intermediate’algebra’unit’2’ radicals,’rational’exponents ... · page 5 of...

98
Name:__________________________________________ ALSO PRINT YOUR NAME AT TOP OF COVER PAGE OF UNIT. Videos produced on YouTube by YourMathGal Julie Harland that accompany sections in this Unit are at https://sites.google.com/site/packet2int/home/p2videos To navigate to that site, go to YourMathGal.com. Click Home. Click My Books on side bar. Click Math 64. Click Unit 1. Click Videos for Unit 2. Before doing the problems in each section, watch and transcribe the videos accompanying that section for your notes. *An asterisk next to a problem indicates its solution is worked out on a video. Intermediate Algebra Unit 2 Radicals, Rational Exponents, Complex Numbers 2.1 Square Roots .................................................................................................... 2 2.2 Higher Order Roots .................................................................................... 12 2.3 Add and Multiply Radicals....................................................................... 16 2.4 Divide Radicals ............................................................................................. 27 2.5 Rational Exponents .................................................................................... 41 2.6 Radical Equations........................................................................................ 54 2.7 Pythagorean Theorem & Distance Formula .................................... 64 2.8 Complex Numbers ...................................................................................... 72 2.9 Dividing Complex Numbers .................................................................... 85 2.10 Review Exercises ......................................................................................... 93 ISBN: 9780840132550 Printing Date: February 2016 This Unit is (c) 2015 Julie Harland and is licensed under a Creative Commons Attribution NonCommercialShareAlike 4.0 International License

Upload: others

Post on 04-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Name:__________________________________________    ALSO  PRINT  YOUR  NAME  AT  TOP  OF  COVER  PAGE  OF  UNIT.    Videos  produced  on  YouTube  by  YourMathGal  Julie  Harland  that  accompany  sections  in  this  Unit  are  at  https://sites.google.com/site/packet2int/home/p2videos    To  navigate  to  that  site,  go  to  YourMathGal.com.  Click  Home.  Click  My  Books  on  side  bar.  Click  Math  64.    Click  Unit  1.    Click  Videos  for  Unit  2.      Before  doing  the  problems  in  each  section,  watch  and  transcribe  the  videos  accompanying  that  section  for  your  notes.  *An  asterisk  next  to  a  problem  indicates  its  solution  is  worked  out  on  a  video.    Intermediate  Algebra  Unit  2  Radicals,  Rational  Exponents,  Complex  Numbers    2.1   Square  Roots  ....................................................................................................  2  2.2   Higher  Order  Roots  ....................................................................................  12  2.3   Add  and  Multiply  Radicals  .......................................................................  16  2.4   Divide  Radicals  .............................................................................................  27  2.5   Rational  Exponents  ....................................................................................  41  2.6   Radical  Equations  ........................................................................................  54  2.7   Pythagorean  Theorem  &  Distance  Formula  ....................................  64  2.8   Complex  Numbers  ......................................................................................  72  2.9   Dividing  Complex  Numbers  ....................................................................  85  2.10   Review  Exercises  .........................................................................................  93      ISBN:  978-­‐0-­‐8401-­‐3255-­‐0    Printing  Date:  February  2016    This  Unit  is  (c)  2015  Julie  Harland  and  is  licensed  under  a  Creative  Commons  Attribution-­‐NonCommercial-­‐ShareAlike  4.0  International  License    

Page 2: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 2 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Print  First  and  Last  Name:_____________________________________________________________    2.1   Square  Roots      1.   Evaluate  the  following:  

*a.    02 =       *b.    32 =       *c.     −2( )2 =    

*d.    56

⎛⎝⎜

⎞⎠⎟2

=       *e.     30( )2 =       f.       −40( )2 =    

*g.         .4( )2 =       h.     .07( )2 =       *i.       −3( )2 =    

j.         −5( )2 =       k.    52 =       l.      202 =      2.   State  the  two  square  roots  of  each  number.        *a.    16:  _____________          b.  100:  _____________    3.   What  symbol  is  used  to  denote  the  “principal”  square  root  of  a  number  and  what  

does  “principal  square  root  of  a  number”  mean?      4.   Simplify.  If  it’s  not  a  real  number,  write  NOT  REAL.  Each  problem  has  one  answer.    

*a.     16 =         *b.       81 =       *c.       36 =      

d.     0 =       e.       1 =       *f.       −9 =    

*g.      − 49 =     h.    

100121

=       *i.      

916

=  

 

j.     2500 =       k.      − 64 =       l.       −49 =      

Page 3: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 3 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Square  Roots  with  variables    Simplify  .  Assume  all  variables  are  positive.    

*5.    x2( )2 =           *6.    

x3( )2 =          

*7.    x8( )2 =           8.     x5 ⋅ x5 =        

   

*9.     x4 =           *10.   n16 =      

*11.     x6 =           *12.     x16 =              

13.     m8 =           14.     m12 =            

*15.     b30 =         16.     y22 =      

*17.     16x16 =         *18.     36m

10 =            

*19.     9m8n4y2 =        

 

21.     25m24n6 =    

   

23.     81a100b60c40 =    

     24.   Give  3  examples  of  irrational  numbers  involving  square  roots.      

Page 4: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 4 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Approximating  Square  Roots      25.   List  the  perfect  squares  from    22  up  to    122 .      Start  with  4,  9,  etc.    ________________________________________________________________________________________________    Use  a  calculator  to  approximate  each  square  root  to  the  3  places  after  the  decimal  point.  Then  square  the  approximation  and  round  to  5  places  after  the  decimal  point.    

