international journal of heat and mass transfer publications/150.pdf · international journal of...

15
Analytical heat diffusion models for different micro-channel heat sink cross-sectional geometries Sung-Min Kim, Issam Mudawar * Boiling and Two-Phase Flow Laboratory (BTPFL), Purdue University International Electronic Cooling Alliance (PUIECA), Mechanical Engineering Building, 585 Purdue Mall West Lafayette, IN 47907-2088, USA article info Article history: Received 20 November 2009 Received in revised form 10 April 2010 Accepted 10 April 2010 Available online 10 June 2010 Keywords: Analytical heat diffusion model Micro-channel heat sink Flow boiling abstract This study explores heat diffusion effects in micro-channel heat sinks intended for electronic cooling appli- cations. Detailed analytical models are constructed for heat sinks having micro-channels with rectangular, inverse trapezoidal, triangular, trapezoidal, and diamond-shaped cross sections. Solutions are presented for both monolithic heat sinks and heat sinks with perfectly insulating cover plates. The analytical results are compared to detailed two-dimensional numerical models of the same cross-sections over a broad range of cover plate thermal conductivities for different micro-channel aspect ratios, fin spacings and Biot numbers. These comparisons show the analytical models provide accurate predictions for Biot numbers of practical interest. This study proves the analytical models are very effective tools for the design and thermal resis- tance prediction of micro-channel heat sinks found in electronic cooling applications. Ó 2010 Elsevier Ltd. All rights reserved. 1. Introduction The past two decades have witnessed intense interest among researchers in the use of micro-channel heat sinks, which has been spurred by such unique attributes as compactness, high power dissi- pation to volume ratio, and small coolant inventory. Because of the relative simplicity of fabricating rectangular micro-channels, the vast majority of these studies involve rectangular cross-sections. How- ever, an increasing number of single-phase and two-phase heat trans- fer studies is focusing on sinks having non-rectangular cross-sections such as triangular [1–3], trapezoidal [4,5], and diamond-shaped [6], citing thermal benefits to these cross-sections related to heat diffu- sion effects and bubble nucleation in sharp corners. Since the heat sink is typically designed to conduct heat away from a high-heat-flux electronic or power device that is attached directly to the heat sink, heat diffusion within the heat sink is responsible for an important thermal resistance between the device’s surface and the coolant. Unfortunately, published work describing heat diffusion effects in heat sinks having non-rectangular micro-channels is quite sparse. In case of a monolithic micro-channel heat sink, the local heat transfer coefficient at an axial location along the micro-channel can be determined from the relation h ¼ q 00 T w T f ; ð1Þ where q 00 , T w , and T f are the average heat flux along the micro-chan- nel wall, the average channel wall temperature, and the bulk fluid temperature, respectively. However, as direct temperature mea- surement of the micro-channel perimeter is not practical, the fin analysis method is often used in experimental studies (see [7,8]) to evaluate the local heat transfer coefficient. For example, in case of a heat sink with rectangular micro-channels and three-sided heating (i.e., with a perfectly insulating top cover plate), applying the fin analysis method to the system illustrated in Fig. 1a yields [7] h ¼ q 00 eff ð2H ch þ W ch Þ ðT w;b T f Þð2gH ch þ W ch Þ ¼ q 00 base ðW ch þ W s Þ ðT w;b T f Þð2gH ch þ W ch Þ ; ð2Þ where q 00 base is the device heat flux, and the fin efficiency and fin parameter are defined as [9] g ¼ tanhðmH ch Þ mH ch and m ¼ ffiffiffiffiffiffiffiffiffi 2h kW s s ; ð3Þ respectively. In Eq. (2), T w,b represents the temperature correspond- ing to the entire bottom plane of the micro-channels, which is as- sumed uniform in Refs. [7,8]. This temperature can be determined from the temperature T base of the device by assuming one-dimen- sional heat conduction between the plane of the device and the bot- tom plane of the micro-channels. T w;b ¼ T base q 00 base H b k : ð4Þ The one-dimensional fin analysis method is a convenient and accurate means to determining the heat transfer coefficient in a micro-channel heat sink provided the Biot number, based on half-width of the solid wall separating channels for the rectangular cross-section is sufficiently small [10,11]. As will be shown later in 0017-9310/$ - see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijheatmasstransfer.2010.05.019 * Corresponding author. Tel.: +1 765 494 5705; fax: +1 765 494 0539. E-mail address: [email protected] (I. Mudawar). International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt

Upload: nguyenduong

Post on 06-Jul-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

Analytical heat diffusion models for different micro-channel heat sinkcross-sectional geometries

Sung-Min Kim, Issam Mudawar *

Boiling and Two-Phase Flow Laboratory (BTPFL), Purdue University International Electronic Cooling Alliance (PUIECA), Mechanical Engineering Building,585 Purdue Mall West Lafayette, IN 47907-2088, USA

a r t i c l e i n f o

Article history:Received 20 November 2009Received in revised form 10 April 2010Accepted 10 April 2010Available online 10 June 2010

Keywords:Analytical heat diffusion modelMicro-channel heat sinkFlow boiling

0017-9310/$ - see front matter � 2010 Elsevier Ltd. Adoi:10.1016/j.ijheatmasstransfer.2010.05.019

* Corresponding author. Tel.: +1 765 494 5705; faxE-mail address: [email protected] (I. Mud

a b s t r a c t

This study explores heat diffusion effects in micro-channel heat sinks intended for electronic cooling appli-cations. Detailed analytical models are constructed for heat sinks having micro-channels with rectangular,inverse trapezoidal, triangular, trapezoidal, and diamond-shaped cross sections. Solutions are presented forboth monolithic heat sinks and heat sinks with perfectly insulating cover plates. The analytical results arecompared to detailed two-dimensional numerical models of the same cross-sections over a broad range ofcover plate thermal conductivities for different micro-channel aspect ratios, fin spacings and Biot numbers.These comparisons show the analytical models provide accurate predictions for Biot numbers of practicalinterest. This study proves the analytical models are very effective tools for the design and thermal resis-tance prediction of micro-channel heat sinks found in electronic cooling applications.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction temperature, respectively. However, as direct temperature mea-

The past two decades have witnessed intense interest amongresearchers in the use of micro-channel heat sinks, which has beenspurred by such unique attributes as compactness, high power dissi-pation to volume ratio, and small coolant inventory. Because of therelative simplicity of fabricating rectangular micro-channels, the vastmajority of these studies involve rectangular cross-sections. How-ever, an increasing number of single-phase and two-phase heat trans-fer studies is focusing on sinks having non-rectangular cross-sectionssuch as triangular [1–3], trapezoidal [4,5], and diamond-shaped [6],citing thermal benefits to these cross-sections related to heat diffu-sion effects and bubble nucleation in sharp corners. Since the heatsink is typically designed to conduct heat away from a high-heat-fluxelectronic or power device that is attached directly to the heat sink,heat diffusion within the heat sink is responsible for an importantthermal resistance between the device’s surface and the coolant.Unfortunately, published work describing heat diffusion effects inheat sinks having non-rectangular micro-channels is quite sparse.

In case of a monolithic micro-channel heat sink, the local heattransfer coefficient at an axial location along the micro-channelcan be determined from the relation

h ¼ q00

Tw � Tf; ð1Þ

where q00, Tw, and Tf are the average heat flux along the micro-chan-nel wall, the average channel wall temperature, and the bulk fluid

ll rights reserved.

