 (stat.) ± 0.3 (syst.) GeV (CMS-PAS-HIG-13-005)

⇒ mass �

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 13

Page 14: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgs DiscoverySignal strength

ATLAS

)µSignal strength (

-1 0 +1

Combined

4l! (*)

ZZ!H

"" !H

#l# l! (*)

WW!H

$$ !H

bb!W,Z H

-1Ldt = 4.6 - 4.8 fb% = 7 TeV: s-1Ldt = 13 - 20.7 fb% = 8 TeV: s

-1Ldt = 4.6 fb% = 7 TeV: s-1Ldt = 20.7 fb% = 8 TeV: s

-1Ldt = 4.8 fb% = 7 TeV: s-1Ldt = 20.7 fb% = 8 TeV: s

-1Ldt = 4.6 fb% = 7 TeV: s-1Ldt = 20.7 fb% = 8 TeV: s

-1Ldt = 4.6 fb% = 7 TeV: s-1Ldt = 13 fb% = 8 TeV: s

-1Ldt = 4.7 fb% = 7 TeV: s-1Ldt = 13 fb% = 8 TeV: s

= 125.5 GeVHm

0.20± = 1.30 µ

ATLAS Preliminary

ATLA

S-C

ON

F-20

13-0

34

note: bb and ττ have been updated to full 2012 dataset (recently)

CMS

SMσ/σBest fit 0 0.5 1 1.5 2 2.5

0.28± = 0.92 µ ZZ→H

0.20± = 0.68 µ WW→H

0.27± = 0.77 µ γγ →H

0.41± = 1.10 µ ττ →H

0.62± = 1.15 µ bb→H

0.14± = 0.80 µ Combined

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary = 0.65

SMp

= 125.7 GeVH m

CM

S-P

AS

-HIG

-13-

005

Measurements of the signal strength parameterfor the individual channels (decay modes) and their combination.

⇒ signal strength �

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 14

Page 15: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgs DiscoverySignal strength and couplings

SM B/B!

ggF+ttHµ

-2 -1 0 1 2 3 4 5 6 7 8

SM

B/B

! V

BF

+V

-4

-2

0

2

4

6

8

10

Standard Model

Best fit

68% CL

95% CL

"" #H

4l# (*)

ZZ#H

$l$ l# (*)

WW#H %% #H

PreliminaryATLAS

-1Ldt = 4.6-4.8 fb& = 7 TeV: s-1Ldt = 13-20.7 fb& = 8 TeV: s

= 125.5 GeVHm

ATLA

S-C

ON

F-20

13-0

34Common signal strength scale factors

(production modes)

V!

0.7 0.8 0.9 1 1.1 1.2 1.3

F!

-1

0

1

2

3

SMBest fit68% CL95% CL

-1Ldt = 13-20.7 fb" = 8 TeV, s

-1Ldt = 4.6-4.8 fb" = 7 TeV, s

ATLAS Preliminary

ATLA

S-C

ON

F-20

13-0

34

Coupling scale factors κF and κV

for fermion and vector (gauge) couplings(κV = κW = κZ , κF = κt = κb = κτ = κg )

• First Run-I measurements still with large uncertainties

• All findings in good agreement with expectations for a Standard Model Higgs

⇒ couplings �

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 15

Page 16: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgs Discovery (Summary)

)µSignal strength (

-1 0 +1

Combined

4l! (*)

ZZ!H

"" !H

#l# l! (*)

WW!H

$$ !H

bb!W,Z H

-1Ldt = 4.6 - 4.8 fb% = 7 TeV: s-1Ldt = 13 - 20.7 fb% = 8 TeV: s

-1Ldt = 4.6 fb% = 7 TeV: s-1Ldt = 20.7 fb% = 8 TeV: s

-1Ldt = 4.8 fb% = 7 TeV: s-1Ldt = 20.7 fb% = 8 TeV: s

-1Ldt = 4.6 fb% = 7 TeV: s-1Ldt = 20.7 fb% = 8 TeV: s

-1Ldt = 4.6 fb% = 7 TeV: s-1Ldt = 13 fb% = 8 TeV: s

-1Ldt = 4.7 fb% = 7 TeV: s-1Ldt = 13 fb% = 8 TeV: s

= 125.5 GeVHm

0.20± = 1.30 µ

ATLAS Preliminary

SM B/B!

ggF+ttHµ

-2 -1 0 1 2 3 4 5 6 7 8

SM

B/B

! V

BF

+V

-4

-2

0

2

4

6

8

10

Standard Model

Best fit

68% CL

95% CL

"" #H

4l# (*)

ZZ#H

$l$ l# (*)

WW#H %% #H

PreliminaryATLAS

-1Ldt = 4.6-4.8 fb& = 7 TeV: s-1Ldt = 13-20.7 fb& = 8 TeV: s

= 125.5 GeVHm

VV!

0.6 0.8 1 1.2 1.4 1.6 1.8

FV

"

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5 SMBest fit68% CL95% CL

-1Ldt = 13-20.7 fb# = 8 TeV, s

-1Ldt = 4.6-4.8 fb# = 7 TeV, s

ATLAS Preliminary

So what have we learnt?• We are pretty sure we found a Higgs boson.

• It has a mass somewhere around 125 – 126 GeV.

• It looks a lot like the Standard Model Higgs.

• “The Higgs exists” ⇒ the hierarchy problem is real(depending on how much fine-tuning you’re willing to allow for)

• SUSY comes to our help!

• But: Can we fit this SM Higgs into our SUSY models?

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 16

Page 17: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgses in the SM and the MSSM

• Can we fit this SM Higgs into our SUSY models? → Yes, we can!

Standard Model Higgs• Standard Model: 1 complex Higgs doublet field

• electroweak-symmetry breaking (EWSB)⇒ mass of W

± and Z bosons + 1 scalar Higgs field

MSSM Higgses• In MSSM: 2 complex Higgs doublet fields required• Leading after EWSB to 8 − 3 = 5 physical Higgs particles with different properties:

• h and H (CP-even)• A (CP-odd)• H

+ and H− (charged)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 17

Page 18: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgses in the SM and the MSSM

• Can we fit this SM Higgs into our SUSY models? → Yes, we can! But how?

MSSM Higgses• In MSSM: 2 complex Higgs doublet fields required• Leading after EWSB to 8 − 3 = 5 physical Higgs particles with different properties:

• h and H (CP-even)• A (CP-odd)• H

+ and H− (charged)

• “decoupling limit” (MA � MZ ):• h “light”, other Higgs bosons heavy and mass-degenerate• h indistinguishable from SM Higgs boson (same couplings)• ⇒ discovering a SM-like Higgs per se is not a problem for SUSY!

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 18

Page 19: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgses in the SM and the MSSM

• Can we fit this SM Higgs into our SUSY models? → Yes, we can! But how?

MSSM Higgses• In MSSM: 2 complex Higgs doublet fields required• Leading after EWSB to 8 − 3 = 5 physical Higgs particles with different properties:

• h and H (CP-even)• A (CP-odd)• H

+ and H− (charged)

• “decoupling limit” (MA � MZ ):• h “light”, other Higgs bosons heavy and mass-degenerate• h indistinguishable from SM Higgs boson (same couplings)• ⇒ discovering a SM-like Higgs per se is not a problem for SUSY!

Lightest Higgs Mass• Important difference between Higgs mass in SM and MSSM

• SM: no prediction of Higgs mass (unitarity: � 1 TeV)• MSSM: lightest Higgs mass bounded from above (quite strict limits!)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 19

Page 20: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgses in the SM and the MSSM

• Can we fit this SM Higgs into our SUSY models? → Yes, we can! But how?

MSSM Higgses• In MSSM: 2 complex Higgs doublet fields required• Leading after EWSB to 8 − 3 = 5 physical Higgs particles with different properties:

• h and H (CP-even)• A (CP-odd)• H

+ and H− (charged)

• “decoupling limit” (MA � MZ ):• h “light”, other Higgs bosons heavy and mass-degenerate• h indistinguishable from SM Higgs boson (same couplings)• ⇒ discovering a SM-like Higgs per se is not a problem for SUSY!

Lightest Higgs Mass• Important difference between Higgs mass in SM and MSSM

• SM: no prediction of Higgs mass (unitarity: � 1 TeV)• MSSM: lightest Higgs mass bounded from above (quite strict limits!)

• Using “maximal mixing scenario” and MS ≤ 3 TeV (fine-tuning): mmax

h ≈ 130 GeV• ⇒ MH = 125.5 GeV fine for SUSY (in principle)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 20

Page 21: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgses in the SM and the MSSM

• Can we fit this SM Higgs into our SUSY models? → Yes, we can! But how?

MSSM Higgses• In MSSM: 2 complex Higgs doublet fields required• Leading after EWSB to 8 − 3 = 5 physical Higgs particles with different properties:

• h and H (CP-even)• A (CP-odd)• H

+ and H− (charged)

• “decoupling limit” (MA � MZ ):• h “light”, other Higgs bosons heavy and mass-degenerate• h indistinguishable from SM Higgs boson (same couplings)• ⇒ discovering a SM-like Higgs per se is not a problem for SUSY!

Lightest Higgs Mass• actually: Higgs discovery good and

important for SUSY (MSSM)

• limits were getting quite tight. . .

• no Higgs (in that region)⇒ severe problems for MSSM

[GeV]Hm110 115 120 125 130 135 140 145 150

SM

!/!

95%

CL

Lim

it on

-110

1

10 Obs. Exp.

!1 ±!2 ± = 7 TeVs

-1 Ldt = 4.6-4.9 fb"

ATLAS 2011 2011 Data

CLs Limits PR

D86

,032

003

(201

2)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 21

Page 22: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Searches

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 22

Page 23: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs and the SUSY Scale: Natural SUSY

• If SUSY solves Higgs fine-tuning problem ⇒ scale for SUSY masses

• → major motivation that SUSY should be “LHC physics”

• “Natural SUSY” = contributions to Higgs mass should be comparable in sizeand of order of electroweak scale

⇒ masses of superpartners with closest ties to Higgs must not be too far above weak scale

• Higgsinos must be light

• Largest contribution from top-stop loop→ top squark t must be light

• Gluino �g: large correction to t mass,enters Higgs potential at 2-loops→ gluino should not be too heavy

• Other gauginos may also beconstrained

• Other sparticles at multi-TeV scale

H

tL

bL

tR

g

W

B

Li, ei

bR

Q1,2, u1,2, d1,2

arX

iv:1

110.