*26.     15 ≈ ________________         Square  that  approximation:_____________________________  

   

*27.     30 ≈ ________________         Square  that  approximation:  _____________________________  

   

28.     41 ≈ ________________         Square  that  approximation:  _____________________________    

*29.   Enter   3  in  a  calculator,  round  to  3  places  after  the  decimal  point  and  write  on  the  first  blank  below.  Then  multiply  by  2.  Then  enter  2 3  in  a  calculator  and  round.  

 

a.    2 3( ) ≈  2  ·  ________________    =  __________________   b.  2 3 ≈ ____________________      

30.   Enter   5  in  a  calculator,  round  to  3  places  after  the  decimal  point  and  write  on  the  first  blank  below.    Then  multiply  by  3.  Then  enter  3 5  in  a  calculator  and  round.  

 

a.    3 5( ) ≈ 3  ·    ________________    =  __________________   b.  3 5 ≈ ____________________          

Page 5: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 5 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Multiplication  Property  of  Square  Roots    *31.   Complete  the  following  statements.    

a.       If x ≥ 0, then x2 = _______     b.     x x = ___     c.       x( )2 = ___    32.   What  is  the  main  difference  between  part  a  above  compared  to  part  b  and  c?        33.   Evaluate  the  following.  All  of  these  are  in  the  form  shown  in  b  or  c  above.    

*a.       7 7 =           *b.       103 103 =      

c.       65 65 =           *d.       junk junk =      

*e.       5x3y 5x3y =         f.       2x − 5 2x − 5 =      

*g.      stuff( )2 =

          *h.      19( )2 =

     

i.       m3 + 5n( )2 =         j.      101( )2 =

 

 

k.      name( )2 =

          l.       math math =    Even  though  the  square  root  of  a  negative  number  is  not  a  real  number,  you  can  still  compute  the  following  using  part  b  and  c  from  question  1  to  simplify  these.  Your  answer  should  be  a  negative  number.  We’ll  cover  square  roots  of  negative  numbers  later.    

m.    −7( )2 =

          n.       −14 −14 =      

Page 6: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 6 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

MULTIPLICATION  PROPERTY  FOR  SQUARE  ROOTS    

If    a ≥ 0  and  b ≥ 0 ,  then   a ⋅ b = ab    To  simplify  things  and  make  directions  in  this  unit  less  cumbersome,  we  will  make  the  assumption  that  all  variables  in  this  unit  are  positive  unless  otherwise  stated,  and  write  the  

multiplication  property  as   a ⋅ b = ab    Multiply.    Then  simplify  if  possible.  Assume  variables  are  positive.    

*34.       3 ⋅ 7 =           *35.       2 ⋅ 8 =    

*36.       5 ⋅ 5 =           *37.       47 ⋅ 47 =    

*38.       3 ⋅ 5 =           39.       11 ⋅ 2 =    

*40.       a ⋅ a5 =           41.   x3 ⋅ x5 =    

*42.     2 ⋅ 3 ⋅ 7 =         43.     5 ⋅ 3 ⋅ 2 =    

*44.     2x3 ⋅ 18x5 =         45.       2m

7 ⋅ 8m9 =    

*46.     23x5 ⋅ 23x7 =          

   

47.       17ab3 ⋅ 17a7b =  

   

48.     27x5y15 ⋅ 3x9y =    

   

49.     x3 2x5 ⋅3 8x9 =      

   

Page 7: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 7 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Simplifying  Square  Roots    A  square  root  of  a  counting  number  is  considered  simplified  if  no  factors  greater  than  1  are  perfect  squares.    The  number  under  the  square  root  symbol  is  called  the  radicand.    If  the  radicand  has  a  perfect  square  factor,  the  square  root  of  that  number  can  be  simplified.    50.   List  all  factors  for  each  radicand,  and  circle  any  perfect  squares  greater  than  1.     Then  state  if  the  given  square  root  is  simplifed    

*a.   15  :  State  the  factors  of  15:  ______________________________________________________        

  Is   15  simplified?  ___________    

*b.   12  :  State  the  factors  of  12:  ______________________________________________________        

  Is   12  simplified?  ___________    

c.   30  :  State  the  factors  of  30:  ______________________________________________________        

  Is   30  simplified?  ___________    

d.   45  :  State  the  factors  of  45:  ______________________________________________________        

  Is   45  simplified?  ___________      

*51.   Show  all  steps  to  simplify   12      

Page 8: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 8 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Show  steps  to  simplify.    Use  a  calculator  to  verify  the  approximation  of  the  original  square  root  and  the  simplified  answer  are  the  same.  Put  a  BOX  around  each  answer.    

*52.   18      

53.   75      

*54.   50      

55.   40      

*56.   54      

*57.   72      

58.   28      

59.   99      

*60.   3 75      

61.   5 24      

62.   2 27        

Page 9: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 9 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    Intermediate  Algebra    

 

Show  steps  to  simplify.    .    Assume  variables  are  positive  Put  a  BOX  around  each  answer.    

*63.   x15        

*64.   m11  

     

65.   n33        

66.   a2m7  

     

67.   x13y6        

68.   44m11  

     

*69.   48x8n5          

70.   98m10n3        

71.   22a9n11        

Page 10: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 10 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    

 

*72.   −6 45x3          

*73.   4x 28x2          

74.   3m 32m5  

         

*75.   4x2m 63x2m7  

         

*76.   −5x4 8x2y9            

77.   x3n 18x8n15            

78.   −5x3n 20x5n7        

Page 11: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 11 of 98  Unit  2  Harland     2.1  Square Roots  Intermediate  Algebra    

 

Multiply  and  simplify.  Show  Steps.  Assume  variables  are  positive.  Put  BOX  around  answer.    