: +1 765 494 0539.awar).

surement of the micro-channel perimeter is not practical, the finanalysis method is often used in experimental studies (see [7,8])to evaluate the local heat transfer coefficient. For example, in caseof a heat sink with rectangular micro-channels and three-sidedheating (i.e., with a perfectly insulating top cover plate), applyingthe fin analysis method to the system illustrated in Fig. 1a yields [7]

h ¼q00eff ð2Hch þWchÞ

ðTw;b � Tf Þð2gHch þWchÞ¼ q00baseðWch þWsÞðTw;b � Tf Þð2gHch þWchÞ

; ð2Þ

where q00base is the device heat flux, and the fin efficiency and finparameter are defined as [9]

g ¼ tanhðmHchÞmHch

and m ¼

ffiffiffiffiffiffiffiffiffiffi2h

kWs

s; ð3Þ

respectively. In Eq. (2), Tw,b represents the temperature correspond-ing to the entire bottom plane of the micro-channels, which is as-sumed uniform in Refs. [7,8]. This temperature can be determinedfrom the temperature Tbase of the device by assuming one-dimen-sional heat conduction between the plane of the device and the bot-tom plane of the micro-channels.

Tw;b ¼ Tbase �q00baseHb

k: ð4Þ

The one-dimensional fin analysis method is a convenient andaccurate means to determining the heat transfer coefficient in amicro-channel heat sink provided the Biot number, based onhalf-width of the solid wall separating channels for the rectangularcross-section is sufficiently small [10,11]. As will be shown later in

Page 2: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

Nomenclature

a coefficient in Eq. (19)Ac cross-sectional area of finAs surface area of fin exposed to convectionAR aspect ratio of micro-channel, Hch/Wch

b fin lengthBi biot number, hWs/2kC1, C2 coefficients in fin equationd fin lengthh heat transfer coefficientHb distance from bottom of heat sink to bottom of micro-

channelHc height of cover plateHch micro-channel heightIn Nth-order Bessel function of first kindk thermal conductivity of heat sink solidkc thermal conductivity of cover plateKn Nth-order Bessel function of second kindm fin parameterQ heat transfer rate per unit lengthq0 heat transfer rate per unit lengthq00 heat fluxq00base heat flux based on base area of heat sink; device heat

fluxq00eff heat flux based on heated perimeter of micro-channelT temperatureTbase temperature of heat sink base; device temperatureTw,b mean temperature of bottom plane of micro-channels

Tw,t mean temperature of top plane of micro-channelsWch micro-channel widthWs width of solid wall separating micro-channelsWs,e width of endwallx coordinate

Greek symbolsdb fin thickness at basen1, n2, n3, n4 parameters in temperature functionsg fin efficiencyh temperature difference in fin equation

Subscripts1 micro-channel left wall2 fin tip; tip of solid wall separating micro-channels2a micro-channel top wallA analyticalb micro-channel bottom wallbase heat sink basec cover platech micro-channelf bulk fluidfin fin base; base of solid wall separating micro-channelsN numericalt micro-channel top walltip adiabatic fin tip for diamond channelw micro-channel wall

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4003

this study, the one-dimensional approach is valid for most micro-channel experiments with rectangular micro-channels becauseBi << 0.1. However, it should be emphasized that Eq. (2) is validonly for three-sided heated rectangular micro-channels, i.e., whenthe cover plate is perfectly insulating.

The objective of this study is to derive one-dimensional analyt-ical solutions for heat diffusion in micro-channel heat sinks havingrectangular, inverse trapezoidal, triangular, trapezoidal, and dia-mond-shaped micro-channel cross-sections as illustrated inFig. 1. Unlike earlier published studies, the effect of the thermalconductivity of the cover plate will be taken into consideration.Excepting the diamond-shaped cross-section, two sets of exactsolutions are presented for each cross section: monolithic heatsinks (kc = k), and heat sinks with perfectly insulating cover plates(kc = 0). To validate the analytical solutions, a parametric study ofchannel aspect ratio, fin spacing and Biot number is performed,and the analytical predictions are compared to numerical solutionsof the two-dimensional heat diffusion equation for the differentcross-sectional geometries.

2. Longitudinal fin analyses

Fig. 2 illustrates the schematic diagrams for three basic longitu-dinal fins with rectangular, trapezoidal, and inverse trapezoidalprofiles that are used to derive the diffusion models for the heatsink micro-channel geometries illustrated in Fig. 1. It should beemphasized that, while certain solutions have been published forsome of these fin profiles under boundary conditions of interestto micro-channel heat sink geometries, solutions are not availablefor others and are therefore derived in detail in the present paper.In the following, solutions to all relevant boundary conditions willbe presented, with each solution obtained from prior sources care-fully indicated as such.

The following conventional assumptions are made in the one-dimensional fin analysis [12,13]:

1. The heat conduction in the fin is steady and one-dimensionalalong the x-direction.

2. The fin material is homogeneous and isotropic.3. The thermal conductivity of the fin is constant and uniform.4. The heat exchange between the fin and the surrounding fluid is

solely by convection along the fin surface.5. There is no heat generation within the fin itself.6. The heat transfer coefficient and the temperature of the sur-

rounding fluid are constant and uniform.

Applying energy conservation to the differential elementsshown in Fig. 2, the governing second-order ordinary differentialequation for one-dimensional steady-state temperature distribu-tion can be derived as follows [9]:

d2TðxÞdx2 þ 1

Ac

dAcðxÞdx

� �dTðxÞ

dx� 1

Ac

hk

dAsðxÞdx

� �ðTðxÞ � Tf Þ ¼ 0; ð5Þ

where Ac and As are the cross-sectional area and the surface area ofthe fin exposed to convection, respectively.

2.1. Rectangular fin

For the rectangular fin, Ac is constant and Eq. (5) can be writtenas

d2h

dx2 �m2h ¼ 0: ð6Þ

Eq. (6) has the solution

hðxÞ ¼ C1expðmxÞ þ C2expð�mxÞ: ð7Þ

Page 3: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

Solid

Hch

Hb

Fluid

q”eff

q”base

Ws,e

Ws Wch

HcWs,e

Cover Plate

Solid

Hch

Hbq”eff

q”base

Ws Wch,t

Hc

Wch,b

Fluid

Cover Plate

Ws,e Ws,e

Solid

Hch

Hb

q”eff

q”base

Ws Wch

Hc

Fluid

Cover Plate

Ws,e Ws,e

Solid

Hch

Hbq”eff

q”base

Ws Wch,b

HcWch,t

Fluid

Cover Plate

Ws,e Ws,e

Solid Hbq”eff

q”base

Ws Wch

Hc

Fluid Hch

Ws,e Ws,e

a b

e

c d

Fig. 1. Schematic diagrams of micro-channel heat sinks with (a) rectangular, (b) inverse-trapezoidal, (c) triangular, (d) trapezoidal, and (e) diamond-shaped cross-sections.

b

fin

x

dx

qx qx+dx

b

fin

x

d

dx

qx+dx qx

b

fin

x

d

dx

qx qx+dx

a b c

Fig. 2. Schematic diagrams of (a) rectangular, (b) trapezoidal and (c) inverse trapezoidal fins.

4004 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

Page 4: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4005

where

hðxÞ ¼ TðxÞ � Tf and m ¼ffiffiffiffiffiffiffiffiffi2h

kdfin

s: ð8Þ

The above equation is subjected to the following boundary condi-tions that are of interest to micro-channel heat-sink modeling.

