internet traffic engineering for partially uncertain demands

18
Communication Networks E. Mulyana, S. Zhang, U. Killat 1 ITC19 2005 – Beijing – 30.08.2005 Internet Traffic Engineering for Partially Uncertain Demands Eueung Mulyana, Shu Zhang, Ulrich Killat FSP 4-06 Communication Networks Hamburg University of Technology (TUHH)

Upload: em-legacy

Post on 14-Apr-2017

43 views

Category:

Education


2 download

TRANSCRIPT

Communication Networks E. Mulyana, S. Zhang, U. Killat

1

ITC19 2005 – Beijing – 30.08.2005

Internet Traffic Engineering for Partially Uncertain Demands

Eueung Mulyana, Shu Zhang, Ulrich Killat FSP 4-06 Communication Networks

Hamburg University of Technology (TUHH)

Communication Networks E. Mulyana, S. Zhang, U. Killat

2

Motivation Routing control

Demand uncertainty

Partially uncertain demands:

fixed part predictable or guaranteed traffic

uncertain part variable traffic

Outline Formulation

Calculating link loads

Simulated Annealing (SA)

Computational results

Concluding remarks

Communication Networks E. Mulyana, S. Zhang, U. Killat

3

Weight system

Maximum Utilization

Objective Function

Formulation

} { min max

max

,

,

, ji

ji

ji

c

l

Aji ),(

How to compute link load li,j for our case ?

fixed part trivial

uncertain part „hose“ model

Optimization Result u

f out

uf inu

. . . v

„Hose“ model

Network

Akwwww Ak },,,,,{ ||21

Communication Networks E. Mulyana, S. Zhang, U. Killat

4

Calculating Link Loads Case I : Fixed Demands

20 - 1

2

3

4

)(,vu

f

1 2

20 20

3 4

- 20 20

- 20

-

20

20

20

20

20 20

1

1

1

1

1 2

3 4

uv

uv

jiji ll ,,

40

1 2

3 4

40

40

40

40

Link Loads

Dijkstra, ECMP

Communication Networks E. Mulyana, S. Zhang, U. Killat

5

Calculating Link Loads Case II : Uncertain Demands (1)

uf out

u Network

}{\

out

,

uNv

uvuff

„Outbound“ model

. . . v

1

2

3

4

60

40

60

40

)( out

uf

60 1 2

3 4

60 30

30

90

1 2

3 4

60

80

90

60

70

vu

jiuNv

uu

ji fl,

,}{\

out, max

1

1

1

1

1 2

3 4

u

u

jiji ll ,,

Link Loads [Upperbound values]

vu

ji

,

,Traffic fraction

of flow (u,v) on link (i,j)

Communication Networks E. Mulyana, S. Zhang, U. Killat

6

Calculating Link Loads Case II : Uncertain Demands (2)

uf out

uf in

u

}{\

out

,

uNv

uvuff

}{\

in

,

uNv

uuvff

. . . v

„Hose“ model 90

1 2

3 4

60

80

90

60

70

60

1 2

3 4

90

80

60

90

70

60

1 2

3 4

80

60

70

)max,maxmin(,

,}{\

in

,

,}{\

out,

u

uv

jiuNv

u

u

vu

jiuNv

u

ji ffl

hose

inbound outbound

60

40

60

40

)( in

uf

1

2

3

4

60

40

60

40

)( out

uf

1

1

1

1

1 2

3 4

Link Loads [Upperbound values]

Communication Networks E. Mulyana, S. Zhang, U. Killat

7

Calculating Link Loads Case III : Partially Uncertain Demands

20 - 1

2

3

4

)(,vu

f

1 2

20 20

3 4

- 20 20

- 20

-

20

20

20

20

20 20

60

40

60

40

)( in

uf

1

2

3

4

60

40

60

40

)( out

uf

,maxmin()(,

,}{\

outunc,

u

vu

jiuNv

u

ji fl

uv

vu

ji

vu

ji fl,

,

,

fix, )(

unc,fix,, )()( jijiji lll

40

1 2

3 4

40

40

40

60

1 2

3 4

80

60

70

100

1 2

3 4

120

100

110

uncertain (hose)

fixed

partially uncertain

)max,

,}{\

in

u

uv

jiuNv

uf

Communication Networks E. Mulyana, S. Zhang, U. Killat

8

Representation

Move Operators

Simulated Annealing Approach for Optimization Task (1)

w1

2 1 2 2

21 w

12 w 23 w

24 w

w2 w3 w4

w1

2 1 2 2

w2 w3 w4 w1

2 1 5 2

w2 w3 w4

1 2

3 4

current solution x

.