*79.   21 ⋅ 14      

*80.   35 ⋅ 55      

81.   30 ⋅ 42      

82.   30 ⋅ 33      

83.   22x3 33x        

*84.   6x3 ⋅ 2x5 ⋅ 5x7          

*85.   12x3 ⋅ 3x          

*86.   −3x2 10 ⋅5 30          

87.   −5x2 6x4 ⋅2x3 10x5      

Page 12: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 12 of 98  Unit  2  Harland     2.2  Higher Order Roots  Intermediate  Algebra  

 

2.2   Higher  Order  Roots    

If  a ≥ 0 ,  then   ann = a        Simplify.  If  it’s  not  a  real  number,  write  “not  a  real  number”.    Assume  variables  are  positive.  Show  all  steps  starting  with  #16.  Pay  close  attention  to  the  index,  which  is  the  little  number  you  see  on  the  left  (except  on  the  square  root,  where  it  is  optional  to  write  the  index  of  2).  So  for  #1,  the  index  is  3,  which  means  you  are  taking  the  cube  root  of  64.    

*1.     643           2.       814

        *3.         325  

 

4.       −273         *5.       100004

      9.     −16    

*10.       m8( )3         *11.           m243       12.         x183

 

 

13.         n505         14.         n147

        15.         n124  

   

*16.         403  

   

*17.         543  

   

18.           804  

   

19.       2503  

   

*20.         m143  

   

21.         x135  

   

Page 13: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 13 of 98  Unit  2  Harland     2.2  Higher Order Roots  Intermediate  Algebra  

 

22.         n314  

 

*23.   563  

   

*24.   x103  

   

*25.   24x103  

     

*26.   x263  

     

27.   x10m125  

     

28.   −3x 4x143  

     

*29.   80x12y154  

         

30.   5xy −40x20y193  

       

Page 14: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 14 of 98  Unit  2  Harland     2.2  Higher Order Roots  Intermediate  Algebra  

 

We  have  been  using  this  definition:  If  a ≥ 0 ,  then   ann = a        But  what  if  we  are  not  sure  whether  a  is  positive  or  negative?    It  depends  on  the  index,  n.  Below  is  the  definition  which  is  true  regardless  of  the  sign  of  a.      

If  n  is  an  even  integer,  then   ann = a     If  n  is  an  odd  integer,  then   ann = a    Simplify.  Use  absolute  value  signs  as  needed.  Do  not  assume  variables  are  positive.  Do  not  leave  negative  numbers  under  the  radical  sign.  Write  “NOT  REAL  if  it  is  not  a  real  number.  BOX  answer.    

*31.       b33             *32.       m44

         

33.       n99             34.       m66

             

*35.       164             *36.       −83

         

37.       −3( )44           38.       −19          

   

*39.       −16             40*.       −814  

   

41.       −1             42.       766  

   

*43.       −1253           *44.       −23

             

45.       m20n84           46.       m20n305

       

Page 15: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 15 of 98  Unit  2  Harland     2.2  Higher Order Roots  Intermediate  Algebra  

 

Simplify.  Use  absolute  value  signs  as  needed.  Do  not  assume  variables  are  positive.  Do  not  leave  negative  numbers  under  the  radical  sign.  BOX  answer.    

*47.   −250x6y103  

         

48.   −32x11y155  

         

*49.   45x3y9            

50.   −63x26y93  

         

51.   48x10y154  

         

52.   64x12y155  

   

Page 16: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 16 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

2.3   Add  and  Multiply  Radicals    Simplify  if  possible.  If  already  simplified,  write  “SIMPLIFIED”.  Assume  variables  are  positive.  Show  all  steps  starting  with  #13.  BOX  answer.    

*1.   3c + 5c           *2.   3 2 + 5 2    

*3.   3 7 + 5 7         4.   6x + x    

5.   6 5 + 5           *6.   2 3 + 5 2    

7.   6 5m − 3 5m         8.   b −10b    

9.   2 −10 2         10.   2 2x − 3 2x    

11.   7 3y − 2 3y + 3y    

12.   7 3n − 2 n + 3n      

*13.   8 + 18          

14.   12 + 27            

15.   2 27 + 3 50            

16.   4 75 − 50  

Page 17: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 17 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

*17.   5x 45x3 − 3 20x5                

18.   5 8x + 2 18x − 50x                

*19.   3m 18x2 − x 27m2  

               

20.   3 12x2 − 2x 27                  

*21.   4x 32 − 18x2 + 2x 128              

Page 18: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 18 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

22.   8x 75m + 3 50m                    

23.   7 20x5 − x 24x3                    

24.   3m 45x8 − x3 54x2m2  

                 

25.   3m 28 − 20 + 44m2  

     

Page 19: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 19 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

Adding  Higher  Order  Roots    Simplify  if  possible.  Assume  variables  are  positive.  Show  all  steps.  BOX  answer.    

26.   8 73 + 4 73      

27.   135 − 4 135  

   

28.   24 + 5 23 − 3 2      

29.   9 163 + 3 23            

*30.   5 543 + 3 2503  

         

31.   3 323 + 5 1083  

         

*32.   18 + 503  

         

33.   98 + 163  

     

Page 20: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 20 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

*34.   10 403 − 5 6253  

         

35.   5 563 − 70003  

         

*36.   8 x94 − x2 81x4  

         

37.   8 x135 − x 16x74  

         

*38.  