2.1.1. Constant base temperature and adiabatic tip

hð0Þ ¼ hfin ð9Þ

and

dhdx

����x¼b

¼ 0: ð10Þ

The exact solution of Eq. (6) with boundary conditions (9) and(10) gives the following temperature distribution along the fin,

hðxÞhfin¼ coshðmðb� xÞÞ

coshðmbÞ ; ð11Þ

from which the heat transfer rate at the fin base can be obtained as

q0fin ¼ �kA0cdhdx

����x¼0¼ kdfinhfinm tanhðmbÞ: ð12Þ

2.1.2. Constant base temperature and prescribed tip temperature

hð0Þ ¼ hfin ð13Þ

and

hðbÞ ¼ h2: ð14ÞThe solution to Eq. (6) with boundary conditions (13) and (14) is gi-ven by

hðxÞhfin¼ ðh2=hfinÞ sinhðmxÞ þ sinhðmðb� xÞÞ

sinhðmbÞ ð15Þ

and the heat transfer rates at the fin base and at the fin tip are given,respectively, as

q0fin ¼ �kA0cdhdx

����x¼0¼ kdfinm

coshðmbÞhfin � h2

sinhðmbÞ ð16Þ

and

q02 ¼ �kA0cdhdx

����x¼b

¼ kdfinmhfin � h2 coshðmbÞ

sinhðmbÞ : ð17Þ

The same results of Eqs. (11), (12) and (15)–(17) are repre-sented in [14] as elements of linear transformations.

2.2. Trapezoidal fin

Similar to the solution procedure for a rectangular fin, the gov-erning Eq. (5) may be expressed as

d2h

dx2 þ1x

dhdx�m2a

hx¼ 0; ð18Þ

hðxÞ ¼K0 2m

ffiffiffiffiffiffiadp�

hfin � K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� h2

h iI0 2m

ffiffiffiffiffiaxp� �

þ I0 2mffia

p�hI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffia

p�

q0fin ¼ kdfinmffiffiffiffiffiffiffiffiffiffiffiffi

abþ d

r I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

þ K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p�hI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffia

p�

where

m ¼ffiffiffiffiffiffiffiffiffi2h

kdfin

sand a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid2

fin

4þ ðbþ dÞ2

s: ð19Þ

The exact solution for the above second-order ordinary differentialequation can be written in the form of modified Bessel functions [14].

hðxÞ ¼ C1I0 2mffiffiffiffiffiaxp� �

þ C2K0 2mffiffiffiffiffiaxp� �

; ð20Þ

where I0 and K0 are modified, zero-order Bessel functions of the firstand second kinds, respectively. Eq. (20) is subjected to the followingboundary conditions.

2.2.1. Constant base temperature and adiabatic tip

hðbþ dÞ ¼ hfin; ð21Þdhdx

����x¼d

¼ 0: ð22Þ

The exact solution of Eq. (18) with boundary conditions (21)and (22) gives the following temperature distribution along the fin.

hðxÞhfin¼

I0 2mffiffiffiffiffiaxp� �

K1 2mffiffiffiffiffiffiadp�

þK0 2mffiffiffiffiffiaxp� �

I1 2mffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþdÞ

p� K1 2m

ffiffiffiffiffiffiadp�

þK0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþdÞ

p� I1 2m

ffiffiffiffiffiffiadp� ; ð23Þ

where In and Kn are modified, nth-order Bessel functions of the firstand second kinds, respectively. The heat transfer rate at the fin baseis given by

q0fin ¼ kdfinhfinmffiffiffiffiffiffiffiffiffiffiffi

abþd

r

�I1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþdÞ

p� K1 2m

ffiffiffiffiffiffiadp�

�K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþdÞ

p� I1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþdÞ

p� K1 2m

ffiffiffiffiffiffiadp�

þK0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþdÞ

p� I1 2m

ffiffiffiffiffiffiadp� :

ð24ÞIt should be noted that similar expressions to Eqs. (23) and (24)

are found in Bejan and Kraus [15], in which dAs/dx in Eq. (5) is as-sumed equal to 2L, where the fin thickness is small compared to itsheight. Although it is mentioned that this assumption is valid formost practical thin fins [13], the following general expression from[14,16] is used for more accurate results.

dAs

dx¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1þ dy

dx

� �2s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid2

fin þ 4ðbþ dÞ2q

bþ d: ð25Þ

2.2.2. Constant base temperature and prescribed tip temperature

hðbþ dÞ ¼ hfin ð26Þand

hðdÞ ¼ h2: ð27Þ

The temperature distribution and the heat transfer rates at thefin base and the fin tip with boundary conditions (26) and (27) aregiven, respectively, as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ dÞ

h2 � I0 2m

ffiffiffiffiffiffiadp�

hfin

iK0 2m

ffiffiffiffiffiaxp� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ dÞ

I0 2m

ffiffiffiffiffiffiadp� ; ð28Þ

I0 2m

ffiffiffiffiffiffiadp� i

hfin � h2

2mffiffiffiffiffiffiffiffiffiffiaðbþdÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbþ dÞ

I0 2mffiffiffiffiffiffiadp� ð29Þ

Page 5: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

4006 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

and

q02 ¼ kdfinm

ffiffiffiffiffiffiadp

bþ d

hfin

2mffiffiffiffiadp � I1 2m

ffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� þ K1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� h ih2

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� : ð30Þ

The same results of Eqs. (23), (24) and (28)–(30) are repre-sented in [14] as elements of linear transformations.

2.3. Inverse trapezoidal fin

The governing Eq. (5) can be written as follows:

d2h

dx2 þ1x

dhdx�m2a

hx¼ 0; ð31Þ

where

m ¼ffiffiffiffiffiffiffiffiffi2h

kdfin

sand a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid2

fin

4þ d2

s: ð32Þ

The general solution to Eq. (31) is given by [14]

hðxÞ ¼ C1I0 2mffiffiffiffiffiaxp� �

þ C2K0 2mffiffiffiffiffiaxp� �

: ð33Þ

The above equation is subjected to the following boundaryconditions.

2.3.1. Constant base temperature and adiabatic tip

hðdÞ ¼ hfin ð34Þ

and

dhdx

����x¼bþd

¼ 0 ð35Þ

hðxÞ ¼K0 2m

ffiffiffiffiffiffiadp�

h2 � K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� hfin

h iI0 2m

ffiffiffiffiffiaxp� �

þ I0 2mffia

p�hI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffia

p�

q0fin ¼ kdfinm

ffiffiffiad

r I1 2mffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� þ K1 2m

ffiffiffiffiffiffiadp�

I0 2mffia

p�hI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ d

p�

q02 ¼ kdfinm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

pd

hfin

2mffiffiffiffiffiffiffiffiffiffiaðbþdÞp � I1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

þ K1ðh

I0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

pÞK0 2m

ffiffiffiffiffiffiadp�

� K0 2mp�

The temperature distribution, and the heat transfer rate at the finbase with boundary conditions (34) and (35) are given, respectively,by

hðxÞhfin¼

I0 2mffiffiffiffiffiaxp� �

K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� þ K0 2m

ffiffiffiffiffiaxp� �

I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� I0 2m

ffiffiffiffiffiffiadp�

K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� þ K0 2m

ffiffiffiffiffiffiadp�

I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� ð36Þ

and

q0fin ¼ kdfinhfinm

ffiffiffiad

r

�I1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� K1 2m

ffiffiffiffiffiffiadp�

� K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� I1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiadp�

