international school of nuclear physics 40th...

22
Description of 31 Ne in Halo EFT International School of Nuclear Physics 40th Course Ettore Majorana Center, Erice, Sicily September 16 – 24, 2018 Wael Elkamhawy Institut für Kernphysik Technische Universität Darmstadt in collaboration with H.-W. Hammer September 20, 2018 HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 1

Upload: voanh

Post on 16-Aug-2019

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Description of 31Ne in Halo EFT

International School of Nuclear Physics 40th CourseEttore Majorana Center, Erice, Sicily

September 16 – 24, 2018

Wael Elkamhawy

Institut für Kernphysik

Technische Universität Darmstadt

in collaboration with H.-W. Hammer

September 20, 2018

HGS-HIReHelmholtz Graduate School for Hadron and Ion Research

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 1

Page 2: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Introduction and Motivation

◮ Only small number of neutron

halo nuclei have been identified

◮ Most of them are neutron-rich

light isotopes of He through C

◮ Until now, the heaviest 1n-halo

nuclei are 37Mg and 31Ne

Z

N

nHHe

LiBeB

CN

OFNe

NaMg

1n-Halo2n-Halo

1p-Halo2p-Halo

◮ 1n-removal reactions on C and Pb targets revealed: [Nakamura et al., 2014]31Ne deformed nucleus with a significant P-wave halo component

⇒ 31Ne offers a prototype to study deformation-driven halos and

understand emergent properties in heavier-near-drip-line nuclei

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 2

Page 3: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Introduction and Motivation

◮ One-neutron halo nuclei are

exotic nuclear states

◮ Degrees of freedom: tightly

bound core and a loosely bound

valence neutron

◮ In general: valence neutron

bound in a low-ℓ wave

◮ Quantum numbers determined:

JP = 32

−[Nakamura et al., 2014]

30Ne-core

Eex = 0.792 MeV

Sn = 0.15 +0.16−0.10 MeV

valence neutron

[Shamsuzzoha Basunia, 2010]

[Nakamura et al., 2014]

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 3

Page 4: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Effective Lagrangian

L = c†

[

i∂0 +

−→∇2

2mc

]

c + n†α

[

i∂0 +

−→∇2

2mn

]

nα + π†β

[

η

(

i∂0 +

−→∇2

2Mnc

)

+ ∆

]

πβ

− g[(

c←→∇i nα

)

π†β C

32β

(1i)( 12α)

+ H.c.]

,

where Mnc = mn + mc (total mass of neutron and core)

Feynman rules:

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 4

Page 5: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Full Dimeron Propagator

Full dimeron propagator:

Dress bare propagator with a geometric series of dimeron self-energies

⇒ Dyson equation:

= + Σβ β ′ β β ′ β β ′

Dββ′(p0, p) =

δββ′

η(

p0 − p2/(2Mnc))

+ ∆− Σ + iǫ

Σ =−µg22µ

(

p0 − p2/(2Mnc))

(

3

PDS −√

−2µ(

p0 − p2/(2Mnc))

− iǫ

)

,

where µ=̂ reduced mass

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 5

Page 6: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Scattering Amplitude:

Renormalization

i i ′

α α′

β β′

Tα′α(~p′,~p) =

µ

23~p′~pδα′

α + i3

(

l σl

(

~p′ × ~p)

l

)

α′α

(

−6π∆

µg2 − 3πη

µ2g

2 p2 − Λp2 − ip3)

≡ 6π

µ

23~p′~pδα′

α + i3

(

l σl

(

~p′ × ~p)

l

)

α′α

(

−6π∆R

µ(

gR)2 − 3πη

µ2(

gR)2 p2 − ip3

)

−3πη

µ2g2− Λ =

−3πη

µ2(

gR)2

g2=

∆R

(

gR)2

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 6

Page 7: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Matching

Now compare renormalized amplitude to effective range expansion of amplitude:

Tα′

α(~p′,~p) =6π

µ

23~p′~pδα′

α + i3

(

l σl

(

~p′ × ~p)

l

)