6926

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 23

Page 24: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs and the SUSY Scale: Natural SUSY

• If SUSY solves Higgs fine-tuning problem ⇒ scale for SUSY masses

• → major motivation that SUSY should be “LHC physics”

• “Natural SUSY” = contributions to Higgs mass should be comparable in sizeand of order of electroweak scale

⇒ masses of superpartners with closest ties to Higgs must not be too far above weak scale

• Higgsinos must be light

• Largest contribution from top-stop loop→ top squark t must be light

• Gluino �g: large correction to t mass,enters Higgs potential at 2-loops→ gluino should not be too heavy

• Other gauginos may also beconstrained

• Other sparticles at multi-TeV scale

H

tL

bL

tR

g

W

B

Li, ei

bR

Q1,2, u1,2, d1,2

arX

iv:1

110.

6926

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 24

Page 25: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs and the SUSY Scale: Natural SUSY

• If SUSY solves Higgs fine-tuning problem ⇒ scale for SUSY masses

• → major motivation that SUSY should be “LHC physics”

• “Natural SUSY” = contributions to Higgs mass should be comparable in sizeand of order of electroweak scale

⇒ masses of superpartners with closest ties to Higgs must not be too far above weak scale

• Higgsinos must be light

• Largest contribution from top-stop loop→ top squark t must be light

• Gluino �g: large correction to t mass,enters Higgs potential at 2-loops→ gluino should not be too heavy

• Other gauginos may also beconstrained

• Other sparticles at multi-TeV scale

H

tL

bL

tR

g

W

B

Li, ei

bR

Q1,2, u1,2, d1,2

arX

iv:1

110.

6926

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 25

Page 26: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs and the SUSY Scale: Natural SUSY

• If SUSY solves Higgs fine-tuning problem ⇒ scale for SUSY masses

• → major motivation that SUSY should be “LHC physics”

• “Natural SUSY” = contributions to Higgs mass should be comparable in sizeand of order of electroweak scale

⇒ masses of superpartners with closest ties to Higgs must not be too far above weak scale

• Higgsinos must be light

• Largest contribution from top-stop loop→ top squark t must be light

• Gluino �g: large correction to t mass,enters Higgs potential at 2-loops→ gluino should not be too heavy

• Other gauginos may also beconstrained

• Other sparticles at multi-TeV scale

H

tL

bL

tR

g

W

B

Li, ei

bR

Q1,2, u1,2, d1,2

arX

iv:1

110.

6926

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 26

Page 27: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs and the SUSY Scale: Natural SUSY

• If SUSY solves Higgs fine-tuning problem ⇒ scale for SUSY masses

• → major motivation that SUSY should be “LHC physics”

• “Natural SUSY” = contributions to Higgs mass should be comparable in sizeand of order of electroweak scale

⇒ masses of superpartners with closest ties to Higgs must not be too far above weak scale

• Higgsinos must be light

• Largest contribution from top-stop loop→ top squark t must be light

• Gluino �g: large correction to t mass,enters Higgs potential at 2-loops→ gluino should not be too heavy

• Other gauginos may also beconstrained

• Other sparticles at multi-TeV scale

H

tL

bL

tR

g

W

B

Li, ei

bR

Q1,2, u1,2, d1,2

arX

iv:1

110.

6926

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 27

Page 28: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Higgs and the SUSY Scale: Natural SUSY

• If SUSY solves Higgs fine-tuning problem ⇒ scale for SUSY masses

• → major motivation that SUSY should be “LHC physics”

• “Natural SUSY” = contributions to Higgs mass should be comparable in sizeand of order of electroweak scale

⇒ masses of superpartners with closest ties to Higgs must not be too far above weak scale

• Higgsinos must be light

• Largest contribution from top-stop loop→ top squark t must be light

• Gluino �g: large correction to t mass,enters Higgs potential at 2-loops→ gluino should not be too heavy

• Other gauginos may also beconstrained

• Other sparticles at multi-TeV scale

H

tL

bL

tR

g

W

B

Li, ei

bR

Q1,2, u1,2, d1,2

arX

iv:1

110.

6926

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 28

Page 29: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Natural SUSY – What to Look for

W

g

h

t

tb

~

~

~~~L

2

1

q~1,2 b l~~

R

500

1000

[GeV

]M

ass

Closeness to Higgs

µh~h~~

10

2+

0

B~

L. Hall (LBL Workshop, 21.10.11)

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 29

Page 30: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Natural SUSY – What to Look for

W

g

h

t

tb

~

~

~~~L

2

1

q~1,2 b l~~

R

500

1000

[GeV

]M

ass

Closeness to Higgs

µh~h~~

10

2+

0

B~

L. Hall (LBL Workshop, 21.10.11)

• 3rd generation� Stop should be light

⇒ Stability of MH

� Small cross section� Final state includes:

t/b quarks, W bosons, E/T

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 30

Page 31: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Natural SUSY – What to Look for

W

g

h

t

tb

~

~

~~~L

2

1

q~1,2 b l~~

R

500

1000

[GeV

]M

ass

Closeness to Higgs

µh~h~~

10

2+

0

B~

L. Hall (LBL Workshop, 21.10.11)

• 3rd generation� Stop should be light

⇒ Stability of MH

� Small cross section� Final state includes:

t/b quarks, W bosons, E/T

• Gauginos� LSP at EW scale

⇒WIMP miracle� Small cross section� Final state includes:

leptons, E/T, (no jets)

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 31

Page 32: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Natural SUSY – What to Look for

W

g

h

t

tb

~

~

~~~L

2

1

q~1,2 b l~~

R

500

1000

[GeV

]M

ass

Closeness to Higgs

µh~h~~

10

2+

0

B~

L. Hall (LBL Workshop, 21.10.11)

• 3rd generation� Stop should be light

⇒ Stability of MH

� Small cross section� Final state includes:

t/b quarks, W bosons, E/T

• Gauginos� LSP at EW scale

⇒WIMP miracle� Small cross section� Final state includes:

leptons, E/T, (no jets)

• Gluinos and squarks� Can be heavy

⇒ Small cross section� Results indicate this� Final state includes:

jets, E/T, (leptons)

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 32

Page 33: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Natural SUSY – What to Look for