K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� þ K0 2m

ffiffiffiffiffiffiadp�

I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

p� :ð37Þ

2.3.2. Constant base temperature and prescribed tip temperature

hðdÞ ¼ hfin ð38Þ

and

hðbþ dÞ ¼ h2: ð39Þ

The temperature distribution, and the heat transfer rates at thefin base and the fin tip with boundary conditions (38) and (39) aregiven, respectively, as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ dÞ

hfin � I0 2m

ffiffiffiffiffiffiadp�

h2

iK0 2m

ffiffiffiffiffiaxp� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ dÞ

I0 2m

ffiffiffiffiffiffiadp� ; ð40Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ dÞ

ihfin � h2

2mffiffiffiffiadpffiffiffi

Þ

I0 2mffiffiffiffiffiffiadp� ð41Þ

and

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

pÞI0 2m

ffiffiffiffiffiffiadp� i

h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðbþ dÞ

I0 2m

ffiffiffiffiffiffiadp� : ð42Þ

Page 6: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4007

3. Micro-channel heat sinks

To obtain exact solutions for heat diffusion in the micro-channelheat sinks, the following additional assumptions are made basedon the unit cells shown in Fig. 3 (see also Fig. 1):

1. The top surface of the cover plate is perfectly insulated.2. In case of rectangular, inverse trapezoidal, and trapezoidal

channels, the temperature of the fin base is the same as thatof the micro-channel bottom wall, i.e., Tfin = Tb.

3. In case of kc = k (monolithic heat sink), the temperature of thefin tip is the same as that of the micro-channel top wall, i.e.,T2 = T2a.

4. The effective heat flux, q00eff , is averaged over the heated perim-eter of the micro-channel. The heated perimeter consists ofthe entire wetted perimeter of the micro-channel, or, for thecase of a perfectly insulating cover plate, the micro-channelperimeter minus the portion in contact with the cover plate.

5. The endwall width of the micro-channel heat sink is equal tothe solid sidewall’s half-width, i.e., Ws,e = 0.5Ws.

3.1. Rectangular cross-section

The heat transfer rate at fin base can be obtained from the fol-lowing energy balance for the micro-channel unit cell shown inFig. 3a,

Q base ¼ Qb þ Qfin ¼ Qb þ Q1 þ Q2 ½W=m�: ð43Þ

The heat transfer rate at the micro-channel bottom wall is givenby

Q b ¼ hWchðTw;b � Tf Þ: ð44Þ

Introducing Eqs. (16) and (17) for the rectangular fin, the heat trans-fer rates at the fin base and the fin tip for the micro-channel unitcell can be written, respectively, as

Wch/2

Qb/2

Ws/2

Fluid

Cover Plate

Q1/2

Q2/2

Q2a/2

Solid

Q2=Q2a

Qfin=Q1+Q2

Qbase/2

Qfin/2

Qbase=Qfin+Qb

Hc

Hch

Hb

T2a

Tb

T1

Tfin

T2

Tbase

Wch,b/2

Qb/2

Cover Plate

Q1/2

Q2/2

Q2a/2

Solid

Fluid

Wch,t/2Ws/2

Qfin/2

Q2=Q2a

Qfin=Q1+Q2

Qbase=Qfin+Qb

Qbase/2

Hc

Hch

Hb

T2a

Tb

T1

Tfin

T2

Tbase

Cover Pla

Q1/2

Q2/2

Q2a/2

Solid

Flu

Wch/2Ws/2

Qfin/2

Q2=Q2a

Qfin=Q1+Q

Qbase=Qfin

Qbase/2

T

Tfin

T2

Tbase

Cover Pla

Q1/2

Q2/2

Q2a/2

Solid

Flu

Wch/2Ws/2

Qfin/2

Q2=Q2a

Qfin=Q1+Q

Qbase=Qfin

Qbase/2

T

Tfin

T2

Tbase

a b c

Fig. 3. Heat sink unit cells with: (a) rectangular, (b) inverse trapezoidal, (c) triang

Qfin ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2hkWs

p ðTw;b � Tf Þ coshðmHchÞ � ðTw;t � Tf ÞsinhðmHchÞ

ð45Þ

and

Q2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2hkWs

p ðTw;b � Tf Þ � ðTw;t � Tf Þ coshðmHchÞsinhðmHchÞ

; ð46Þ

where

m ¼

ffiffiffiffiffiffiffiffiffiffi2h

kWs

s: ð47Þ

By neglecting heat loss from the top of the cover plate, applyingan energy balance to the cover plate gives

Q2a ¼ hWchðTw;t � Tf Þ ¼ Q 2: ð48Þ

This procedure yields the following expression for tip temperature,

Tw;t ¼ Tf þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2hkWs

pðTw;b � Tf Þ

hWch sinhðmHchÞ þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2hkWs

pcoshðmHchÞ

: ð49Þ

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1a yields

q00eff ð2Hch þ 2WchÞ ¼ q00baseðWs þWchÞ ¼ Q fin þ Qb: ð50Þ

It may be noted that the heat influx to the micro-channel can beexpressed in terms of the effective heat flux or the base heat flux,as originally defined by Qu and Mudawar [7]. In the present study,the effective heat flux, q00eff , and the base heat flux, q00base, are definedas the mean heat flux based on the channel perimeter subjected toheating, and the heat flux based on heat sink base area, respec-tively, as illustrated in Fig. 3. In case of a perfectly insulating coverplate (kc = 0), q00eff has a zero value at the surface adjoining the coverplate, and is uniform over the other surfaces. For example, in thecase of the rectangular micro-channel with insulating cover plate,q00eff is assigned a value that is averaged over the three heatingwalls. If the base heat flux, q00base, and the base temperature, Tw,b,

te

id

2

Hc

Hch

Hb

2a

T1

te

id

2

Hc

Hch

Hb

2a

T1

Wch,b/2

Qb/2

Ws/2

Cover Plate

Q1/2

Q2/2

Q2a/2

Solid

Fluid

Wch,t/2

Qfin/2

Q2=Q2a

Qfin=Q1+Q2

Qbase=Qfin+Qb

Qbase/2

Hc

Hch

Hb

T2a

Tb

T1

Tfin

T2

Tbase

Hc

Hch

Hb

Q1/2

Q2/2

Q2a/2

Solid

Wch/2Ws/2

Fluid

Qfin/2

Q2=Q2a

Qfin=Q1+Q2

Qbase=Qfin

Adiabatic fin tip

Qbase/2

T2a

T1

Tfin

T2

Tbase

Ttip

d e

ular, (d) trapezoidal, and (e) diamond-shaped micro-channel cross-sections.

Page 7: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

4008 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

are available from the actual device or measured from experiment,the mean heat transfer coefficient of the working fluid can be cal-culated from Eqs. (4), (44), (45), (49) and (50).