995x

− 44x2  

           

39.  

455x2

− 80x4  

       

Page 21: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 21 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

Multiplying  Binomials  with  Radicals    Use  the  distributive  Property  to  Multiply  and  Simplify.      Show  all  steps.  BOX  answer.    

40.  2 2 + 3( )

           

41.  5 4 + 5( )

           

42.  7 2 7 + 3( )

             

43.  5 8 2 − 3 5( )

               

44.  2 7 3 − 7( )

       

Page 22: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 22 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

*45.  2 3 11 + 3 3( )

               

46.  3 5 2 + 5( )

               

47.  4 5 2 + 3 5( )

               

*48.  2 6 5 2 − 3 18( )

               

49.  3 10 5 2 − 15( )

       

Page 23: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 23 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

Multiply  and  Simplify.  You  can  use  the  FOIL  method  or  any  method  for  multiplying  binomials.    

50.  5 − 7( ) 3+ 7( )

               

51.  4 + 3 5( ) 2 + 5( )

               

*52.  2 + 3 5( ) 3− 4 5( )

               

53.  1− 5( ) 2 + 5( )

               

54.  2 2 − 5( ) 2 + 3 5( )

       

Page 24: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 24 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

55.  5 2 + 6( ) 2 + 2 6( )

               

56.  2 − 3 5( ) 2 + 3 5( )

               

57.   4 7 + 3 2( ) 4 7 − 3 2( )  

             

*58.   2 14 3 21 − 8 35( )                

59.  5 6 42 − 66( )

       

Page 25: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 25 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

*60.  5 + 2 7( )2

               

61.  5 3 − 2( )2

               

62.  5 3 − 2( ) 5 3 + 2( )

               

*63.  2 3 − 5( ) 3 + 3 5( )

               

*64.   3− 5( ) 3+ 5( )  

   

Page 26: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 26 of 98  Unit  2  Harland     2.3  Add and Multiply Radicals  Intermediate  Algebra  

 

65.   5 − 11( ) 5 + 11( )  

             

66.   5 − 11( )2  

                   

67.   2 5 + 7( ) 2 5 − 7( )  

                   

68.   2 5 + 7( )2  

       

Page 27: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 27 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

2.4  Divide  Radicals  

Quotient  Rule  for  Square  Roots:    ab= a

b  

 Use  the  Quotient  Rule  to  simplify  the  following.  The  answer  should  not  contain  any  square  roots  in  the  denominator.  All  square  roots  should  be  as  simplified  as  possible,  and  all  fractions  should  be  reduced.  Show  all  steps.    

*1.  

169            

 

*2.  

1825  

 

3.  

1336  

   

4.  3 1736  

     

5.  

40x5

10x        

6.  

40x7

5x        

*7.  

12x3y5

3xy      

Page 28: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 28 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

Rationalize  the  denominator,  and  simplify.    Use  the  quotient  rule  as  needed.  The  answer  should  not  contain  any  square  roots  in  the  denominator.  All  square  roots  should  be  as  simplified  as  possible,  and  all  fractions  should  be  reduced.  Show  all  steps.  BOX  answer.    

*8.  

12  

       

9.  

13  

       

*11.  

35  

       

*12.  

126    

       

13.  − 1015  

         

14.  

3 56    

     

Page 29: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 29 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

 

15.  

53  

       

16.  

45  

       

17.  

67    

       

*18.  

512    

         

*19.  

78  

         

*20.  

245  

     

Page 30: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 30 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

 

21.  

5x2

18              

22.  

350x  

         

23.  

23 5    

           

24.  

3 10m3

5m 6              

25.  

7 2015    

       

Page 31: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 31 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

Dividing  Higher  Order  Roots    

If   an and   bn are  real  numbers,  and   bn ≠ 0 ,  then   ab

n = an

bn.  

 Simplify.  Show  all  steps.    Rationalize  the  denominator  and/or  use  the  quotient  rule  as  needed.  The  answer  should  not  contain  any  radicals  in  the  denominator.  All  radicals  should  be  as  simplified  as  possible,  and  all  fractions  should  be  reduced.  Show  steps.  BOX  answer.    

*26.  

827

3

             

27.  

64125

3

               

*28.  − 827

3

     

*29.  

14

3

       

30.  

249

3

         

31.  

25

3

       

Page 32: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 32 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

*32.  

363  

     

33.  

5103

         

*34.  

32

4

         

35.  

23

4

           

*36.  

59

3

                   

37.  

349

3

                 

Page 33: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 33 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

38.  

3m10

85

                       

*39.  

13y10

3

                       

40.  

1ab2c34

         

Page 34: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 34 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

2.15   Conjugates  &  Rationalizing  Denominators    Simplify.  Show  steps.  Put  a  BOX  around  answer.    

*41.  5 + 7( ) 5 − 7( )

           

42.  4 − 7( ) 4 + 7( )

           

43.  7 5 − 7( )

               

44.  5 7( ) 7

           

45.  4 − 7( ) 7

           

46.  4 7( ) 7

       

Page 35: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 35 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

Simplify.  Show  steps.  Put  a  BOX  around  answer.    

*47.  3 2 − 4( ) 3 2 + 4( )

     

*48.  7 − 2( ) 7 + 2( )

     Fill  in  the  blanks.    

49.   The  conjugate  of    2 + 7  is  ______________________    

50.   The  conjugate  of    2 3 − 5  is  ______________________    

51.   The  conjugate  of    2 3 + 5 2  is  ______________________      52.   The  conjugate  of    a + b  is  ______________________      Rationalize  the  denominator  and  simplify.    Show  all  steps.  There  should  be  no  square  roots  in  the  denominator.    Reduce  if  possible.  BOX  answer.    