W

g

h

t

tb

~

~

~~~L

2

1

q~1,2 b l~~

R

500

1000

[GeV

]M

ass

Closeness to Higgs

µh~h~~

10

2+

0

B~

L. Hall (LBL Workshop, 21.10.11)

• 3rd generation� Stop should be light

⇒ Stability of MH

� Small cross section� Final state includes:

t/b quarks, W bosons, E/T

• Gauginos� LSP at EW scale

⇒WIMP miracle� Small cross section� Final state includes:

leptons, E/T, (no jets)

• Gluinos and squarks� Can be heavy

⇒ Small cross section� Results indicate this� Final state includes:

jets, E/T, (leptons)

10−3

10−2

10−1

1

10

200 400 600 800 1000 1200 1400 1600

ν eν e* l el e*

t 1t 1*

q q q q *

g g

q g

χ 2og χ 2

oχ 1+

maverage [GeV]

σtot[pb]: pp SUSY

S = 8 TeV

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 33

10-3

10-2

10-1

1

10

200 400 600 800 1000 1200 1400 1600

νeνe* lele*

t1t1*

qqqq*

gg

qg

χ2ogχ2

oχ1+

maverage [GeV]

σtot[pb]: pp → SUSY

√S = 8 TeV

Page 34: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Searches (Summary)

No, we haven’t found SUSY

(yet)

.

But we found a lot of places where it’s not!

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 34

Page 35: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Searches (Summary)

No, we haven’t found SUSY (yet).

But we found a lot of places where it’s not!

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 35

Page 36: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Searches (Summary)

No, we haven’t found SUSY (yet).But we found a lot of places where it’s not!

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 36

Page 37: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

How a Search in HEP Works. . .

with uncertainty

SM Backgrounds:top pairs, single top,V+jets, dibosons,multijets,...

Minor irreducible Backgrounds:

Main irreducible Backgrounds:

Reducible (fake) Backgrounds:

− Templates− Jet smearing− Matrix method

− Normalize MC prediction in

− Pure MC based prediction

− Fully data driven method

Validation Region:

− Closer to SR

− Cross check back−ground predictions

Signal Region:− Look for excessDiscriminating Variable

Even

ts

SignalBackground

dedicated Control Regions− Extrapolate to Signal Regions

using MC

Combined global fit:Consider experimental and theoretical uncertainties

Teff Σjet T lepΣ T

E

(G

eV)

Tmis

s

Top

WCONTROL

M (GeV)T

QCD CONTROL

SUSYSIGNALREGION

M = E + p + p

Matrix Method

Extrapolation

Loose Tight

ε

ε

real

fake

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 37

Page 38: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

How We Model SUSY: Complete Models and Simplified Models

Complete Model

Example: mSUGRA, m0 = 200 GeV, m1/2 = −A0 = 600 GeV, tanβ = 10, µ > 0

2 4 6 8 10 12 14 16 18Log

10(Q/1 GeV)

0

500

1000

1500

Mass

[G

eV

]

m0

m1/2

(µ2+m

0

2)1/2

squarks

sleptons

M1

M2

M3

Hd

Hu

arX

iv:h

ep-p

h/97

0935

6v6

RG evolution0

200

400

600

800

1000

1200

1400

1600

Mas

s/

GeV

h0

A0, H

0 H±

qR, qL

b1, t2

t1

νL, �L

τ1

ντ , τ2

g

χ01

χ02 χ±

1

χ03, χ0

4 χ±2

b2

�R

Mass spectrum and branching ratios

• Contains complete spectrum, defined e. g. by parameters at GUT scale

• Many particles and decay modes with strongly varying BR

• Complex phenomenology, many different final states

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 38

Page 39: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

How We Model SUSY: Complete Models and Simplified Models

Complete Model

Example: mSUGRA, m0 = 200 GeV, m1/2 = −A0 = 600 GeV, tanβ = 10, µ > 0

2 4 6 8 10 12 14 16 18Log

10(Q/1 GeV)

0

500

1000

1500

Mass

[G

eV

]

m0

m1/2

(µ2+m

0

2)1/2

squarks

sleptons

M1

M2

M3

Hd

Hu

arX

iv:h

ep-p

h/97

0935

6v6

RG evolution0

200

400

600

800

1000

1200

1400

1600

Mas

s/

GeV

h0

A0, H

0 H±

qR, qL

b1, t2

t1

νL, �L

τ1

ντ , τ2

g

χ01

χ02 χ±

1

χ03, χ0

4 χ±2

b2

�R

Mass spectrum and branching ratios

• Contains complete spectrum, defined e. g. by parameters at GUT scale

• Many particles and decay modes with strongly varying BR

• Complex phenomenology, many different final states

• Often only a few decay channels relevant (dominant)

• → idea: use a simplified model

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 39

Page 40: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

How We Model SUSY: Complete Models and Simplified Models

Simplifed Model• Contain only interactions of small number of particles

• Described by minimal set of parameters(masses, branching ratios, production cross-section)

• often assume BR = 100 %• Exclusion limits given in terms of

• grids: vary masses of the particles involved in the chain→ “typical” 2-dimensional exclusion plots

• Benefits:• Less model specific• Decouple visible phenomenology / experimental signatures

from details of the model (e. g. GUT-scale parameters)• Can be used to reinterpret / derive limits in more general

models, and as reference for theorists

g

0

qq

g

mass

mg

χ±

χ0mχ0

mχ±

1-step cascade decay (W)

+qq�

+W±

arX

iv:1

105.

2838

g

g

χ±1

χ∓1

p

p

q q

χ01

W

qq

χ01

W

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 40

Page 41: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Implications of Higgs Discovery for SUSY

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 41

Page 42: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Searches at Munich

MPP

LMU• Electroweak production of charginos and neutralinos with 2 hadronic taus in the final state

(public conference note spring 2013, paper in preparation)

• Strong production with isolated leptons in the final state(public conference note spring 2013, paper in preparation)

• Electroweak production of charginos and neutralinos with a Higgs boson in the final state(no public results yet)

• Run-1 pMSSM summary paper (very early stage)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 42

Page 43: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Implications of Higgs Discovery for SUSY

• Will exemplify different types of impacts using ATLAS analyses

• Simplified models without Higgs → no impact→ EWK 2-tau analysis, RPV ≥4� analysis, . . .

• Simplified models including (SUSY) Higgs→ Wh analysis: exploits measured Higgs properties

• Complete models (GUT scale, e. g. mSUGRA)→ tune parameters to accommodate Higgs with measured mass→ inclusive 1� analysis: “Higgs-aware” mSUGRA grid

• Phenomenological MSSM (pMSSM, low-scale parameters)→ use Higgs mass as constraint when selecting viable models→ Run-1 summary paper

• MSSM Higgs searches (not covered here)• “new Higgs” may be lightest MSSM Higgs h (decoupling limit), but also second-lightest neutral

Higgs H

• if mH = 126 GeV ⇒ mh often below LEP limit of 114.4 GeV(with reduced couplings to gauge bosons, in agreement with LEP bounds)

• → important to extend LHC Higgs searches to region below 114 GeV

• best way of experimentally proving that observed state is not SM: find additional Higgs

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 43

Page 44: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Multi-Leptonic R-Parity Violation

• Search for events with 4 leptons – Including up to 1 hadronically decaying , high missing

transverse energy (MET) and/or event activity (Meff) • Virtually background free • Powerful constraints on R-parity violating (RPV) SUSY,

where the lightest SUSY particle (LSP) decays into leptons – Example: gluino production

ATLAS-CONF-2013-036 e/µ decays only -rich scenario

RPV coupling

Slid

e:M

ike

Flow

erde

w

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 44

Page 45: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for EWK SUSY with Decays via Wh (CMS)

Model

• Full 2012 dataset, 19.5 fb−1 @

√s = 8 TeV

• Signature: �χ±1 �χ0

2 decaying to W -boson, Higgs + �ET

(Higgs: lightest SUSY Higgs, SM-like)

• In large parts of SUSY parameter space:heavy neutralinos decay predominantly to Higgs

P1

P2χ0

2

χ±1

χ0

1

χ0

1

H

1

Analysis• Target 3 exclusive final states

1 H → bb:peak at M

bb= Mh → measured Higgs mass as constraint in selection

2 H → WW → �νqq�:

Higgs mass → constraint M�jj < 120 GeV

3 multi-lepton:H → WW , ZZ → leptons or H → ττ (reinterpretation of earlier search)

• 3 channels combined for interpretation in simplified model

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 45

Page 46: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for EWK SUSY with Decays via Wh (CMS)

Model

• Full 2012 dataset, 19.5 fb−1 @

√s = 8 TeV

• Signature: �χ±1 �χ0

2 decaying to W -boson, Higgs + �ET

(Higgs: lightest SUSY Higgs, SM-like)

• In large parts of SUSY parameter space:heavy neutralinos decay predominantly to Higgs

P1

P2χ0

2

χ±1

χ0

1

χ0

1

H

1

Results / Interpretation

[GeV]bbM0 50 100 150 200 250 300 350 400 450 500

Even

ts /

50 G

eV

02468

101214161820 Data

2l top

1l top

bbν l→WZ

bW+bW+light jets

RareTotal Uncertainty

) (200/1)01χ∼)(H0

1χ∼ (W→ 0

2χ∼±

1χ∼

) (250/1)01χ∼)(H0

1χ∼ (W→ 0

2χ∼±

1χ∼

) (300/1)01χ∼)(H0

1χ∼ (W→ 0

2χ∼±

1χ∼

CMS Preliminary-1Ldt = 19.5 fb∫ = 8 TeV, s

> 100 GeVmissTE