3.1.1. Insulating cover plateIn case the cover plate has a very small thermal conductivity

compared to that of the heat sink solid, the cover plate will behaveas a perfect insulator, i.e., Q2 ¼ Q 2a � 0. Criteria where thisassumption is valid will be discussed in more detail in the next sec-tion. For an insulating cover plate,

Q base ¼ Qb þ Qfin ¼ Qb þ Q1 ½W=m�: ð51Þ

Using Eq. (12) for a rectangular fin, the heat transfer rate at the finbase of the micro-channel unit cell can be written as

Q fin ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2hkWs

pðTw;b � Tf Þ tanhðmHchÞ: ð52Þ

Applying the energy balance to the micro-channel heat sink shownin Fig. 1a yields

q00eff ð2Hch þWchÞ ¼ q00baseðWs þWchÞ ¼ Q fin þ Q b: ð53Þ

3.2. Inverse trapezoidal cross-section

Similar to the solution procedure for the rectangular micro-channel unit cell, an energy balance for the inverse trapezoidalcross-section shown in Fig. 3b yields

Q base ¼ Qb þ Qfin ¼ Qb þ Q1 þ Q2 ½W=m�; ð54Þ

where

Q b ¼ hWch;bðTw;b � Tf Þ: ð55Þ

Using Eqs. (29) and (30) for a trapezoidal fin, the heat transferrates at the fin base and the fin tip of the unit cell can be written,respectively, as

Q fin ¼ kðWs þWch;t �Wch;bÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aHch þ d

r I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

þ K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� h i

ðTw;b � Tf Þ �ðTw;t�Tf Þ

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞp

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp�

ð56Þ

and

Q 2 ¼ kWsm

ffiffiffiad

r ðTw;b�Tf Þ2mffiffiffiffiadp � I1 2m

ffiffiffiffiffiffiadp�

K0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

pÞ þ K1 2m

ffiffiffiffiffiffiadp�

I0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

h iðTw;t � Tf Þ

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� ; ð57Þ

where

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2h

kðWs þWch;t �Wch;bÞ

s;d ¼ WsHch

Wch;t �Wch;band

a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi14ðWs þWch;t �Wch;bÞ2 þ Hch þ

WsHch

Wch;t �Wch;b

� �s 2

: ð58Þ

An energy balance for the cover plate yields

Q2a ¼ hWch;tðTw;t � Tf Þ ¼ Q 2: ð59Þ

This procedure yields the following expression for fin tiptemperature,

Tw;t ¼ Tf þðTw;b � Tf Þ

2mffiffiffiffiffiffiadp 1

n1; ð60Þ

where

n1 ¼ I1 2mffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �þ K1ð2m

ffiffiffiffiffiffiadpÞI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �þ hWch;t

kWsm

ffiffiffida

rI0ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

qÞK0 2m

ffiffiffiffiffiffiadp�

�K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �I0 2m

ffiffiffiffiffiffiadp� �

: ð61Þ

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1 yields

q00eff Wch;t þWch;b þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þ ðWch;t �Wch;bÞ2q �

¼ q00baseðWs þWch;tÞ ¼ Q fin þ Q b: ð62Þ

3.2.1. Insulating cover plateFor an insulating cover plate, the following energy balance is

applied,

Qbase ¼ Q b þ Q fin ¼ Q b þ Q 1 ½W=m�: ð63Þ

Using Eq. (24) for a trapezoidal fin, the heat transfer rate at thefin base of the micro-channel unit cell can be written as

Qfin ¼ kðWsþWch;t�Wch;bÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aHchþd

r

�I1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

p� K1 2m

ffiffiffiffiffiffiadp�

�K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

p� I1 2m

ffiffiffiffiffiffiadp�

I0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

pÞK1 2m

ffiffiffiffiffiffiadp�

þK0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

p� I1 2m

ffiffiffiffiffiffiadp�

�ðTw;b�Tf Þ:ð64Þ

Page 8: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4009

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1b yields

q00eff ½Wch;b þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þ ðWch;t �Wch;bÞ2q

� ¼ q00baseðWs þWch;tÞ ¼ Q fin þ Q b:

ð65Þ

3.3. Triangular cross-section

As shown n Fig. 3c, energy conservation for a triangular cross-section can be expressed as

Q base ¼ Qfin ¼ Q1 þ Q2 ½W=m�: ð66Þ

Using Eqs. (29) and (30) for the trapezoidal fin, the heat transferrates at fin base and fin tip of triangular micro-channel unit cellshown in Fig. 3c can be written, respectively, as

Q fin ¼ kðWs þWchÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aHch þ d

r I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

þ K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� h i

ðTw;b � Tf Þ �ðTw;t�Tf Þ

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞp

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

pÞI0 2m

ffiffiffiffiffiffiadp� ð67Þ

and

Q 2 ¼ kWsm

ffiffiffiad

r ðTw;b�Tf Þ2mffiffiffiffiadp � I1 2m

ffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� þ K1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ d

� h iðTw;t � Tf Þ

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� ; ð68Þ

where

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2h

kðWs þWchÞ

s; d ¼WsHch

Wchand

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi14ðWs þWchÞ2 þ Hch þ

WsHch

Wch:

� �2s

: ð69Þ

Q fin ¼ kðWs þWchÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aHch þ d

r I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K1 2m

ffiffiffiffiffiffiadp�

� K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K1 2m

ffiffiffiffiffiffiadp�

þ K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I1 2m

ffiffiffiffiffiffiadp�

ðTw;b � Tf Þ: ð75Þ

Applying an energy balance to the cover plate gives

Q 2a ¼ hWchðTw;t � Tf Þ ¼ Q 2: ð70Þ

These relations yield the following expression for the fin tiptemperature,

Tw;t ¼ Tf þðTw;b � Tf Þ

2mffiffiffiffiffiffiadp 1

n2; ð71Þ

where

n2 ¼ I1 2mffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �þ K1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �þ hWch

kWsm

ffiffiffida

rI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �K0 2m

ffiffiffiffiffiffiadp�

�K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �I0 2m

ffiffiffiffiffiffiadp� �

: ð72Þ

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1c yields

q00eff Wch þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þW2ch

q �¼ q00baseðWs þWchÞ ¼ Q fin: ð73Þ

3.3.1. Insulating cover plateFor an insulating cover plate,

Qbase ¼ Q fin ¼ Q 1 ½W=m�: ð74Þ

Using Eq. (24) for a trapezoidal fin, the heat transfer rates at thefin base of the unit cell can be written as

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1c yields

q00eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þW2ch

q¼ q00baseðWs þWchÞ ¼ Q fin: ð76Þ

3.4. Trapezoidal cross-section

Following a solution procedure similar to that employed withthe inverse trapezoidal cross-section, energy conservation for thetrapezoidal micro-channel unit cell shown in Fig. 3d yields

Page 9: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

q00eff Wch;t þWch;b þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þ ðWch;b �Wch;tÞ2q �

¼ q00baseðWs þWch;bÞ ¼ Q fin þ Q b ¼ kWsmffiffiffiad

r I1 2mffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� þ K1 2m

ffiffiffiffiffiffiadp�

I0ð2mffiffiffiapðHch þ dÞÞ

h iðTw;b � Tf Þ �

ðTw;t�Tf Þ2mffiffiffiffiadp

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� þ hWch;bðTw;b � Tf Þ; ð77Þ

4010 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

where

m ¼

ffiffiffiffiffiffiffiffiffiffi2h

kWs

s; d ¼ WsHch

Wch;b �Wch;tand

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiW2

s

4þ WsHch

Wch;b �Wch;t

� �2s

: ð78Þ

This procedure yields the following expression for the fin tiptemperature,

Tw;t ¼ Tf þðTw;b � Tf Þ

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

p 1n3; ð79Þ

Table 1Dimensions of micro-channels tested in the study of aspect ratio and fin spacing (total 30

Rectangular Inverse Trapezoidal Tr

Hch 715 (AR = Hch/Wch = 4.3), 168 (AR = Hch/Wch = 1.0)Ws 42 (Ws/Wch = 0.25, Bi = 0.0027)Wch Wch,t 168 16

Wch,b 62

Hch 528 (AR = Hch/Wch = 4.3), 124 (AR = Hch/Wch = 1.0)Ws 86 (Ws/Wch = 0.69, Bi = 0.0055)Wch Wch,t 124 12