*53.  1

3− 2  

             

*54.  13 2

 

     

Page 36: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 36 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

55.  43 −1  

           

56.  43  

             

57.  9

2 + 7  

               

58.  92 7

 

               

Page 37: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 37 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

59.  1

2 3 − 5  

                       

*60.  5

11 − 2 2  

                       

61.  6

2 3 + 5 2  

         

Page 38: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 38 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

*62.  8

3 2 − 2  

               

*63.  3+ 24 − 5

 

                 

64.  3+ 24 5

 

               

*65.  7 + 37 − 3

 

           

Page 39: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 39 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

66.  3 23− 6

 

               

67.  10

10 − 6  

               

68.  10 + 2 21

4  

               

*67.   5 2 + 32

 

     

Page 40: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 40 of 98  Unit  2  Harland     2.4  Divide Radicals  Intermediate  Algebra  

 

Below  are  some  more  problems,  including  some  more  challenging  problems  to  do  on  your  own  paper.  The  challenging  problems  are  especially  appropriate  for  students  planning  to  enroll  in  courses  such  as  College  Algebra,  Business  Calculus,  or  Precalculus.    

70.  4 − 3 23 2

 

   

71.  3 2

4 + 3 2  

   

72.  2 + 32 − 3

 

   

73.  12 − 3 2

−6      

74.  −1510 − 5

 

   

75.  5 6 − 320

 

   

76.  10 3 + 2 21

6      

Page 41: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 41 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

2.5  Rational  Exponents    Simplify.  Use  Laws  of  Exponents  to  simplify.    

*1.   b0 =           *2.   b−2 =    Use  the  Laws  of  Exponents  to  complete  the  right  side.    

*3.   bm ⋅bn =         4.   bm( )n =      Simplify.  Show  the  intermediate  step  using  one  of  the  appropriate  Laws  from  above.    

*5.   512 ⋅5

12 =         6.   3

12 ⋅3

12 =  

   

*7.  

512

⎛⎝⎜

⎞⎠⎟

2

        8.  

1013

⎛⎝⎜

⎞⎠⎟

3

     

9.   1013 ⋅10

13 ⋅10

13 =  

   Simplify.  

*10.   5 ⋅ 5 =         11.   73( )3 =      12.      Fill  in  the  blank  to  complete  the  definition  below.  

If  n  is  a  positive  integer  greater  than  1  and   bn  is  a  real  number,  then    b1n = ________  

   

Page 42: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 42 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

For  each  expression,  state  the  base,  and  then  circle  the  correct  way  to  write  it  using  radical  notation.  Then  simplify  the  correct  one.    

13.   −121( )12   Base:  ________     Circle  and  simplify  correct  one  below.        

   

−121       − 121                                        12⋅121    

 

*14.   −100013   Base:  ________     Circle  and  simplify  correct  one  below.        

 

−10003       − 10003

         

*15.   144− 12       Base:  ________     Circle  and  simplify  correct  one  below.        

   

− 12⋅144                            − 144                             −144                             −1

144                            

1144

         

         

16.   −216( )−13     Base:  ________     Circle  and  simplify  correct  one  below.        

 

 1−2163

                     − 2163                           −2163                          − 13⋅216                           1

2163  

     

17.   −8− 13     Base:  ________     Circle  and  simplify  correct  one  below.          

− 83      1−83

                                         − 183                         −83

 

     

Page 43: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 43 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

Write  each  expression  using  radical  notation,  and  simplify  if  possible.  If  there  are  negative  exponents,  rewrite  the  problem  using  positive  exponents  before  writing  using  radical  notation.  If  the  answer  is  not  a  real  number,  state  “NOT  REAL”.  Show  all  steps.  BOX  answer.  

*18.   1612            

   

*19.   1013  

   

20.   8114  

   

21.   −25( )12    

   

*22.   8112  

   

23.   6413 =          

   

24.   4912  

   

*25.   −2713    

   

26.   −34313          

           

*27.   16− 12  

   

Page 44: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 44 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

28.   9− 12            

     

29.   8− 13  

     

30.   −1000− 13      

         

31.   −125( )−13  

     

32.   m12            

     

*33.   −9( )12  

     

34.   11−13            

     

35.   n15 =  

     

Page 45: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 45 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

 

36.   −2512            

         

37.   −27( )13  

         

*38.   5x14    

           

39.   −7x13    

           

40.   7x−13    

       

Page 46: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 46 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

Simplifying  with  Rational  Exponents    There  are  two  ways  to  rewrite  an  expression  with  a  rational  exponent,  where  the  denominator  n  is  not  zero.  The  second  way  is  usually  easier  to  compute  with  numbers.    

 

*41.   Follow  the  rule  above  to  show  two  ways  to  rewrite    bmn without  using  fractional  

exponents—use  a  radical  and  integer  exponent.    Assume  m  and  n  are  positive  integers  greater  than  1  and  that  m/n  is  reduced.  

 

  bmn =        

   

*42.   Use  both  ways  above  to  rewrite  the  expression.  Then  use  each  way  to  simplify  823 .  

 

  a.   823 =  

   

  b.   823  

 

*43.   Use  both  ways  above  to  rewrite  the  expression.  Then  use  each  way  to  simplify  932 .  