CM

S-P

AS

-SU

S-1

3-01

7

H → bb: no peak at Mbb = MH

[GeV]02χ∼

= M±

1χ∼

M150 200 250 300 350 400

[GeV

]0 1χ∼

M

0

20

40

60

80

100

120

140 [pb]

95%

obse

rved

σ

-110

1

CMS Preliminary -1 = 19.5 fbt dL∫ = 8 TeV, s

H

= M

01χ∼

- M±1χ∼M

), combined01χ∼)(H0

1χ∼ (W→ 0

2χ∼ ±

1χ∼

expected 95% CLs Limitsobserved 95% CLs LimitsTheory uncertainty (NLO)

experimentalσ1±expected

CM

S-P

AS

-SU

S-1

3-01

7

exclusion: M(χ) < 204 GeV, M(�χ01) < 25 GeV

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 46

Page 47: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for EWK SUSY Production with 2 Hadronic Taus

Models

• Full 2012 dataset, 20.7 fb−1 @

√s = 8 TeV

• Signature: EWK production, 2 hadronic taus + �ET in final state

χ±1

χ∓1

τ/ντ

τ/ντ

p

p

ντ/ττ/ντ

χ01

ντ/ττ/ντ

χ01

�χ±1 -�χ±

1 production

χ±1

χ02

τ/ντ

τ/ντ

p

p

ντ/ττ/ντ

χ01

τ/ντ

τ/ντ

χ01

�χ±1 -�χ0

2 production

τ

τp

p

χ01

τ

χ01

τ

(Direct-stau production)

Analysis• Interpretation in simplified models and pMSSM scenario with EWK production

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 47

Page 48: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for EWK SUSY Production with 2 Hadronic Taus

Results / Interpretation

[GeV]±

1!"

m100 150 200 250 300 350 400

[G

eV

]0 1!"

m

0

50

100

150

200

250

300

0

1!"#$ % 2 &) $#"(#$" % 2 &

±

1!"

±

1!"

= 0.5

1

0!"

+ m±

1!"

m

#",$"

m

)theory

SUSY'1 ±Observed limit (

)exp'1 ±Expected limit (

=8 TeVs, -1

L dt = 20.7 fb( SR combined

1

0

!"

< m

1±!"m

All limits at 95% CL

ATLAS Preliminary

ATLA

S-C

ON

F-20

13-0

28

Simplified �χ±1 -�χ±

1 model

ATLA

S-C

ON

F-20

13-0

28

Simplified �χ±1 -�χ0

2 model

• �χ±1 -�χ±

1 model: up to 350 GeV excludedfor m(�χ0

1) = 0 GeV

• �χ±1 -�χ0

2 model: up to 300 – 330 GeVexcluded depending on m(�χ0

1)• pMSSM: two regions not excluded

• low M2: �χ± and �χ0 lighter than stau• large M2 and µ: direct stau production

• Higgs: not included in simplified models;mH = 123 GeV in this pMSSM

[GeV]µ

100 150 200 250 300 350 400 450 500

[GeV

]2

M

100

150

200

250

300

350

400

450

500=50, 2 tausβ=50 GeV, tan 1M

)theorySUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

=8 TeVs, -1 L dt = 20.7 fb∫ SR combined

All limits at 95% CL

ATLAS Preliminary

ATLA

S-C

ON

F-20

13-0

28

pMSSM scenario

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 48

Page 49: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for EWK SUSY Production with 2 Hadronic Taus

Results / Interpretation

[GeV]±

1!"

m100 150 200 250 300 350 400

[G

eV

]0 1!"

m

0

50

100

150

200

250

300

0

1!"#$ % 2 &) $#"(#$" % 2 &

±

1!"

±

1!"

= 0.5

1

0!"

+ m±

1!"

m

#",$"

m

)theory

SUSY'1 ±Observed limit (

)exp'1 ±Expected limit (

=8 TeVs, -1

L dt = 20.7 fb( SR combined

1

0

!"

< m

1±!"m

All limits at 95% CL

ATLAS Preliminary

ATLA

S-C

ON

F-20

13-0

28

Simplified �χ±1 -�χ±

1 model

ATLA

S-C

ON

F-20

13-0

28

Simplified �χ±1 -�χ0

2 model

• �χ±1 -�χ±

1 model: up to 350 GeV excludedfor m(�χ0

1) = 0 GeV

• �χ±1 -�χ0

2 model: up to 300 – 330 GeVexcluded depending on m(�χ0

1)• pMSSM: two regions not excluded

• low M2: �χ± and �χ0 lighter than stau• large M2 and µ: direct stau production

• Higgs: not included in simplified models;mH = 123 GeV in this pMSSM

[GeV]µ

100 150 200 250 300 350 400 450 500

[GeV

]2

M

100

150

200

250

300

350

400

450

500=50, 2 tausβ=50 GeV, tan 1M

)theorySUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

=8 TeVs, -1 L dt = 20.7 fb∫ SR combined

All limits at 95% CL

ATLAS Preliminary

ATLA

S-C

ON

F-20

13-0

28

pMSSM scenario

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 49

Page 50: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for Strong SUSY Production with Isolated Leptons in the Final State

Models

• Full 2012 dataset, 20 fb−1 @

√s = 8 TeV

• Signature: strong production, final state with isolated leptons, jets + �ET

• Inclusive search ⇒ very broad scope of targeted models• simplified models (pair production of first and second generation �q, t and �g)• mSUGRA / CMSSM model• mUED model (not even SUSY)

Selection• Selecting events with at least one electron or muon

• Signal regions defined by number of jets

• Cuts on many kinematic variables (jet pT , b-tags, �ET , mT , ∆R, ∆φ, mCT , meff, HT ,2)

• Includes dedicated selection targeting “soft” (low pT ) leptons

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 50

Page 51: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for Strong SUSY Production with Isolated Leptons in the Final State

Results / Interpretation

• No excess ⇒ exclusion limits

• On various models• Only showing a selection here:

• gluino-simplified model:exemplifies benefit from soft-lepton analysis,boosts limits to m(�g) ≈ 0.7 TeV near diagonal

• mSUGRA / CMSSM: m0-m1/2 plane [GeV]g~m

400 600 800 1000 1200 1400

[G

eV

]10 !"

m

100

200

300

400

500

600

700

800

900

1000

, x=1/20

1!"

0

1!" qqqqWW# g~-g~

)theory

SUSY$1 ±Observed limit (

)exp$1 ±Expected limit (

=8 TeVs, -1

L dt = 20.3 fb%miss

T1-lepton + jets + E

1

0

!"

< m

g~m

PRD 86 (2012) 092002

Observed limit (hard lepton)Expected limit (hard lepton)Observed limit (soft lepton)Expected limit (soft lepton)

All limits at 95% CL

ATLAS Preliminary

0.04

0.04

0.05

0.42

0.03

0.04

0.25

0.03

0.03

0.05

0.10

0.08

0.03

0.06

0.12

0.02

0.03

0.01

0.02

0.01

0.02

0.02

0.03

0.01

0.02

0.02

0.02

0.01

0.01

0.02

0.02

0.01

0.01

0.02

0.03

0.01

0.02

25

72

3457

129

17

13

15

247

16

3

23

3

21

20

4

3

4

3

2

1

2

3

2

0.77

0.36

6

7

0.21

0.72

0.52

2

2

0.12

0.30

0.46

2

0.69

0.98

2

1

0.14

0.32

2

3

0.11

0.29

1

0.07

0.12

0.33

1

50.51

0.06

0.10

0.28

0.98

2

0.10

0.36

1

0.43

0.05

0.08

0.19

0.45

1

0.05

0.05

0.11

0.32

2

20.43

0.05

0.05

0.07

0.25

0.61

2

0.03

0.04

0.34

2

0.04

0.04

0.07

Num

bers

giv

e 9

5%

CL e

xclu

ded m

odel c

ross

sect

ions

[pb]

ATLA

S-C

ON

F-20

13-0

62

simplified model with �g-pair production

[GeV]0m1000 2000 3000 4000 5000 6000

[G

eV

]1/2

m

300

350

400

450

500

550

600

650

700

750

800

(1600 G

eV

)q ~

(2400 G

eV

)q ~

(1000 GeV)g~

(1200 GeV)g~

(1400 GeV)g~

(1600 GeV)g~

>0µ, 0= -2m0

= 30, A!MSUGRA/CMSSM: tan

)theory

SUSY"1 ±Observed limit (

)exp"1 ±Expected limit (

Stau LSP

=8 TeVs, -1

L dt = 20.3 fb#miss

Thard 1-lepton + jets + E

All limits at 95% CL

ATLAS

Preliminary

ATLA

S-C

ON

F-20

13-0

62

mSUGRA / CMSSMAlexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 51

Page 52: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Search for Strong SUSY Production with Isolated Leptons in the Final State

Results / Interpretation

• No excess ⇒ exclusion limits

• On various models• Only showing a selection here:

• gluino-simplified model:exemplifies benefit from soft-lepton analysis,boosts limits to m(�g) ≈ 0.7 TeV near diagonal

• mSUGRA / CMSSM: m0-m1/2 plane

Higgs:

• not included in simplified models

• mSUGRA / CMSSM: “Higgs-compatible” grid

[GeV]g~m400 600 800 1000 1200 1400

[G

eV

]10 !"

m

100

200

300

400

500

600

700

800

900

1000

, x=1/20

1!"

0

1!" qqqqWW# g~-g~

)theory

SUSY$1 ±Observed limit (

)exp$1 ±Expected limit (

=8 TeVs, -1

L dt = 20.3 fb%miss

T1-lepton + jets + E

1

0

!"

< m

g~m

PRD 86 (2012) 092002

Observed limit (hard lepton)Expected limit (hard lepton)Observed limit (soft lepton)Expected limit (soft lepton)

All limits at 95% CL

ATLAS Preliminary

0.04

0.04

0.05

0.42

0.03

0.04

0.25

0.03

0.03

0.05

0.10

0.08

0.03

0.06

0.12

0.02

0.03

0.01

0.02

0.01

0.02

0.02

0.03

0.01

0.02

0.02

0.02

0.01

0.01

0.02

0.02

0.01

0.01

0.02

0.03

0.01

0.02

25

72

3457

129

17

13

15

247

16

3

23

3

21

20

4

3

4

3

2

1

2

3

2

0.77

0.36

6

7

0.21

0.72

0.52

2

2

0.12

0.30

0.46

2

0.69

0.98

2

1

0.14

0.32

2

3

0.11

0.29

1

0.07

0.12

0.33

1

50.51

0.06

0.10

0.28

0.98

2

0.10

0.36

1

0.43

0.05

0.08

0.19

0.45

1

0.05

0.05

0.11

0.32

2

20.43

0.05

0.05

0.07

0.25

0.61

2

0.03

0.04

0.34

2

0.04

0.04

0.07

Num

bers

giv

e 9

5%

CL e

xclu

ded m

odel c

ross

sect

ions

[pb]

ATLA

S-C

ON

F-20

13-0

62

simplified model with �g-pair production

[GeV]0m1000 2000 3000 4000 5000 6000

[G

eV

]1/2

m

300

350

400

450

500

550

600

650

700

750

800

(1600 G

eV

)q ~

(2400 G

eV

)q ~

(1000 GeV)g~

(1200 GeV)g~

(1400 GeV)g~

(1600 GeV)g~

>0µ, 0= -2m0

= 30, A!MSUGRA/CMSSM: tan

)theory

SUSY"1 ±Observed limit (

)exp"1 ±Expected limit (

Stau LSP

=8 TeVs, -1

L dt = 20.3 fb#miss

Thard 1-lepton + jets + E

All limits at 95% CL

ATLAS

Preliminary

ATLA

S-C

ON

F-20

13-0

62

mSUGRA / CMSSMAlexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 52

Page 53: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

“Higgs-compatible” mSUGRA/CMSSM

[GeV]0m0 1000 2000 3000 4000 5000 6000

[GeV

]1/

2m

300

400

500

600

700

800

900

1000

(2000 GeV)