Wch,b 46

Hch 341 (AR = Hch/Wch = 4.3), 80 (AR = Hch/Wch = 1.0)Ws 130 (Ws/Wch = 1.63, Bi = 0.0084)Wch Wch,t 80 80

Wch,b 30

Fig. 4. Sample computational domain (shown turned 90�) of monolithic heat sink withcross-sections for all five cross-sections with same channel height.

where

n3 ¼ I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �K0 2m

ffiffiffiffiffiffiadp�

þ K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �I0 2m

ffiffiffiffiffiffiadp�

þ hWch;t

kðWs þWch;b �Wch;tÞm

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiHch þ d

a

rI0 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞ

q� �K0 2m

ffiffiffiffiffiffiadp�

�K0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch þ dÞÞ

qI0 2m

ffiffiffiffiffiffiadp� �

: ð80Þ

cases, all dimensions are in lm).

iangular Trapezoidal Diamond

8 168 62 168168

4 124 46 124124

80 30 8080

rectangular cross-section and Hch = 124 lm, with magnification of micro-channel

Page 10: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4011

3.4.1. Insulating cover plateUsing Eq. (37) for an inverse trapezoidal fin, the heat transfer

rate at the fin base of the unit cell can be written as

Q fin ¼ kðWs þWchÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aHch=2þ d

r I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

þ K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� h i

ðTw;b � Tf Þ �ðT2�Tf Þ

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þdÞp

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

p� K0 2m

ffiffiffiffiffiffiadp�

� K0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞÞI0 2m

ffiffiffiffiffiffiadp� r

ð83Þ

Q 2 ¼ kWsm

ffiffiffiad

r ðTw;b�Tf Þ2mffiffiffiffiadp � I1 2m

ffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

p� þ K1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

p� h iðT2 � Tf Þ

I0ð2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

pÞK0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

p� I0 2m

ffiffiffiffiffiffiadp� ; ð84Þ

Qfin ¼ kWsm

ffiffiffiad

r

�I1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþd

� K1 2m

ffiffiffiffiffiffiadp�

�K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

p� I1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiadp�

K1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

p� þK0 2m

ffiffiffiffiffiffiadp�

I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHchþdÞ

p� �ðTw;b�Tf Þ:

ð81Þ

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1d yields

bQ 2 ¼ kWsðT2 � Tf Þm

ffiffiffia

d

sI1ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

qÞK1ð2m

ffiffiffiffiffiffiad

pÞ � K1ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

qÞI1ð2m

ffiffiffiffiffiffiad

I0ð2mffiffiffiffiffiffiad

pÞK1ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

qÞ þ K0ð2m

ffiffiffiffiffiffiad

pÞI1ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

qÞ; ð86Þ

q00eff Wch;b þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þ ðWch;b �Wch;tÞ2q �

¼ q00baseðWs þWch;bÞ

¼ Q fin þ Q b: ð82Þ

3.5. Diamond-shaped cross-section

As shown in Fig. 3e, two separated trapezoidal regions may beconsidered for the analysis of a diamond-shaped micro-channel.For the lower trapezoidal region, the equations for the trapezoidalfin with boundary conditions of constant base temperature andprescribed tip temperature are applied. For the upper trapezoidalregion, the equations for the inverse trapezoidal fin with boundaryconditions of constant base temperature and adiabatic tip areapplied, where Q2 is used as the heat transfer rate at the fin base.

For the lower trapezoidal region, the heat transfer rate at fin baseand fin tip are given, respectively, as

and

where

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2h

kðWs þWchÞ

s; d ¼WsHch

2Wchand

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi14ðWs þWchÞ2 þ

Hch

2þWsHch

2Wch

� �2s

: ð85Þ

For the upper trapezoidal region, the heat transfer rate at the finbase is given by

where

m ¼

ffiffiffiffiffiffiffiffiffiffi2h

kWs

s; d ¼WsHch

2Wchand a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiW2

s

4þ WsHch

2Wch

� �2s

: ð87Þ

An energy balance at the interface between the upper and lowertrapezoidal regions gives

Q2 ¼ bQ 2: ð88Þ

This procedure yields the following expression for temperatureat the interface between the two trapezoidal regions,

T2 ¼ Tf þðTw;b � Tf Þ

2mffiffiffiffiffiffiadp 1

n4; ð89Þ

Page 11: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

T [K

]a b

Q [

W/m

]

290

700

kc [W/m.K]

kc [W/m.K]0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

Qfin

Qb

Q2 &Q2a

Q1

Qbase

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

Tfin

Tb

T2 T2a

Tbase

Hch = 715 m, AR = 4.3, Ws/Wch = 0.25Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Hch = 715 m, AR = 4.3, Ws/Wch = 0.25Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Rectangular

Rectangular

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

Tfin Tb

T2

T2a

Tbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb Q2

&Q2a

Q1

Qbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Rectangular

Rectangular

c d

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

Tfin

Tb

T2

T2a

Tbase

Hch = 341 m, AR = 4.3, Ws/Wch = 1.63Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb Q2 &Q2a

Q1

Qbase

Hch = 341 m, AR = 4.3, Ws/Wch = 1.63Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Rectangular

Rectangular

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

Tfin

Tb

T2

T2a

Tbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb Q2 &Q2a

Q1

Qbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Rectangular

Rectangular

Fig. 5. Effects of thermal conductivity of cover plate for rectangular channel with (a) Hch = 715 lm, (b) Hch = 528 lm, (c) Hch = 341 lm and (d) Hch = 124 lm.

4012 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

Page 12: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370a b

Tfin

Tb

T2

T2a

Tbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb

Q2 &Q2a

Q1

Qbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Inverse Trapezoidal

Inverse Trapezoidal

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

Tfin

Tb

T2

T2a

Tbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb

Q2 &Q2a

Q1

Qbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Inverse Trapezoidal

Inverse Trapezoidal

Fig. 6. Effects of thermal conductivity of cover plate for inverse trapezoidal channel with (a) Hch = 528 lm and (b) Hch = 124 lm.

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4013

where

n4 ¼ I1 2mffiffiffiffiffiffiadp�

K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

q� �þ K1 2m

ffiffiffiffiffiffiadp�

I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

q� �

þ mm

ffiffiffiffiffiffiad

ad

s I1 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

q� �K1 2m

ffiffiffiffiffiffiad

p� � K1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

q� �I1 2m

ffiffiffiffiffiffiad

p� I0ð2m

ffiffiffiffiffiffiffiffiadÞ

qK1ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

qÞ þ K0ð2m

ffiffiffiffiffiffiad

pÞI1 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia Hch=2þ d� r� �

� I0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

q� �K0 2m

ffiffiffiffiffiffiadp�

� K0 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðHch=2þ dÞ

q� �I0 2m

ffiffiffiffiffiffiadp� �

: ð90Þ

Applying an energy balance to the micro-channel heat sinkshown in Fig. 1e yields

q00eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4H2

ch þ 4W2ch

q¼ q00baseðWs þWchÞ ¼ Q fin: ð91Þ

4. Results

Table 1 shows the dimensions examined in the present study forthe five micro-channel geometries. These dimensions are based onvalues from a parametric experimental study by Lee and Mudawar[17] involving rectangular micro-channels. Table 1 includes a total

of 30 different cases that include channel aspect ratios of AR = Hch/Wch = 4.3 and 1.0 and dimensionless fin spacings of Ws/Wch = 0.25,

0.69, and 1.63. For validation of the analytical results, FLUENT 6.3[18] was used to numerically solve the two-dimensional heat diffu-sion equation for each of the 30 cases. All simulations were con-ducted with copper as conducting solid using k = 387.6 W/m K,q00base ¼ 300 W=cm2, h = 50,000 W/m2 K, Tf = 300 K, Hb = 2000 lm,and Hc = 300 lm [17]. A convergence criterion of 10�11 was appliedto the residuals of the energy equation. The two-dimensionalmeshes were created using GAMBIT 2.2 software [19]. Fig. 4 showssample computational domains of the monolithic heat sink forHch = 124 lm. Grid independence was examined using two gridsystems with 29,000 and 86,000 cells for rectangular channel withHch = 124 lm, which showed nearly identical temperature

Page 13: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370a b

Tfin T2

T2a

Tbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

&Qfin

Q2 &Q2a

Q1

Qbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Triangular

Triangular

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

Tfin

T2

T2a

Tbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

&Qfin

Q2 &Q2a

Q1

Qbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Triangular

Triangular

Fig. 7. Effects of thermal conductivity of cover plate for triangular channel with (a) Hch = 528 lm and (b) Hch = 124 lm.