 

  a.   932 =  

   

  b.   932 =  

 

44.   When  simplifying  932  without  a  calculator,  did  you  find  it  easier  to  take  the  square  

root  of  9  first  and  then  cube  it,  or  to  cube  9  and  then  take  the  square  root?  Explain.        

Page 47: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 47 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

Below  is  a  Summary  of  the  Laws  of  Exponents.    Assume  a  and  b  (the  bases)  are  positive.  

Note  bm

bn  can  be  written  two  ways.  They  are  equivalent.    So  bm−n = 1

bn−m.  

Often  we  write  it  the  first  way  shown  if  m>n  and  the  second  way  shown  if  n>m  so  that  the  exponent  will  be  positive.  

Also  note  the  two  ways  to  write  amn .    They  are  equivalent.    So   an( )m = amn .  

 bm ⋅bn = bm+n

bm( )n = bmnbm

bn= bm−n = 1

bn−m

ab( )n = anbn

ab

⎛⎝⎜

⎞⎠⎟n

= an

bn

b−n = 1bn

b0 = 1

b1n = bn

amn = an( )m = amn

ab

⎛⎝⎜

⎞⎠⎟−n

= bn

an

 

     

Page 48: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 48 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

Write  each  expression  using  radical  notation  in  two  ways.  Then,  simplify  one  of  the  notations.  Pick  the  one  you  find  easiest  to  compute.    Show  all  steps.  BOX  answer.    

45.   2723  

         

46.   2532  

         

47.   8134  

         Write  each  expression  using  radical  notation,  and  simplify  if  possible.  If  there  are  negative  exponents,  first  rewrite  the  problem  using  positive  exponents.  Then  rewrite  using  radical  notation.  If  the  answer  is  not  a  real  number,  state  NOT  REAL.  Show  all  steps.  BOX  answer.    

*48.   −1634  

       

49.   −2532  

       

50.   −25( )32  

     

Page 49: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 49 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

 

*51.   8− 23  

         

52.   4− 52  

         

*53.   −27( )43  

         

54.   −32( )25  

         

*55.  49

⎛⎝⎜

⎞⎠⎟

32  

         

56.   − 278

⎛⎝⎜

⎞⎠⎟

23  

     

Page 50: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 50 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

*57.   − 452  

         

58.   −952  

           

*59.   −36( )12  

         

60.  4925

⎛⎝⎜

⎞⎠⎟− 32  

           

61.   − 278

⎛⎝⎜

⎞⎠⎟− 23  

     

Page 51: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 51 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

*62.   2x( )35  

   

63.   3x( )54  

     

*64.   2x35  

     

65.   3x54  

     

*66.   −27( )−23  

       

67.   − 8125

⎛⎝⎜

⎞⎠⎟− 23  

       

*68.   x− 16  

     

69.   m− 25  

     

Page 52: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 52 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

*70.  4

5x− 12

 

   

*71.   − 4− 32  

   

72.   2x − 3( )23  

   Use  the  Laws  of  Exponents  to  write  each  expression  with  a  base  of  x—simply  one  base  of  x  raised  to  some  power.  After  you  do  that,  if  the  exponent  is  negative,  rewrite  with  a  positive  exponent,  and  if  the  exponent  is  fractional,  write  in  radical  form.  Show  steps.  Box  answer.    

*73.   x34 ⋅ x

− 74  

     

74.   x415 ⋅ x

715  

     

*75.  

x34

x16  

     

76.  

m710

m110  

       

Page 53: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 53 of 98  Unit  2  Harland     2.5  Rational  Exponents  Intermediate  Algebra  

 

Advanced  Rational  Exponents    Below  are  some  challenging  problems  you  might  try.  These  are  appropriate  for  students  planning  to  enroll  in  courses  such  as  College  Algebra,  Business  Calculus,  or  Precalculus.    Assume  all  variables  are  positive.  Use  the  laws  of  exponents  to  simplify  each  expression.  Do  not  write  any  answers  with  negative  exponents.  Show  all  steps.  BOX  Answer.  

*77.   27u3( )23         *78.  

x14 x

− 12

x23

 

79.  x16x

− 56

x13

        *80.  a−2b3( )

18

a−3b( )−14

 

81.  mb m−1b3( )0

m−2b4( )−12      

82.  8u3

125m9

⎛⎝⎜

⎞⎠⎟

−23

   

*83.   a318           84.   a525

       

*85.   364           86.   x1015      

 

*87.   x + 4( )48    Rewrite  using  rational  exponents.  Then  write  so  the  base  is  raised  to  a  single  power.  Then  write  in  radical  form.  Assume  all  variables  are  positive.  Show  all  steps.  BOX  answer.    

*88.   y23 ⋅ y6           *89.  x5

x6  

 

90.  n23 nn4          

*91.   23 5  

 

*92.   x34 y 23      

Page 54: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 54 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

2.6   Radical  Equations    POWER  RULE  FOR  EQUATIONS:  If  both  sides  of  an  equation  are  raised  to  the  same  power,  all  the  solutions  of  the  original  equation  are  also  among  the  solutions  of  the  new  equation.    The  Power  Rule  does  NOT  state  that  both  equations  necessarily  have  the  same  solution.  Any  time  you  raise  both  sides  of  an  equation  to  the  same  power,  the  new  equation  might  have  more  solutions  than  the  original  equation.  This  is  an  extremely  important  point,  and  why  it’s  especially  crucial  that  if  you  use  the  power  rule  to  solve  an  equation  that  you  always  check  any  solutions  in  the  ORIGINAL  equation.    To  solve  an  equation  containing  one  or  more  radicals,  we  use  the  Power  Rule  for  Equations.    How  to  Solve  an  Equation  containing  one  or  more  Radicals  Step  1:  Isolate  one  radical  on  one  side  of  the  equation.    Step  2:  Use  the  Power  Rule  to  raise  each  side  of  the  equation  to  the  power  of  the  index  of  

the  radical—if  it’s  a  square  root,  square  both  sides;  if  it’s  a  cube  root,  cube  both  sides,  etc.  