q ~

(1600 GeV)

q ~

(1000 GeV)g~

(1400 GeV)g~

h (122 GeV)

h (124 GeV)

h (126 GeV)

ExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObserved

> 0!, 0 = -2m0

) = 30, AMSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary = 8 TeVs, -1 L dt = 20.1 - 20.7 fb

LSP not included.theory

SUSY95% CL limits.

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

3 b-jets2-SS-leptons, 0 -

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007

µ

• mSUGRA/CMSSM model in (m0,m1/2) plane, remaining parameters chosen such that partof it accommodates a lightest neutral scalar Higgs boson mass around 125 GeV

• Useful to summarize results from many different SUSY searches

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 53

Page 54: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

“Higgs-compatible” mSUGRA/CMSSM

[GeV]0m0 1000 2000 3000 4000 5000 6000

[GeV

]1/

2m

300

400

500

600

700

800

900

1000

(2000 GeV)

q ~

(1600 GeV)

q ~

(1000 GeV)g~

(1400 GeV)g~

h (122 GeV)

h (124 GeV)

h (126 GeV)

ExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObserved

> 0!, 0 = -2m0

) = 30, AMSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary = 8 TeVs, -1 L dt = 20.1 - 20.7 fb

LSP not included.theory

SUSY95% CL limits.

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

3 b-jets2-SS-leptons, 0 -

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007

• mSUGRA/CMSSM model in (m0,m1/2) plane, remaining parameters chosen such that partof it accommodates a lightest neutral scalar Higgs boson mass around 125 GeV

• Useful to summarize results from many different SUSY searches

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 54

Page 55: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

“Higgs-compatible” mSUGRA/CMSSM

[GeV]0m0 1000 2000 3000 4000 5000 6000

[GeV

]1/

2m

300

400

500

600

700

800

900

1000

(2000 GeV)

q ~

(1600 GeV)

q ~

(1000 GeV)g~

(1400 GeV)g~

h (122 GeV)

h (124 GeV)

h (126 GeV)

ExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObserved

> 0!, 0 = -2m0

) = 30, AMSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary = 8 TeVs, -1 L dt = 20.1 - 20.7 fb

LSP not included.theory

SUSY95% CL limits.

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

3 b-jets2-SS-leptons, 0 -

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007

[GeV]0

m

0 1000 2000 3000 4000 5000 6000

[Ge

V]

1/2

m

300

400

500

600

700

800

900

1000

(2000

GeV

)q ~

(1600

GeV

)

q ~

(1000 GeV)g~

(1400 GeV)g~

h(1

22

GeV

)

h(1

24

GeV

)

h(1

26

GeV

)

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

> 0µ,0

= -2m0

) = 30, AMSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary

= 8 TeVs,-1

L dt = 20.1 - 20.7 fb

LSP

not included.theory

SUSY95% CL limits.

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

3 b-jets2-SS-leptons, 0 -

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007

• mSUGRA/CMSSM model in (m0,m1/2) plane, remaining parameters chosen such that partof it accommodates a lightest neutral scalar Higgs boson mass around 125 GeV

• Useful to summarize results from many different SUSY searches

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 55

Page 56: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Big Picture: EWK Searches

) [GeV]20χ∼ (=m

1±χ∼ m

100 200 300 400 500 600

[GeV

]0 1χ∼

m

0

50

100

150

200

250

300

350

400

450

500Expected limitsObserved limits

ATLAS-CONF-2013-035, µ, 3e/ν∼/ Ll~, via 0

2χ∼±

1χ∼→pp

ATLAS-CONF-2013-049, µ, 2e/ν∼/ Ll~, via -

1 χ∼

+1χ∼→pp

ATLAS-CONF-2013-028, τ, 2τν∼/ Lτ

∼, via 02χ∼±

1χ∼→pp

ATLAS-CONF-2013-028, τ, 2τν∼/ Lτ

∼, via -1 χ∼

+1χ∼→pp

ATLAS-CONF-2013-035, µ, via WZ, 3e/02χ∼±

1χ∼→pp

ATLAS-CONF-2013-093bb, µ, via Wh, e/02χ∼±

1χ∼→pp

=8 TeV Status: SUSY 2013s, -1 = 20.3-20.7 fbint

Preliminary LATLAS

)20χ∼ + m

10χ∼ = 0.5(m ν∼/ Lτ

∼/ Ll~m

10χ∼

< m2

0χ∼m

Z + m

10χ∼

= m2

0χ∼m

h + m

10χ∼

= m2

0χ∼m

10χ∼ = 2m

20χ∼m

• Simplified model plane for electroweak gaugino-pair production

• 4 different decay modes, BR = 100 %(50 % for 3� / �νν in �χ±

1 -�χ02)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 56

Page 57: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The Big Picture: Stop Searches

[GeV]1t

~m100 200 300 400 500 600 700

10

χ∼

+mt

< m

1t~m

10

χ∼

+ m

W

+ m

b

< m

1t~m

10

χ∼

+ m

c

< m

1t~m

200 300 400 500 600

)1

0χ∼ m×

= 2 1

±χ∼ ( m

1±χ∼+m

b < m1t~m

< 106 GeV 1

±χ∼

m

( = 150 GeV)1

±χ∼

> m1

0χ∼

m

+5 G

eV)

10χ∼

= m

1±χ∼ ( m

1±χ∼+m

b <

m1t~m

< 103.5 GeV1

±χ∼

m

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

Observed limits

Expected limits

All limits at 95% CL

[1203.4171]-1CDF 2.6 fb

ATLAS Preliminary

production1t~1t

~Status: SUSY 2013

=8 TeVs -1 = 20 - 21 fbintL =7 TeVs -1 = 4.7 fbintL0L ATLAS-CONF-2013-024

1L ATLAS-CONF-2013-037

2L ATLAS-CONF-2013-065

2L ATLAS-CONF-2013-048

0L mono-jet/c-tag, CONF-2013-0680L 1308.2631

-

1L CONF-2013-037, 0L 1308.2631

2L ATLAS-CONF-2013-048

1L CONF-2013-037, 2L CONF-2013-048

0L [1208.1447]

1L [1208.2590]

2L [1209.4186]-

-

-2L [1208.4305], 1-2L [1209.2102]

-

-

1-2L [1209.2102]

10χ∼ (*) W→

1±χ∼,

1±χ∼ b → 1t

~10χ∼ t →1t

~ / 10χ∼ W b →1t

~ / 10χ∼ c →1t

~

0L,1L,2L,2L,0L,0L,1-2L,1L,2L,1-2L,

10χ∼ t →1t

~

10χ∼ t →1t

~

10χ∼ t →1t

~

10χ∼ W b →1t

~

10χ∼ c →1t

~ mono-jet/c-tag, + 5 GeV

1

0χ∼

= m±

1χ m

= 106 GeV±

, m1±χ∼ b → 1t

~ = 150 GeV±

, m1±χ∼ b → 1t

~ - 10 GeV

1t~ = m

±

, m1±χ∼ b → 1t

~

1

0χ∼

m× = 2 ±

, m1±χ∼ b → 1t

~

• Summary of the dedicated ATLAS searches for pair production of top squarks• Many obvious holes in exclusion• New dedicated analyses, doing a splendid job in filling these• Note: overlay of different decay channels / sparticle masses / decay scenarios

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 57

Page 58: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Mass Reach of ATLAS Searches for Supersymmetry

Model e, µ, τ, γ Jets EmissT

�L dt[fb−1] Mass limit Reference

Incl

usi

veS

ea

rch

es

3rd

ge

n.

gm

ed

.3r

dg

en

.sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ctL

on

g-l

ive

dp

art

icle

sR

PV

Oth

er

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g ) ATLAS-CONF-2013-0471.7 TeVq, g

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q) ATLAS-CONF-2013-0621.2 TeVg

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q) 1308.18411.1 TeVg

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-047740 GeVq

g g , g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0471.3 TeVg

g g , g→qqχ±1→qqW

±χ01 1 e,µ 3-6 jets Yes 20.3 m(χ01)<200 GeV, m(χ

±)=0.5(m(χ

01 )+m(g )) ATLAS-CONF-2013-0621.18 TeVg

g g , g→qq(��/�ν/νν)χ01 2 e,µ 0-3 jets - 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0891.12 TeVg

GMSB (� NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg

GMSB (� NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVgGGM (bino NLSP) 2 γ - Yes 4.8 m(χ

01)>50 GeV 1209.07531.07 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 10.5 m(g )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<600 GeV ATLAS-CONF-2013-0611.2 TeVg

g→tt χ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→tt χ01 0-1 e,µ 3 b Yes 20.1 m(χ

01)<400 GeV ATLAS-CONF-2013-0611.34 TeVg

g→bt χ+1 0-1 e,µ 3 b Yes 20.1 m(χ

01)<300 GeV ATLAS-CONF-2013-0611.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ

±1 )=2 m(χ

01) ATLAS-CONF-2013-007275-430 GeVb1

t1 t1(light), t1→bχ±1 1-2 e,µ 1-2 b Yes 4.7 m(χ

01)=55 GeV 1208.4305, 1209.2102110-167 GeVt1

t1 t1(light), t1→Wbχ01 2 e,µ 0-2 jets Yes 20.3 m(χ

01) =m(t1)-m(W )-50 GeV, m(t1)<<m(χ

±1 ) ATLAS-CONF-2013-048130-220 GeVt1

t1 t1(medium), t1→tχ01 2 e,µ 2 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-065225-525 GeVt1

t1 t1(medium), t1→bχ±1 0 2 b Yes 20.1 m(χ

01)<200 GeV, m(χ

±1 )-m(χ

01 )=5 GeV 1308.2631150-580 GeVt1

t1 t1(heavy), t1→tχ01 1 e,µ 1 b Yes 20.7 m(χ

01)=0 GeV ATLAS-CONF-2013-037200-610 GeVt1

t1 t1(heavy), t1→tχ01 0 2 b Yes 20.5 m(χ

01)=0 GeV ATLAS-CONF-2013-024320-660 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01)<85 GeV ATLAS-CONF-2013-06890-200 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ01)>150 GeV ATLAS-CONF-2013-025500 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t1)=m(χ01)+180 GeV ATLAS-CONF-2013-025271-520 GeVt2

�L,R�L,R, �→�χ01 2 e,µ 0 Yes 20.3 m(χ01)=0 GeV ATLAS-CONF-2013-04985-315 GeV�

χ+1 χ−1 , χ

+1→�ν(�ν) 2 e,µ 0 Yes 20.3 m(χ

01)=0 GeV, m(�, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-049125-450 GeVχ±

1χ+1 χ

−1 , χ

+1→τν(τν) 2 τ - Yes 20.7 m(χ

01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) ATLAS-CONF-2013-028180-330 GeVχ±

1χ±1 χ

02→�Lν�L�(νν), �ν�L�(νν) 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02), m(χ

01)=0, m(�, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-035600 GeVχ±

1 , χ02

χ±1 χ02→W χ

01Z χ

01 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ±

1 , χ02

χ±1 χ02→W χ

01h χ

01 1 e,µ 2 b Yes 20.3 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ±

1 , χ02

Direct χ+1 χ−1 prod., long-lived χ