4014 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

distributions with differences in the area-averaged temperature andheat transfer rate at the fin base of less than 0.01%. For calculationefficiency, the grid system with 29,000 cells was used for all the sim-ulations. For non-rectangular channels, meshes were generatedwith the same grid aspect ratio of the rectangular channel.

4.1. Effects of micro-channel aspect ratio and spacing

In order to examine the effects of thermal conductivity of coverplate, as well as various geometries, the area-averaged tempera-tures and heat transfer rates for Hch = 528, 124, 715, and 341 lmwere obtained from numerical simulations as shown in Figs. 5–8.The same input values of q”base = 300 W/cm2, h = 50,000 W/m2 K,and Tf = 300 K were used for all numerical simulations, and thetemperatures and heat transfer rates represented are area-aver-aged values across the corresponding planes indicated in Fig. 3.In the case of kc = k = 387.6 (monolithic heat sink), Figs. 5–8 showthe rectangular micro-channel produces lower T2 and Tfinvaluescompared to the other channel geometries. Conversely, thediamond channel produces higher T2 and Ttipvalues, as indicatedin Table 2. Moreover, comparing Figs. 5b and d, 6a and b, 7a andb and 8a and b, show T2 and Tfin values are much lower for highAR channels than those for lower AR. For kc = 387.6 and AR = 4.3,Fig. 5a–c show channels with the smallest fin spacing of Ws/Wch = 0.25 produce much lower T2 and T2a values compared tothose with larger spacings, Ws/Wch = 0.69 and 1.63. Although rela-tively limited in parametric range, the present two-dimensionalsimulations suggest a rectangular micro-channel with a high as-pect ratio and small fin spacing provides the best overall thermal

performance compared to the other cross-sectional geometriesbased on the assumptions provided in Sections 2 and 3.

4.2. Effects of thermal conductivity of cover plate

For all micro-channel geometries, the two-dimensional simula-tions yield Tfin values that are nearly identical to those of Tb, whichvalidates the second assumption adopted in the present analyticalheat sink models. Figs. 5–8 show that T2a approaches T2 withincreasing thermal conductivity of the cover plate, which validatesthe third assumption of the present analytical heat sink models forfairly to highly conducting cover plates. On the other hand, in caseof a cover plate with very low thermal conductivity, Q2 (which isequal to Q2a) becomes negligible and Q1 � Qfin; i.e., the cover platebehaves as perfectly insulating.

4.3. Effects of biot number

Fig. 9 shows the percent differences in heat transfer rate at thefin base, Qfin, between the two-dimensional numerical results andpresent analytical solutions for AR = 4.3 and 1.0, Ws/Wch = 0.69,and Bi ranging from 0.0055 to 0.2. Fig. 9 shows that for Bi < 0.2,the rectangular and trapezoidal channels for both aspect ratiosyield higher differences between numerical and analytical resultscompared to the other channel geometries. It should be noted thatthe temperature difference between the fin base and the micro-channel bottom wall increases with increasing Biot number. There-fore, the second assumption adopted in the present micro-channelanalytical heat sink models is not valid for high Bi values. Fig. 9

Page 14: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370a b

Tfin

Tb

T2

T2a

Tbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb

Q2 &Q2a

Q1

Qbase

Hch = 528 m, AR = 4.3, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Trapezoidal

Trapezoidal

T [K

]Q

[W

/m]

290

700

kc [W/m.K]

kc [W/m.K]

0.01 0.1 1 10 100 1000

300

310

320

330

340

350

360

370

0.01 0.1 1 10 100 1000

0

100

200

300

400

500

600

Tfin

Tb

T2

T2a

Tbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Qfin

Qb

Q2 &Q2a

Q1

Qbase

Hch = 124 m, AR = 1.0, Ws/Wch = 0.69Hb = 2000 m, Hc = 300 m

q"base = 300 W/cm2, Tf = 300 Kh = 50,000 W/m2, k = 387.6 W/m.K

Trapezoidal

Trapezoidal

Fig. 8. Effects of thermal conductivity of cover plate for trapezoidal channel with (a) Hch = 528 lm and (b) Hch = 124 lm.

Table 2Comparison of 2D numerical (area-averaged) and 1D analytical results for AR = 4.3, Ws/Wch = 0.69 and kc = k.

Units Rectangular Inverse trapezoidal Triangular Trapezoidal Diamond-shaped

Num. Anal. %Diff. Num. Anal. %Diff. Num. Anal. %Diff. Num. Anal. %Diff. Num. Anal. %Diff.

Tbase K 328.10 – 327.77 – 327.90 – 328.12 – 328.99 –Tfin K 312.40 312.62 0.07 312.26 312.29 0.01 312.42 312.42 0.00 312.42 312.64 0.07 313.52 313.51 0.00Tb K 312.78 �0.05 312.41 �0.04 – 312.80 �0.05 –T2 K 307.95 308.09 0.05 309.05 309.06 0.00 309.60 309.57 �0.01 309.12 309.19 0.02 311.40 311.39 0.00T2a, orTtip for

diamondK 307.89 0.06 308.98 0.03 309.51 0.02 308.98 0.07 310.55 310.57 0.01

Qb W/m 79.28 78.24 �1.31 28.54 28.27 �0.95 – 79.38 78.37 �1.27 –Q2 W/m 48.88 50.14 2.58 55.66 56.17 0.92 58.90 59.33 0.73 20.56 21.13 2.77 291.40 292.97 0.54Qfin W/m 550.62 561.63 2.00 601.36 603.76 0.40 630.00 630.76 0.12 550.48 562.59 2.20 630.00 631.12 0.18

%Diff. = (TA � TN)/TN � 100 [%] or (QA � QN)/QN � 100 [%].

S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 4015

shows that differences between the analytical and numerical re-sults become appreciable only for fairly high Bi values that are be-yond the range of interest for practical electronic cooling heatapplications.

4.4. Assessment of overall accuracy of analytical models

To assess the accuracy of the analytical models for realistic heatsink geometries, values of the percent differences in the tempera-tures and the heat transfer rates for Ws/Wch = 0.69, AR = 4.3 andBi = 0.0055 are provided in Table 2. Very good agreement is real-ized between the present analytical model predictions and thetwo-dimensional numerical simulations, with maximum differ-

ences in temperature and heat transfer rate of 0.07% and 2.77%,respectively. The analytical models for the inverse trapezoidal, tri-angular, and diamond-shaped micro-channels show better predic-tions than for the rectangular and trapezoidal micro-channels.