.

.

)(1 xH

)(2 xH

)(3 xH

neighbours x‘(H3)

Variable Neighbourhood

solution vector

Communication Networks E. Mulyana, S. Zhang, U. Killat

9

Simulated Annealing Approach for Optimization Task (2)

Joint with plain local search (PLS):

concentrate the search around best solution (small ) first before exploiting other regions

speed-up convergence at small number of iterations

SA PLS

otherwise

satisfied are PLS performingfor conditions if

0

1

PLS

0PLS

1PLS

0PLS 1PLS

Communication Networks E. Mulyana, S. Zhang, U. Killat

10

Case Study (1)

3

13

9

14

11

8

10

6

5

74

2

1

12

2.5 Gbps

Network instance

14 nodes; 44 directed-links

Uncertain demands

300 Mbps {10,13}; 200 Mbps {2,6,7,9,11,14};

100 Mbps for the rest u

f out

Fixed demands

random in the inteval [10,150] Mbps

uf in

vuf

,

Communication Networks E. Mulyana, S. Zhang, U. Killat

11

Case Study (2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

200

400

600

800

1000

1200

1400

Outbound/Inbound Demands

Mb

ps

Node

fixed part uncertain part

Communication Networks E. Mulyana, S. Zhang, U. Killat

12

Results (1): Resource Occupancy

0 5 10 15 20 25 30 35 40 45 0

10

20

30

40

50

60

Capacity occupied (USP case)

Link Number

Occu

pan

cy (

%)

uncertain part fixed part

InvCap (72.65%)

Optimized – MSP (55.97%)

Maximum capacity occupancy

USP: Unique Shortest Path MSP: Multiple Shortest Path

Optimized – USP (56.87%)

Communication Networks E. Mulyana, S. Zhang, U. Killat

13

Results (2): Partially vs. Fully Uncertain Demands

v

vuuufff

,

1out2,out

v

uvuufff

,

1in2,in

)(,

1

vuf

)( in2,

uf)( out2,

uf

)( in

uf)( out

uf

Partially uncertain (56.87%)

Capacity occupancy for the USP case

(max)

Fully uncertain (166.6%)

Occu

pan

cy (

%)

Communication Networks E. Mulyana, S. Zhang, U. Killat

14

Summary and Conclusion

Model for partially uncertain demands:

capturing traffic variation

inaccurate traffic matrix

Optimization framework based on Simulated Annealing

fully deterministic

fully uncertain

partially uncertain

resource efficiency

Communication Networks E. Mulyana, S. Zhang, U. Killat

15

Thank You !

Communication Networks E. Mulyana, S. Zhang, U. Killat

16

References (Partial List)

(1) Duffield N.G. et. al.„A Flexible Model for Resource Management in Virtual Private Networks“, Proceedings of ACM SIGCOMM, 1998.

(2) Ben-Ameur W., Kerivin H.„Routing of Uncertain Demands“, INFORMS, 2001.

(3) Fortz B., Thorup M. „Optimizing OSPF/IS-IS Weights in a Changing World“, IEEE JSAC, 20(4):756-767, 2002.

(4) Mulyana E., Killat U. „Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints“, Proceedings of 2nd INOC, 2005.

Communication Networks E. Mulyana, S. Zhang, U. Killat

17

Routing Examples and Per-Flow Load Fractions

1

1

1

1

1 2

3 4

Link Weights

1

1

2

1

1 2

3 4

1 2

3 4

2

3 4

1

1

1

1

1

0.5

0.5 0.5

0.5

1 2

3 4

1

1

0.5

0.5

1 2

3 4

1

1

0.5

0.5

1 2

3 4

2

3 4

1

1

1

1

1

1 1

1 2

3 4

1

1

1

1 2

3 4

1

1

1

Communication Networks E. Mulyana, S. Zhang, U. Killat

18

Intra-Domain IP Routing : IGP

(b)(a)

6

11

1

1

1

1

2

21

2

3

5

5

121

3 4

5 6

2

3 4

5 6

1

2

4

6

5

3

1

2 3

4 5

1

Driven by link metrics (weights/costs)

Unique shortest path routing vs. Equal-Cost Multi-Path (ECMP)

ECMP e.g. [1-2-4-6] 50% [1-3-4-6] 25% [1-3-5-6] 25%

Unique shortest path routing: 1 unique path for all node pairs