 Step  3:  Simplify  both  sides  of  the  equations.  Cautionary  Note:  If  one  side  contains  more  than  

one  term,  and  you  are  squaring  that  side,  you  do  not  simply  square  each  term.  You  might  be  squaring  a  binomial  on  that  side,  in  which  case,  use  the  FOIL  method.  

 Step  4:  If  after  simplifying  each  side,  the  equation  has  another  radical,  repeat  steps  1-­‐3.    Step  5:  Once  there  are  no  more  radicals,  solve  the  equation.    Step  6:  Check  each  solution  in  the  ORIGINAL  equation.    The  last  step  is  crucial  and  very  important  when  using  the  Power  Rule.  Always  Check!  If  a  proposed  solution  does  not  check  in  the  original  equation,  we  call  it  an  extraneous  root.  It  is  NOT  a  solution  unless  it  checks  in  the  original.      

Page 55: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 55 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

Solve  each  equation,  and  check  each  solution.  Write  solutions  that  check  on  the  blank  space  provided.  Show  all  steps,  including  steps  to  checking  each  solution.    

*1.   x = 4         Solution(s):  __________________    Show  check(s).              

2.   2 m = 14         Solution(s):  __________________    Show  check(s).                  

*3.   x + 4 = 5       Solution(s):  __________________    Show  check(s).                    

4.   3− 2x = 2       Solution(s):  __________________    Show  check(s).                    

*5.   x = −3         Solution(s):  __________________    Show  check(s).        

Page 56: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 56 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

6.   x + 9 = 2         Solution(s):  __________________    Show  check(s).                

*7.   x − 3 − 2 = 4       Solution(s):  __________________    Show  check(s).                        

8.   x +1 − 3 = 2       Solution(s):  __________________    Show  check(s).                        

*9.   2x − 3 + 3 = 6       Solution(s):  __________________    Show  check(s).      

Page 57: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 57 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

10.   2x +1 +1= 4       Solution(s):  __________________    Show  check(s).                    

*11.   5x − 9 = 2x − 3     Solution(s):  __________________    Show  check(s).                    

12.   2x − 73 = 8 − 3x3     Solution(s):  __________________    Show  check(s).                    

*13.   x + 5 = x +1       Solution(s):  __________________    Show  check(s).      

Page 58: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 58 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

14.   x − 8 = x − 2       Solution(s):  __________________    Show  check(s).                              

*15.   x + x + 5 = 7       Solution(s):  __________________    Show  check(s).                              

16.   2 x + 3 +1= x + 4     Solution(s):  __________________    Show  check(s).        

Page 59: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 59 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

*17.   2x3 + 5 = 9       Solution(s):  __________________    Show  check(s).                      

18.   3 x3 = x2 +17x3     Solution(s):  __________________    Show  check(s).                      

*19.   x − 43 − 5 = −7       Solution(s):  __________________    Show  check(s).                      

20.   2x + 33 + 3 = 5       Solution(s):  __________________    Show  check(s).          

Page 60: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 60 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

*21.   7x − 5 = 5 − 7x     Solution(s):  __________________    Show  check(s).                      

22.   x + 84 = 2x4       Solution(s):  __________________    Show  check(s).                      

*23.   x + 34 − 5 = −3       Solution(s):  __________________    Show  check(s).                      

24.   2x + 34 + 9 = 12     Solution(s):  __________________    Show  check(s).        

Page 61: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 61 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

*25.   x − x + 9 = 1       Solution(s):  __________________    Show  check(s).                            

26.   x − 7 + x = 7       Solution(s):  __________________    Show  check(s).                            

*27.   2x −14 − x = −1     Solution(s):  __________________    Show  check(s).        

Page 62: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 62 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

28.   x − 8 = x − 2       Solution(s):  __________________    Show  check(s).                            

*29.   x − 4 + x = 6       Solution(s):  __________________    Show  check(s).                            

*30.   x + 2 + 4 = x       Solution(s):  __________________    Show  check(s).        

Page 63: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 63 of 98  Unit  2  Harland     2.6 Radical Equations  Intermediate  Algebra  

 

31.   26 −11x = 4 − x     Solution(s):  __________________    Show  check(s).                                    

*32.   −3x +16 +1= −4x + 25   Solution(s):  __________________    Show  check(s).        

Page 64: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 64 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

2.7   Pythagorean  Theorem  &  Distance  Formula    The  Pythagorean  Theorem  is  a  very  famous  mathematical  theorem.    In  the  diagram  on  the  left  below,  look  at  the  triangle  in  the  middle.  One  leg  has  length  a,  and  the  other  leg  has  length  b,  and  the  hypotenuse  has  length  c.    The  square  with  side  of  a  has  an  area  of  a2,  the  square  with  side  of  b  has  an  area  of  b2,  and  the  square  with  side  of  c  has  an  area  of  c2.  The  Pythagorean  Theorem  states  that  the  sum  of  the  areas  of  the  two  smaller  squares  is  the  same  area  as  the  larger  square.      The  Pythagorean  Theorem  is  often  stated  this  way:  The  square  of  the  hypotenuse  (the  side  opposite  the  right  angle)  is  equal  to  the  sum  of  the  squares  of  the  other  two  sides  (called  legs).    If  we  are  looking  at  a  triangle  where  the  lengths  of  the  legs  are  a  and  b,  and  the  length  of  the  hypotenuse  is  c,  we  often  write  this  as  shown  on  the  diagram  on  the  right.    