±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01 )=160 MeV, τ(χ

±1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ±

1Stable, stopped g R-hadron 0 1-5 jets Yes 22.9 m(χ

01)=100 GeV, 10 µs<τ(g)<1000 s ATLAS-CONF-2013-057832 GeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ0

1

GMSB, χ01→γG , long-lived χ

01 2 γ - Yes 4.7 0.4<τ(χ

01)<2 ns 1304.6310230 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X , ντ→e + µ 2 e,µ - - 4.6 λ�311=0.10, λ132=0.05 1212.12721.61 TeVντLFV pp→ντ + X , ντ→e(µ) + τ 1 e,µ + τ - - 4.6 λ�311=0.10, λ1(2)33=0.05 1212.12721.1 TeVντBilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q)=m(g ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq, gχ+1 χ

−1 , χ

+1→W χ

01, χ

01→ee νµ, eµνe 4 e,µ - Yes 20.7 m(χ

01)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ±

1

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ττνe , eτντ 3 e,µ + τ - Yes 20.7 m(χ

01)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg

Scalar gluon pair, sgluon→qq 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1√s = 7 TeVfull data

√s = 8 TeV

partial data

√s = 8 TeVfull data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: SUSY 2013

ATLAS Preliminary�L dt = (4.6 - 22.9) fb−1

√s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

→ inclusive searches: exclusion limits typically � 1 TeV, 3rd gen. / EWK: several 100 GeV

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 58

Page 59: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Beware of the Fine-Print. . .

200 300 400 500 600 700 8000

50

100

150

200

250

300

350

400

450

500

1

0

!"+mt

<m1t~

m

(BR=1)0

1!" t#

1t~

production, 1

t~

1t~

[GeV]1

t~m

[G

eV

]0 1!"

m

ATLAS Preliminary

= 8 TeVs, -1

Ldt = 20.5 fb$All hadronic channel

All limits at 95 % CL

)theory

SUSY%1 ±Observed limit (

)exp%1 ±Expected limit (

Expected limit (2011)

ATLA

S-C

ON

F-20

13-0

24

• An example that sometimes limits look stronger than they are

• ATLAS search for direct production of the top squark

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 59

Page 60: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Beware of the Fine-Print. . .

200 300 400 500 600 700 8000

50

100

150

200

250

300

350

400

450

500

1

0

!"+mt

<m1t~

m

(BR=1)0

1!" t#

1t~

production, 1

t~

1t~

[GeV]1

t~m

[G

eV

]0 1!"

m

ATLAS Preliminary

= 8 TeVs, -1

Ldt = 20.5 fb$All hadronic channel

All limits at 95 % CL

)theory

SUSY%1 ±Observed limit (

)exp%1 ±Expected limit (

Expected limit (2011)

ATLA

S-C

ON

F-20

13-0

24

• An example that sometimes limits look stronger than they are

• ATLAS search for direct production of the top squark

• nominal limits assume branching ratio BR = 100%

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 60

Page 61: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Beware of the Fine-Print. . .

[GeV]1

t~m

200 300 400 500 600 700 800

[G

eV

]0 1!"

m

0

50

100

150

200

250

300

350

400

450

500

BR = 100 %

BR = 75 %

BR = 60 %

0.6 0.54 0.58 0.67 0.63 0.75 0.9

0.68 0.62 0.61 0.67 0.65 0.76 0.95

0.74 0.64 0.74 0.68 0.79 0.94

0.84 0.82 0.73 0.85

0.95

1

0

!"+mt

<m1t~

m

0

1!" t#

1t~

production, 1

t~

1t~

=8 TeVs, -1

Ldt = 20.5 fb$Observed Excluded Branching Ratio at 95% CL

ATLAS Preliminary

All hadronic channel

ATLA

S-C

ON

F-20

13-0

24

• An example that sometimes limits look stronger than they are

• ATLAS search for direct production of the top squark

• reducing branching ratio for t1 → t �χ01 ⇒ considerable impact on limits!

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 61

Page 62: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 62

[GeV]4lm100 150 200 250

Eve

nts

/5 G

eV

0

5

10

15

20

25

30

35

40

-1Ldt = 4.6 fb! = 7 TeV s-1Ldt = 20.7 fb! = 8 TeV s

4l"ZZ*"H

Data 2011+ 2012

SM Higgs Boson

=124.3 GeV (fit)H m

Background Z, ZZ*

tBackground Z+jets, t

Syst.Unc.

ATLAS

PLB

726,

88(2

013)

Page 63: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 63

SM B/B!

ggF+ttHµ

-2 -1 0 1 2 3 4 5 6 7 8S

M B

/B!

VB

F+

VH

µ-4

-2

0

2

4

6

8

10

Standard Model

Best fit

68% CL

95% CL

"" #H

4l# (*)

ZZ#H

$l$ l# (*)

WW#H %% #H

PreliminaryATLAS

-1Ldt = 4.6-4.8 fb& = 7 TeV: s-1Ldt = 13-20.7 fb& = 8 TeV: s

= 125.5 GeVHm

Page 64: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 64

[GeV]Hm110 115 120 125 130 135 140 145 150

SM

!/!

95%

CL

Lim

it on

-110

1

10 Obs. Exp.

!1 ±!2 ± = 7 TeVs

-1 Ldt = 4.6-4.9 fb"

ATLAS 2011 2011 Data

CLs Limits

Page 65: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 65

[GeV]0m0 1000 2000 3000 4000 5000 6000

[GeV

]1/

2m

300

400

500

600

700

800

900

1000

(2000 GeV)

q ~

(1600 GeV)

q ~

(1000 GeV)g~

(1400 GeV)g~

h (122 GeV)

h (124 GeV)

h (126 GeV)

ExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObservedExpectedObserved

> 0!, 0 = -2m0

) = 30, AMSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary = 8 TeVs, -1 L dt = 20.1 - 20.7 fb

LSP not included.theory

SUSY95% CL limits.

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

3 b-jets2-SS-leptons, 0 -

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007

[GeV]0

m

0 1000 2000 3000 4000 5000 6000

[GeV

]1/2

m

300

400

500

600

700

800

900

1000

(2000

GeV

)q ~

(1600

GeV

)

q ~

(1000 GeV)g~

(1400 GeV)g~

h(1

22

GeV

)

h(1

24

GeV

)

h(1

26

GeV

)

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

> 0µ,0

= -2m0

) = 30, AMSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary

= 8 TeVs,-1

L dt = 20.1 - 20.7 fb

LSP

not included.theory

SUSY95% CL limits.

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

3 b-jets2-SS-leptons, 0 -

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007

Page 66: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 66

[GeV]bbM0 50 100 150 200 250 300 350 400 450 500

Even

ts /

50 G

eV02468

101214161820 Data

2l top

1l top

bbν l→WZ

bW+bW+light jets

RareTotal Uncertainty

) (200/1)01χ∼)(H0

1χ∼ (W→ 0

2χ∼±

1χ∼

) (250/1)01χ∼)(H0

1χ∼ (W→ 0

2χ∼±

1χ∼

) (300/1)01χ∼)(H0

1χ∼ (W→ 0

2χ∼±

1χ∼

CMS Preliminary-1Ldt = 19.5 fb∫ = 8 TeV, s

> 100 GeVmissTE

Page 67: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 67

Model e, µ, τ, γ Jets EmissT

�L dt[fb−1] Mass limit Reference

Incl

usi

veS

ea

rch

es

3rd

ge

n.

gm

ed

.3r

dg

en

.sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ctL

on

g-l

ive

dp

art

icle

sR

PV

Oth

er

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g ) ATLAS-CONF-2013-0471.7 TeVq, g

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q) ATLAS-CONF-2013-0621.2 TeVg

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q) 1308.18411.1 TeVg

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-047740 GeVq

g g , g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0471.3 TeVg

g g , g→qqχ±1→qqW

±χ01 1 e,µ 3-6 jets Yes 20.3 m(χ01)<200 GeV, m(χ

±)=0.5(m(χ

01 )+m(g )) ATLAS-CONF-2013-0621.18 TeVg

g g , g→qq(��/�ν/νν)χ01 2 e,µ 0-3 jets - 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0891.12 TeVg

GMSB (� NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg

GMSB (� NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVgGGM (bino NLSP) 2 γ - Yes 4.8 m(χ

01)>50 GeV 1209.07531.07 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 10.5 m(g )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<600 GeV ATLAS-CONF-2013-0611.2 TeVg

g→tt χ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→tt χ01 0-1 e,µ 3 b Yes 20.1 m(χ

01)<400 GeV ATLAS-CONF-2013-0611.34 TeVg

g→bt χ+1 0-1 e,µ 3 b Yes 20.1 m(χ

01)<300 GeV ATLAS-CONF-2013-0611.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ

±1 )=2 m(χ

01) ATLAS-CONF-2013-007275-430 GeVb1

t1 t1(light), t1→bχ±1 1-2 e,µ 1-2 b Yes 4.7 m(χ

01)=55 GeV 1208.4305, 1209.2102110-167 GeVt1

t1 t1(light), t1→Wbχ01 2 e,µ 0-2 jets Yes 20.3 m(χ

01) =m(t1)-m(W )-50 GeV, m(t1)<<m(χ

±1 ) ATLAS-CONF-2013-048130-220 GeVt1

t1 t1(medium), t1→tχ01 2 e,µ 2 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-065225-525 GeVt1

t1 t1(medium), t1→bχ±1 0 2 b Yes 20.1 m(χ

01)<200 GeV, m(χ

±1 )-m(χ

01 )=5 GeV 1308.2631150-580 GeVt1

t1 t1(heavy), t1→tχ01 1 e,µ 1 b Yes 20.7 m(χ

01)=0 GeV ATLAS-CONF-2013-037200-610 GeVt1

t1 t1(heavy), t1→tχ01 0 2 b Yes 20.5 m(χ

01)=0 GeV ATLAS-CONF-2013-024320-660 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01)<85 GeV ATLAS-CONF-2013-06890-200 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ01)>150 GeV ATLAS-CONF-2013-025500 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t1)=m(χ01)+180 GeV ATLAS-CONF-2013-025271-520 GeVt2

�L,R�L,R, �→�χ01 2 e,µ 0 Yes 20.3 m(χ01)=0 GeV ATLAS-CONF-2013-04985-315 GeV�

χ+1 χ−1 , χ

+1→�ν(�ν) 2 e,µ 0 Yes 20.3 m(χ

01)=0 GeV, m(�, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-049125-450 GeVχ±

1χ+1 χ

−1 , χ

+1→τν(τν) 2 τ - Yes 20.7 m(χ

01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) ATLAS-CONF-2013-028180-330 GeVχ±

1χ±1 χ

02→�Lν�L�(νν), �ν�L�(νν) 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02), m(χ