α′

α(

−6π∆R

µ(

gR)2 − 3πη

µ2(

gR)2 p2 − ip3

)

=6π

µ

23~p′~pδα′

α + i3

(

l σl

(

~p′ × ~p)

l

)

α′

α(

− 1a1

+r1

2p2 − ip3

)

⇒a1 =

µ(

gR)2

6π∆R

r1 = − 6πη

µ2(

gR)2

Note:

a1 =̂ scattering volume

r1 =̂ P-wave effective momentum

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 7

Page 8: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Effective Range Parameters

Determine effective range parameters by using measured observables:

◮ Demand a pole in the amplitude at E = −Sn = −γ2/(2µ)

(γ > 0 =̂ binding momentum)

⇒(

− 1

a1

+r1

2p2 − ip3

)∣

p=iγ

= 0

⇒ a1 = − 2

γ2 (r1 + 2γ)

◮ Assuming only ∆/g2 to be fine-tuned (shallow P-wave state)

[Hammer and Phillips, 2011]

⇒ P-wave effective momentum r1 ∼ Mhi (breakdown scale of the theory)

⇒ scattering volume a1 is enhanced by 1/(M2loMhi)

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 8

Page 9: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

EM Interaction – Minimal Substitution

Photons are included via minimal substitution:

∂µ → Dµ = ∂µ + ieq̂Aµ (e > 0)

◮ q̂ is the charge operator acting on a c or n field

◮ q̂n = 0

◮ q̂c = qcc with qc = 10 for Ne

◮ Gauge-invariant operators involving ~B and ~E might contribute to

electromagnetic observables within our power counting scheme

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 9

Page 10: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Scalar Component of EM Current

iA = 〈πβ′ (~p′)| J0 |πβ(~p)〉 =

+

(0,~q)

β ′ β β ′ β

= −iqtotGE0(q)√

4πq0Y00(~e~q)T̃ 00

β′

β− iQGE2(q)

1

2

5q2∑

M

Y2M (~e~q)T̃ 2M

β′β

limq→0

GE0(q) ≡ 1 (Charge conservation given by gauge-invariance)

limq→0

GE2(q) ≡ 1 ⇒ Q (this limit defines Q)

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 10

Page 11: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Electric Form Factors

Monopole and Quadrupole Form Factors

GE0(q) =

[

1 +γ

|r1|− y2q2 + 2γ2

yq|r1|arctan

(

yq

)]

GE2(q) =1

Q

qtot

8|r1|yq3

[

2γyq +(

y2q2 − 4γ2)

arctan

(

yq

)]

with y =mn

Mnc

=1

31, γ =̂ binding momentum

and estimate P-wave effective momentum: r1 ∼ Mhi

◮ Consistency check: limq→0

GE0(q) ≡ 1 X

◮ limq→0

GE2(q) ≡ 1⇒ Q =y2qtot

3γ|r1|⇒ Q ∈ [0.17, 0.28] efm2

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 11

Page 12: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Electric Form Factors

Charge and quadrupole radii are defined by expanding the form factors in q2:

GE0(q) ≈ 1− 1

6< r2

E0 >q2 + ...

GE2(q) ≈ 1− 1

6< r2

E2 >q2 + ...

Now compare to the expansion of the calculated form factors:

Charge & Quadrupole Radii

⇒ < r2E0 > =

5y2

2γ|r1|⇒√

< r2E0 > ∈ [0.35, 0.46] fm

⇒ < r2E2 > =

3y2

5γ2⇒√

< r2E2 > = 0.30 fm

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 12

Page 13: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Correlations

Q ←→ < r 2E0 >:

◮ < r2E0 >= 5y

2

2γ|r1|

◮ Q =y

2qtot

3γ|r1|

⇒ Q =2

15qce < r2

E0 >

0 0.2 0.4 0.6 0.8 10

0.25

0.5

0.75

1

1.25

< r2E0 > [fm

2]

Q[e

fm2

]

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 13

Page 14: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Correlations

< r 2E2 >←→ Sn:

< r2E2 >=

3y2

10µ

1

Sn

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

Sn [MeV]

<r2 E

2>

[fm

2]

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 14

Page 15: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Vector Component of EM Current

Contributions to 〈πβ′(~p′)| Jk |πβ(~p)〉 due to minimal substitution:

+

(0,~q)

+ +

β ′ β β ′ β β ′ β β ′ β

Contributions to 〈πβ′ (~p′)| Jk |πβ(~p)〉 due to magnetic moment coupling:

+

(0,~q)

β ′ β

LM

β ′ βκn

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 15

Page 16: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Vector Component of EM Current

〈πβ′ (~p′)| Jk |πβ(~p)〉

=

(

iqtotGE0(q)√

4πq0Y00(~e~q)T̃ 00

β′β

+ iQGE2(q)1

2

5q2∑

M

Y2M (~e~q)T̃ 2M

β′β

)

(

~p′ + ~p)∗

k

2Mnc

+ iµMGM1(q)

3q1∑

M

√2 C1M+k

(1k )(1M)Y∗1M+k (~e~q)

[

T̃ 1M

β′

β

]†

+ ioMGM3(q)1

2

7q3∑

M

√2 C3M+k

(1k )(3M)Y∗3M+k (~e~q)

[

T̃ 3M

β′β

]†

Note:

For J = 1/2 the electric quadrupole and the magnetic octupole moment is not

observable!

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 16

Page 17: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Magnetic Form Factors

Octupole Form Factor

GM3(q) =3γ

2(1− y )3q3

[

2γ(1− y )q +(

(1− y )2q2 − 4γ2)

arctan

(

(1− y )q

)]

= GE2[y → (1− y )]

Octupole Moment and Radius

oM =(1− y )2κnµN

10√

6γ|r1|⇒ oM ∈ [−23,−14]µN fm2

< r2M3 > =

3(1− y )2

10µ

1

Sn

⇒√

< r2M3 > = 8.95 fm

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 17

Page 18: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Correlations

< r 2M3 >←→ Sn:

< r2M3 >=

3(1− y )2

10µ

1

Sn

0 0.2 0.4 0.6 0.8 10

50

100

150

200

Sn [MeV]

<r2 M

3>

[fm

2]

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 18

Page 19: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Nuclear Deformation

Consider a quadrupolar deformed nucleus with sharp edge at radius:

Rdef = R0 [1 + β2Y20] /N

where R0 =̂ equilibrium radius,

N =̂ volume normalization constant

z

xx yy

⇒ Quadrupole moment:

Q(3/2) =1

5Q0 =

1

5

16π

5

3

4πZe R2

0 β2

=

1

5πZe β2 < r2

E0 >

Compare to EFT result−−−−−−−−−−−−→ β2 = 0.53

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 19

Page 20: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Summary and Outlook

Summary

◮ Effective Lagrangian

◮ Scattering Amplitude◮ Renormalization

◮ Electric and Magnetic Properties

◮ Correlations

◮ Nuclear Deformation

Outlook◮ Matter Radii

◮ Coulomb Breakup

◮ Improvement of Power Counting

⇒ Incorporation of Additional Field(s)

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 20

Page 21: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

Thank you for your attention!

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 21

Page 22: International School of Nuclear Physics 40th Coursecrunch.ikp.physik.tu-darmstadt.de/erice/2018/sec/talks/thursday/elkamhawy.pdf · International School of Nuclear Physics 40th Course

References

Hammer, H. W. and Phillips, D. R. (2011).

Electric properties of the Beryllium-11 system in Halo EFT.

Nucl. Phys., A865:17–42.

Nakamura, T. et al. (2014).

Deformation-Driven P-Wave Halos at the Drip Line: Ne31.

Phys. Rev. Lett., 112(14):142501.

Shamsuzzoha Basunia, M. (2010).

Nuclear Data Sheets for A = 30.

Nucl. Data Sheets, 111:2331–2424.

September 20, 2018 | Institut für Kernphysik, TU Darmstadt | Wael Elkamhawy | 22