Table 3 summarizes percent differences in Qfin between analyt-ical and numerical predictions for all 60 cases (30 cases indicatedin Table 1 repeated for kc = 0 and kc = k), which feature the follow-ing Bi values: Bi = 0.0027 for Hch = 715 and 168 lm, Bi = 0.0055 forHch = 528 and 124 lm, and Bi = 0.0084 for Hch = 341 and 80 lm.The percent difference increases with decreasing fin spacing (Ws/Wch) and increasing aspect ratio. Overall, the highest percent dif-ference in heat transfer rate is 4.65%, which corresponds to thetrapezoidal case with Hch = 715 lm and kc = k.

Page 15: International Journal of Heat and Mass Transfer Publications/150.pdf · International Journal of Heat and Mass Transfer 53 (2010) 4002–4016 ... be presented, with each solution

0.001

Bi

(Qfin

,A -

Qfin

,N)

/ Qfin

, N x

100

[%

]

Hch = 528 m, AR = 4.3, RectangularHch = 528 m, AR = 4.3, Inv. Trapez.Hch = 528 m, AR = 4.3, TriangularHch = 528 m, AR = 4.3, TrapezoidalHch = 528 m, AR = 4.3, DiamondHch = 124 m, AR = 1.0, RectangularHch = 124 m, AR = 1.0, Inv. Trapez.Hch = 124 m, AR = 1.0, TriangularHch = 124 m, AR = 1.0, TrapezoidalHch = 124 m, AR = 1.0, Diamond

Hb = 2000 mHc = 300 m

0.01 0.1 1

0

5

10

15

20

25

30

q"base = 300 W/cm2 Tf = 300Kh = 50,000 W/m2 k = kc= 387.6 W/m.K

Fig. 9. Variation of percent difference between analytical and two-dimensionalnumerical results with Biot number for Ws/Wch = 0.69.

Table 3Percent difference in heat transfer rate between 2D numerical (area-averaged) and 1Danalytical results.

Hch

(lm)(Qfin,A � Qfin,N)/Qfin,N � 100 (%)

Rectangular Inversetrapezoidal

Triangular Trapezoidal Diamond

715 kc = 0 3.72 0.53 �0.01 4.55 –kc = k 3.78 0.58 0.05 4.65 0.25

168 kc = 0 1.46 0.15 0.00 2.00 –kc = k 2.53 0.55 0.37 2.36 0.57

528 kc = 0 1.80 0.32 0.07 2.14 –kc = k 2.00 0.39 0.15 2.21 0.18

124 kc = 0 0.50 0.12 0.10 0.81 -kc = k 1.01 0.36 0.24 0.96 0.30

341 kc = 0 0.70 0.24 0.17 0.84 –kc = k 0.76 0.25 0.23 0.81 0.26

80 kc = 0 0.25 0.17 0.18 0.44 –kc = k 0.42 0.27 0.23 0.45 0.25

4016 S.-M. Kim, I. Mudawar / International Journal of Heat and Mass Transfer 53 (2010) 4002–4016

5. Conclusions

This study examined heat diffusion effects in micro-channel heatsinks found in electronic cooling applications. Analytical modelswere constructed for heat sinks with rectangular, inverse trapezoi-dal, triangular, trapezoidal, and diamond-shaped micro-channels.Solutions were presented for both monolithic heat sinks as well asheat sinks with perfectly insulating cover plates. The analytical re-sults were compared to two-dimensional numerical simulationsfor different micro-channel aspect ratios, fin spacings and Biot num-bers. Key findings from the study can be summarized as follows:

(1) A systematic analytical methodology was developed for heatdiffusion in the heat sinks which enables the determinationof effective heat flux along the heated portion of the micro-channel and the mean wall temperature.

(2) Overall, a rectangular micro-channel with a high aspect ratioand small fin spacing provides the best overall thermal per-formance compared to the other cross-sectional geometriesbased on the assumptions provided in Sections 2 and 3.

(3) The analytical models for the inverse trapezoidal, triangular,and diamond-shaped micro-channels show better predic-tions than for the rectangular and trapezoidal micro-chan-nels. Nonetheless, a maximum percent difference in heattransfer rate between the analytical and numerical resultsfor 60 cases of practical interest of only 4.65% proves theanalytical models are very accurate and effective tools forthe design and thermal resistance prediction of micro-chan-nel heat sinks found in electronic cooling applications.

Acknowledgement

The authors are grateful for the support of the Office of NavalResearch (ONR) for this study.

References

[1] Y. Gan, J. Xu, S. Wang, Are the available boiling heat transfer coefficientssuitable for silicon microchannel heat sinks?, Microfluids Nanofluids 4 (2008)575–587.

[2] G. Hetsroni, A. Mosyak, E. Pogrebnyak, Z. Segal, Periodic boiling in parallelmicro-channels at low vapor quality, Int. J. Multiphase Flow 32 (2006) 1141–1159.

[3] D. Klein, G. Hetsroni, A. Mosyak, Heat transfer characteristics of water and APGsurfactant solution in a micro-channel heat sink, Int. J. Multiphase Flow 31(2005) 393–415.

[4] G. Wang, P. Cheng, A.E. Bergles, Effects of inlet/outlet configurations on flowboiling instability in parallel microchannels, Int. J. Heat Mass Transfer 51(2008) 2267–2281.

[5] H.Y. Wu, P. Cheng, Boiling instability in parallel silicon microchannels atdifferent heat flux, Int. J. Heat Mass Transfer 47 (2004) 3631–3641.

[6] L. Jiang, M. Wong, Y. Zohar, Phase change in microchannel heat sinks withintegrated temperature sensors, J. Microelectromech. Syst. 8 (1999) 358–365.

[7] W. Qu, I. Mudawar, Flow boiling heat transfer in two-phase micro-channelheat sinks-I. Experimental investigation and assessment of correlationmethods, Int. J. Heat Mass Transfer 46 (2003) 2755–2771.

[8] J. Lee, I. Mudawar, Two-phase flow in high-heat-flux micro-channel heat sinkfor refrigeration cooling applications: Part II – heat transfer characteristics, Int.J. Heat Mass Transfer 48 (2005) 941–955.

[9] F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, fifth ed.,Wiley, New York, 2002.

[10] C. Cortés, L.I. Díez, A. Campo, Efficiency of composite fins of variable thickness,Int. J. Heat Mass Transfer 51 (2008) 2153–2166.

[11] P. Razelos, A critical review of extended surface heat transfer, Heat TransferEng. 24 (2003) 11–28.

[12] W.M. Murray, Heat dissipation through an annular disk or fin of uniformthickness, J. Appl. Mech. 60 (1938) A–78.

[13] K.A. Gardner, Efficiency of extended surface, Trans. ASME 67 (1945) 621–631.[14] A.D. Kraus, A. Aziz, J. Welty, Extented Surface Heat Transfer, Wiley, New York,

2001.[15] A. Bejan, A.D. Kraus, Heat Transfer Handbook, Wiley, New York, 2003.[16] D.R. Harper, W.B. Brown, Mathematical equations for heat conduction in the

fins of air-cooled engines, National Advisory Committee for Aeronautics,Report no. 158, 1922.

[17] J. Lee, I. Mudawar, Fluid flow and heat transfer characteristics of lowtemperature two-phase micro-channel heat sinks – Part 1: experimentalmethods and flow visualization results, Int. J. Heat Mass Transfer 51 (2008)4315–4326.

[18] FLUENT Inc., Fluent 6 user’s manual, Lebanon, NH, 2006.[19] FLUENT Inc., Gambit 2 user’s manual, Lebanon, NH, 2006.