01)=0, m(�, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-035600 GeVχ±

1 , χ02

χ±1 χ02→W χ

01Z χ

01 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ±

1 , χ02

χ±1 χ02→W χ

01h χ

01 1 e,µ 2 b Yes 20.3 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ±

1 , χ02

Direct χ+1 χ−1 prod., long-lived χ

±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01 )=160 MeV, τ(χ

±1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ±

1Stable, stopped g R-hadron 0 1-5 jets Yes 22.9 m(χ

01)=100 GeV, 10 µs<τ(g)<1000 s ATLAS-CONF-2013-057832 GeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ0

1

GMSB, χ01→γG , long-lived χ

01 2 γ - Yes 4.7 0.4<τ(χ

01)<2 ns 1304.6310230 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X , ντ→e + µ 2 e,µ - - 4.6 λ�311=0.10, λ132=0.05 1212.12721.61 TeVντLFV pp→ντ + X , ντ→e(µ) + τ 1 e,µ + τ - - 4.6 λ�311=0.10, λ1(2)33=0.05 1212.12721.1 TeVντBilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q)=m(g ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq, gχ+1 χ

−1 , χ

+1→W χ

01, χ

01→ee νµ, eµνe 4 e,µ - Yes 20.7 m(χ

01)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ±

1

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ττνe , eτντ 3 e,µ + τ - Yes 20.7 m(χ

01)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg

Scalar gluon pair, sgluon→qq 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1√s = 7 TeVfull data

√s = 8 TeV

partial data

√s = 8 TeVfull data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: SUSY 2013

ATLAS Preliminary�L dt = (4.6 - 22.9) fb−1

√s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Page 68: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Summary

• Higgs discovery has significant impact on particle physics• Higgs boson looks like a SM Higgs

• but that’s not a problem: decoupling regime → have just this in MSSM: a light SM-like Higgs• Supersymmetry even benefits in many respects

• need a light Higgs in that range in the MSSM �• “confirmation” of fine-tuning problem underpins need for BSM physics

• SUSY provides a solution here �• however, exclusion limits start to rule out many “natural” SUSY models,

need increasing amount of fine-tuning also in SUSY models

• Searches for Supersymmetry have to take the “new Higgs” into account, but:• also helps to cut down parameter space of viable SUSY models �• knowing Higgs mass can be used in searches for SUSY �

• No sign of SUSY after Run-I• instead loads of exclusion limits• sometimes with important assumptions• so SUSY has still a lot of hiding places

• Run-II starts in 2015: higher energy, more data• pushing limits to higher sparticle masses• continue effort on challenging scenarios (low pT objects)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 68

[GeV]1

t~m

200 300 400 500 600 700 800 [G

eV

]0 1!"

m0

50

100

150

200

250

300

350

400

450

500

BR = 100 %

BR = 75 %

BR = 60 %

0.6 0.54 0.58 0.67 0.63 0.75 0.9

0.68 0.62 0.61 0.67 0.65 0.76 0.95

0.74 0.64 0.74 0.68 0.79 0.94

0.84 0.82 0.73 0.85

0.95

1

0

!"+mt

<m1t~

m

0

1!" t#

1t~

production, 1

t~

1t~

=8 TeVs, -1

Ldt = 20.5 fb$Observed Excluded Branching Ratio at 95% CL

ATLAS Preliminary

All hadronic channel

Page 69: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Finally: Brief Outlook

Studies for ATLAS performance in SUSY searches in Run-II and later

[GeV]q~m

2000 2500 3000 3500 4000

[G

eV

]g~

m

1500

2000

2500

3000

3500

4000

[pb]

!

-610

-510

-410

-310

-210

[pb]! Z axis

discovery reach-1

3000 fb

discovery reach-1

300 fb

exclusion 95% CL-1

3000 fb

exclusion 95% CL-1

300 fb

1/2>15GeVHT = 14 TeV MET/s = 0.

LSPSquark-gluino grid, m

Zn, sys=30%

ATLAS Preliminary (simulation)

ATL-

PH

YS

-PU

B-2

013-

002

Simplified squark-gluino model with massless �χ01

ATL-

PH

YS

-PU

B-2

013-

002

t-�χ01-mass plane, t → t�χ0

1 or t → b�χ±1 → bW �χ0

1

[GeV]02χ∼

, m±

1χ∼

m200 300 400 500 600 700 800 900 1000 1100 1200

[GeV

]0 1χ∼

m

0

100

200

300

400

500

600

= 140µ exclusion, -13000 fb = 60 µ exclusion, -1300 fb

exclusion-18 TeV, 20.7 fb

= 14 TeVs ATLAS Simulation Preliminary

01χ∼ Z 0

1χ∼ ± W→ 0

2χ∼ ±

1χ∼

02χ∼

= m±

1χ∼

m

3-lepton channel

ATL-

PH

YS

-PU

B-2

013-

011

�χ±1 �χ0

2 → WZ �χ01�χ0

1

[GeV]stopm200 400 600 800 1000 1200 1400

[GeV

]LS

Pm

0100200300400500600700800900

1000ATLAS Simulation Preliminary

=14 TeVs

0 and 1-lepton combined

discoveryσ>=60) 5µ (<-1300 fb>=60) 95% CL exclusionµ (<-1300 fb

discoveryσ>=140) 5µ (<-13000 fb>=140) 95% CL exclusionµ (<-13000 fb

ATLAS 8 TeV (1-lepton): 95% CL obs. limitATLAS 8 TeV (0-lepton): 95% CL obs. limit

ATL-

PH

YS

-PU

B-2

013-

011

t-�χ01-mass plane, t → t�χ0

1, 0�+1�

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 69

Page 70: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore
Page 71: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Backup

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 71

Page 72: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The ATLAS Detector

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 72

Page 73: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

The CMS Detector

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 73

Page 74: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Integrated Luminosity (2012, proton-proton collisions @√

s = 8 TeV)

Month in YearJan Apr Jul Oct Jan Apr Jul Oct

-1fb

Tota

l Inte

gra

ted L

um

inosi

ty

0

5

10

15

20

25

30

ATLAS

Preliminary

= 7 TeVs2011,

= 8 TeVs2012,

LHC Delivered

ATLAS Recorded

Good for Physics

-1 fbDelivered: 5.46-1 fbRecorded: 5.08

-1 fbPhysics: 4.57

-1 fbDelivered: 22.8-1 fbRecorded: 21.3

-1 fbPhysics: 20.3

ATLAS CMS

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 74

Page 75: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

R-Parity

Conservation

• Definition: R-parity Rp = (−1)3B+L+2s

B / L: baryon / lepton number, s: particle spin

• ⇒ SM particle fields: Rp = +1, superpartner fields: Rp = −1• Phenomenology:

• superpartners produced in pairs (→ 2 SUSY decay chains / event)• lightest supersymmetric particle (LSP) is stable (→ DM candidate, �ET )• proton is stabilized

Violation• Rp-violating terms in superpotential:

WRPV = µi HuLi +12λijk Li · Lj Ek + λ�

ijk Li · Qj Dk +12λ��

ijk Ui Dj Dk

• i , j , k : generation indices, λ: Yukawa couplings

• L, Q: lepton and quark SU(2) doublet superfields (L = +1, B = +1/3)E , D, U: charged lepton, down-like quark, up-like squark SU(2)L singlet superfields(L = −1, B = −1/3)

• λijk , λ�ijk : ∆L = 1, λ��

ijk : ∆B = 1

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 75

Page 76: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

R-Parity

Violation: Example with λ121 > 0

χ01

˜ν∗e(˜ν∗

µ)

νe(νµ) e+

µ−(e−)

λ121

(a)

χ01 e

+∗L (µ+∗

L )

e−(µ−) e

+

νµ(νe)

λ121

(b)

χ01 e

+∗R

e− e

+(µ+)

νµ(νe)

λ121

(c)

ATLA

S-C

ON

F-20

12-1

53

Illustration of �χ01 decays via non-zero λ121. In all cases, the charge conjugate decay is implied.

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 76

Page 77: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Models and Their Parameters

mSUGRA/CMSSM Parameters• → gravity-mediated SUSY breaking• m0: mass of scalar particles• m1/2: gaugino masses• A0: trilinear Higgs-sfermion-sfermion

coupling parameter• tanβ = νu/νd : ratio of the vacuum

expectation values of the two Higgsdoublets

• sign of the Higgsino mass parameter µ

GMSB Parameters• → gauge-mediated SUSY breaking• Λ: SUSY breaking mass scale felt by the

low-energy sector• Mmes: mass scale of the messenger fields• N5: number of SU(5) messenger fields• Cgrav: scale factor of the gravitino coupling• tanβ = νu/νd : ratio of the vacuum

expectation values of the two Higgs doublets• sign of the Higgsino mass parameter µ

NGM• starts from General Gauge Mediation• GGM: no specific SUSY mass hierarchy is predicted for colored and uncolored states⇒ gluinos and squarks can be below the TeV scale = within reach of LHC

• NGM: decouple all sparticles not related to fine-tuning of Higgs sector⇒ light stop and light gluino as only light (relevant) coloured sparticle

• some additional mechanism needed (as in GMSB) to produce “correct” Higgs mass

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 77

Page 78: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Models and Their Parameters

Assumptions• No new source of CP–violation• No Flavor Changing neutral currents• First and Second Generation Universality• No assumption about SUSY breaking mechanism

pMSSM Parameters19 input parameters:

• tanβ: the ratio of the vev of the two–Higgs doublet• MA: the mass of the pseudoscalar Higgs boson• µ: the Higgs–higgsino mass parameter• M1,M2,M3: the bino, wino and gluino mass parameters.• mq,muR

,mdR,m

l,meR

: first/second generation sfermion masses• m

Q,m

tR,m

bR,m

L,mτR

: third generation sfermion masses• At ,Ab,Aτ : third generation trilinear couplings.

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 78

Page 79: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Kinematic Variables

Commonly Used Variables in SUSY Analyses

• Transverse mass: m�T =

�2p

�T�ET

�1 − cos(∆φ(�p�

T,�pmiss

T))�

(useful in rejecting events with W bosons)

• Total visible energy (scalar sum of transverse momenta):HT =

�� pT (�) +

�jpT (j) (�: selected leptons, j : selected jets)

• Effective mass: meff = HT+ �ET

(correlates with overall mass scale of hard scatter,independent from details of SUSY cascade)

αT Variable• For di-jet events:

αT = ET (j2)MT

with MT =���2

i=1 ET (ji)�2 −

��2i=1 px(ji)

�2 −��2

i=1 py(ji)�2

(ratio of the pT of the second hardest jet and the invariant mass formed from the twohardest jets)

• If njet > 2: use clustering such that ∆HT between pseudojets minimized.

• αT > 0.5 indicates genuine �ET , QCD events have αT < 0.5.

• Cf. e. g. PRL 101, 221803 (2008).

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 79

Page 80: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

How a Search in HEP Works: Background Estimates

W, Z, tt background

• Semi–data driven approach• Select events in control regions (CR)

� Normalise MC to data• Extrapolate to signal region using MC

� Assume shape is described correctly

E

(G

eV)

Tmis

s

Top

WCONTROL

M (GeV)T

QCD CONTROL

SUSYSIGNALREGIONExtrapolation

Loose Tight

ε

ε

real

fake

QCD background

• Fully–data driven approach• Measure real and fake efficiencies in CRs• Apply Matrix Method to get contribution in SR

Slid

e:M

arc

Hoh

lfeld

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 80

Page 81: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

SUSY Models and Achievable Lightest Higgs Mass

Maximal value of h boson mass in the pMSSM

Maximal value of h boson mass in various constrained MSSM scenariosAlexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 81

Page 82: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgs DiscoverySignal strength with updated H → ττ with full 2012 data

) µSignal strength (

-0.5 0 0.5 1 1.5 2

ATLAS Prelim.

-1Ldt = 4.6-4.8 fb! = 7 TeV s

-1Ldt = 20.7/20.3 fb! = 8 TeV s

= 125.5 GeVHm

Phys. Lett. B 726 (2013) 88

0.28-

0.33+

= 1.55µ

"" #H

0.12-

0.17+

0.18-

0.24+

0.22-

0.23+

Phys. Lett. B 726 (2013) 88

0.35-

0.40+

= 1.43µ

4l# ZZ* #H

0.10-

0.17+

0.13-

0.20+

0.32-

0.35+

Phys.Lett.B726(2013)88

0.28-

0.31+

= 0.99µ

$l$ l# WW* #H

0.09-

0.15+

0.19-

0.23+

0.21-

0.20+

Phys. Lett. B 726 (2013) 88

0.18-

0.21+

= 1.33µ, ZZ*, WW*""#H

Combined

0.10-

0.12+

0.13-

0.17+

0.14-

0.13+

0.6-

0.7+

= 0.2µ

b b#W,Z H

<0.1

0.4±

0.5± ATLAS-CONF-2013-079

0.4-

0.5+

= 1.4µ

)-1(8TeV: 20.3 fb %% #H

0.2-

0.3+

0.3-

0.4+

0.3-

0.3+ ATLAS-CONF-2013-108

Total uncertainty

µ on & 1±

(statistical)&

(syst.incl.theo.)&(theory)&

ATLA

S-C

ON

F-20

13-1

08

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 82

Page 83: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Higgs DiscoveryCMS Couplings

ggH,ttHµ

-1 0 1 2 3

VBF,

VHµ

0

2

4

6ττ →H

WW→H ZZ→H bb→H γγ →H

CMS Preliminary -1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CM

S-P

AS

-HIG

-13-

005

Signal strength in the gluon-gluon-fusion-plus-t tHand in VBF-plus-VH production mechanisms

Vκ0 0.5 1 1.5

fκ0

0.5

1

1.5

2

95% C.L.

b b→H

τ τ →H

ZZ→H

WW

→H

γ γ →H

CMS Preliminary -1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

SM Higgs Fermiophobic Bkg. only

CM

S-P

AS

-HIG

-13-

005

2D test statistics q(κV ,κF ) scan, includingindividual channels.

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 83

Page 84: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Mass Reach of CMS Searches for Supersymmetry

Mass scales [GeV]0 200 400 600 800 1000 1200 1400

0χ∼ l → l

~

0χ∼ 0

χ∼ν τττ → ±χ∼ 2

0χ∼

0χ∼ 0

χ∼ν τ ll→ ±χ∼ 2

0χ∼

0χ∼ 0

χ∼ H W → 2

0χ∼ ±χ∼

0χ∼ 0

χ∼ W Z → 2

0χ∼ ±χ∼

0χ∼

0χ∼νν

-l+ l→ -χ∼+χ∼

0χ∼ 0

χ∼ν lll → ±χ∼ 2

0χ∼

0χ∼ bZ → b

~0χ∼ tW → b

~0χ∼ b → b

~

H G)→ 0χ∼(0

χ∼ t b → t~)0

χ∼ W → ±χ∼ b (→ t~)0

χ∼ W→ +χ∼ b(→ t~

0χ∼ t → t~

0χ∼ t → t~

0χ∼ q → q~

0χ∼ q → q~

))0χ∼ W→ ±χ∼ t(→ b

~ b(→ g~

)0χ∼γ →

2

0χ∼ qq(→ g~

)0χ∼ W→

±χ∼|0

χ∼γ→2

0χ∼ qq(→ g~

)0χ∼ W→±χ∼ qq(→ g~

)0χ∼ Z →

2

0χ∼ qq (→ g~

)0χ∼ ν± l→ ±χ∼ qq(→ g~

)0χ∼ t→ t~ t(→ g~

)0χ∼ |0

χ∼ W→±χ∼ qq(→ g~)0

χ∼ |0χ∼ τ τ →

2

0χ∼ qq(→ g~

)0χ∼

-l+ l→2

0χ∼ qq (→ g~

0χ∼ tt → g~

0χ∼ bb → g~

0χ∼ qq → g~

0χ∼ qq → g~

SUS-13-006 L=19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-011 L=19.5 /fb x = 0.25x = 0.50

x = 0.75

SUS-13-008 L=19.5 /fb

SUS-12-001 L=4.93 /fb

SUS-11-010 L=4.98 /fb

SUS-13-006 L=19.5 /fb x = 0.05x = 0.50

x = 0.95

SUS-13-006 L=19.5 /fb

SUS-13-012 SUS-12-028 L=19.5 11.7 /fb

SUS-12-005 SUS-11-024 L=4.7 /fb

SUS-12-028 L=11.7 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-014 L=19.5 /fb

SUS-13-004 SUS-13-007 SUS-13-008 SUS-13-013 L=19.4 19.5 /fb

SUS-13-013 L=19.5 /fb x = 0.20x = 0.50

SUS-13-004 SUS-12-024 SUS-12-028 L=19.3 19.4 /fb

SUS-12-001 L=4.93 /fb

SUS-13-012 SUS-12-028 L=19.5 11.7 /fb

SUS-12-010 L=4.98 /fb x = 0.25x = 0.50x = 0.75

SUS-12-005 SUS-11-024 L=4.7 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-017 L=19.5 /fb

SUS-12-004 L=4.98 /fb

SUS-13-006 L=19.5 /fb

SUS-11-011 L=4.98 /fb

SUS-13-011 SUS-13-004 L=19.5 19.3 /fb left-handed topunpolarized top

right-handed top

SUS-11-024 SUS-12-005 L=4.7 /fb

SUS-11-021 SUS-12-002 L=4.98 4.73 /fb x = 0.25x = 0.50

x = 0.75

SUS-13-006 L=19.5 /fb x = 0.05x = 0.50

x = 0.95

SUS-13-006 L=19.5 /fb

SUS-11-030 L=4.98 /fb

glui

no p

rodu

ctio

nsq

uark

stop

sbot

tom

EWK

gaug

inos

slep

ton

Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeVSUSY 2013

= 7 TeVs

= 8 TeVs

lspm⋅-(1-x)motherm⋅ = xintermediatemFor decays with intermediate mass,

Only a selection of available mass limits*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

• mLSP = 0 GeV (dark shades), mmother − mLSP = 200 GeV (light shades)• Branching ratios of 100 % assumed• Values in plot to be interpreted as upper bounds on mass limits

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 84

Page 85: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Mass Reach of CMS Searches for Supersymmetry (RPV)

Mass scales [GeV]0 200 400 600 800 1000 1200 1400 1600 1800

333'λ τ b→ t~233'λ µ tbt→ Rt

~ 233λt ντµ → Rt

~ 123λt ντµ → Rt

~ 122λt νeµ → Rt

~ 112''λ qqqq →

Rq~

233'λ µ qbt→ q~231'λ µ qbt→ q~233λ ν qll→ q~

123λ ν qll→ q~

122λ ν qll→ q~

112''λ qqqq → g~

323''λ tbs → g~

112''λ qqq → g~

113/223''λ qqb → g~

233'λ µ qbt→ g~231'λ µ qbt→ g~233λ ν qll→ g~

123λ ν qll→ g~

122λ ν qll→ g~

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-13-003 L=19.5 /fb

SUS-13-003 L=19.5 9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

EXO-12-002 L=4.8 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb

SUS-13-013 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-13-003 L=19.5 9.2 /fb

Summary of CMS RPV SUSY Results*

CMS Preliminary

EPSHEP 2013

= 7 TeVs = 8 TeVs

Prompt LSP decays

Only a selection of available mass limits*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

• Best exclusion limits for masses of mother particles (RPV)

Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 85

Page 86: indico.ph.tum.de · Introduction From the previous talk... • You know what Supersymmetry is and what it’s good for. • You’ve seen the Higgs discovery plots. • Therefore

Multi-Leptonic R-Parity Violation (Details)

χ01

˜ν∗e(˜ν∗

µ)

νe(νµ) e+

µ−(e−)

λ121

(a)

χ01 ˜ν∗

e(˜ν∗

τ)

νe(ντ ) τ+

τ−(e−)

λ133

(b)

χ01 e

+∗L (µ+∗

L )

e−(µ−) e

+

νµ(νe)

λ121

(c)

χ01 e

+∗L (τ+∗

L )

e−(τ−) τ

+

ντ (νe)

λ133

(d)

χ01 e

+∗R

e− e

+(µ+)

νµ(νe)

λ121

(e)

χ01 τ

+∗R

τ− e

+(τ+)

ντ (νe)

λ133

(f)

RPV SUSY decaysNLSP production: wino-like �χ±

1 -�χ±1 or �g-�g

χ02

χ03

�±R

�±R

�∓

�∓

�±

�±

χ01

χ01

�χ02-�χ0

3 production, RPC decay

χ01 Z/H

G �±

�∓

NLSP decay in GGM via Z (dom. for small tanβ)or H (up to 50 % for large tanβ)

[GeV]0

1!"

m100 150 200 250 300 350 400 450 500

[G

eV

]Rl~

- m

0 3!"m

20

30

40

50

60

70

± l

±

l0

1!" ± l

±

l0

1!" #

±

lR

±l~

±

lR

±l~ #

0

3!"

0

2!" #pp

= 5 GeV0

2!"

- m0

3!"

m

= 80 GeV0

1!"

- m0

3!"

m

ATLAS Preliminary

=8 TeVs, -1

L dt = 20.7 fb$

)theory

SUSY%1 ±Observed limit (

)exp%1 ±Expected limit (

All limits at 95% CL

ATLA

S-C

ON

F-20

13-0

36

RPC �χ02-�χ0

3 (vA)

[GeV]µ200 300 400 500 600 700 800 900

[G

eV

]g~

m

600

700

800

900

1000

1100

1200

µ <

g~m

)=1.5!tan(

300 400 500 600 700 ) [GeV]1

0"#m(

ATLAS Preliminary =8 TeVs, -1

L dt = 20.7 fb$)

theory

SUSY%1 ±Observed limit (

)exp%1 ±Expected limit (

, Z+jets-1ATLAS 5.8 fb

All limits at 95% CL

ATLA

S-C

ON

F-20

13-0

36

GGM, tanβ = 1.5

[GeV]µ200 300 400 500 600 700 800 900

[G

eV

]g~

m

400

500

600

700

800

900

1000

1100

1200

µ <

g~m

)=30!tan(

300 400 500 600 700 ) [GeV]1

0"#m(

ATLAS Preliminary =8 TeVs, -1

L dt = 20.7 fb$)

theory

SUSY%1 ±Observed limit (

)exp%1 ±Expected limit (

, Z+jets-1ATLAS 5.8 fb

All limits at 95% CL

ATLA

S-C

ON

F-20

13-0

36

GGM, tanβ = 30Alexander Mann (LMU München) SUSY After the Higgs Discovery Munich, 3rd December 2013 86