       There  are  several  proofs  showing  why  the  Pythagorean  Theorem  is  true.    I’ve  include  one  proof  on  a  video.  You  can  check  find  other  proofs  by  searching  the  internet.    1.   Draw  a  right  triangle  with  legs  of  lengths  x  and  y,  and  hypotenuse  of  length  z.  Then  

use  the  Pythagorean  Theorem  to  state  the  equation  that  is  true  for  this  triangle  using  x,  y,  and  z.  

     

Page 65: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 65 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

For  each  right  triangle  having  the  sides  indicated,  draw  a  picture  of  the  triangle,  and  use  the  Pythagorean  Theorem  to  find  the  missing  side.  Write  the  exact  answer  (simplifying  any  radicals  if  possible),  and  then  use  a  calculator  to  round  the  answer  to  one  place  after  the  decimal  point.  Show  work.    *2.   One  leg  is  5”  and  hypotenuse  is  8”.     Exact  length  of  other  leg:_____________                   Rounded  length  of  other  leg:_____________                      3.   One  leg  is  7’  and  hypotenuse  is  15’.     Exact  length  of  other  leg:_____________                   Rounded  length  of  other  leg:_____________      

Page 66: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 66 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

*4.   The  legs  are  3  m  and  5  m     Exact  length  of  hypotenuse:_____________                  Rounded  length  of  hypotenuse:_____________                          5.   The  legs  are  7  cm  and  15  cm   Exact  length  of  hypotenuse:_____________                  Rounded  length  of  hypotenuse:_____________                          *6.   One  leg  is  8  cm;  hypotenuse  is  12  cm.   Exact  length  of  other  leg:_____________                   Rounded  length  of  other  leg:_____________        

Page 67: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 67 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

*7.   The  legs  are  7  m  and  24  m     Exact  length  of  hypotenuse:_____________                  Rounded  length  of  hypotenuse:_____________                          *8.   One  leg  is2 2 ;  hypotenuse  is  8     Exact  length  of  other  leg:_____________                   Rounded  length  of  other  leg:_____________                            

9.   The  legs  are   5 and  2 3     Exact  length  of  hypotenuse:_____________                  Rounded  length  of  hypotenuse:_____________        

Page 68: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 68 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

DISTANCE  FORMULA    If  (x1.y1)    and  (x2.y2)  are  two  points,  the  distance,  d,  between  the  two  points,  is  shown  below.  This  can  be  shown  to  be  true  by  using  the  Pythagorean  Theorem.    An  picture  of  how  to  derive  the  Distance  Formula  is  below.    

     

     *10.   State  the  distance  formula  between  points   x1, y1( )  and   x2, y2( ) .          11.   State  the  distance  formula  between  points   a,b( )  and   c,d( ) .      

Page 69: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 69 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

Plot  the  2  points  and  draw  a  line  segment  between  them  and  call  it  d.  Then  compute  the  exact  distance,  d,  between  the  points,  simplifying  any  radical  if  possible.  Then  use  a  calculator  to  round  to  the  nearest  tenth—one  place  after  decimal  point.  Show  all  steps.    *12.   −3,5( )  and   6,−2( )     Exact:  ___________   Rounded:  ____________  

     *13.   −3,−6( )  and   4,−8( )     Exact:  ___________   Rounded:  ____________  

     14.   −1,3( )  and   2,4( )     Exact:  ___________   Rounded:  ____________  

     

x

y

5

5

- 5

- 5

x

y

5

5

- 5

- 5

x

y

5

5

- 5

- 5

Page 70: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 70 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

*15.   −6,−5( )  and   −8,−8( )     Exact:  ___________   Rounded:  ____________  

   *16.   0,4( )  and   −9,3( )     Exact:  ___________   Rounded:  ____________  

   

*17.  12,−3⎛

⎝⎜⎞⎠⎟  and   4

12,6⎛

⎝⎜⎞⎠⎟     Exact:  ___________   Rounded:  ____________  

           

x

y

5

5

- 5

- 5

x

y

5

5

- 5

- 5

x

y

5

5

- 5

- 5

Page 71: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 71 of 98  Unit  2  Harland     2.7  Pythagorean  Theorem  &  Distance  Formula  Intermediate  Algebra  

 

*18.   −2,4( )  and   −2,−6( )     Exact:  ___________   Rounded:  ____________  

     Use  the  distance  formula  to  find  the  exact  distance  between  each  pair  of  points.  Simplify  any  radical  if  possible.  Then  use  a  calculator  to  round  to  the  nearest  tenth—one  place  after  decimal  point.  Show  all  steps.    19.   5,−5( )  and   −7,6( )     Exact:  ___________   Rounded:  ____________                20.   −4,−9( )  and   −2,−3( )     Exact:  ___________   Rounded:  ____________                

21.  12,−1⎛

⎝⎜⎞⎠⎟  and   − 1

2,7⎛

⎝⎜⎞⎠⎟     Exact:  ___________   Rounded:  ____________  

     

x

y

5

5

- 5

- 5

Page 72: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 72 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

2.8  Complex  Numbers    Imaginary  Number  and  Powers  of  i    *1.   Define  the  imaginary  unit,   i  :     i  =  _________        *2.   Evaluate:    i2 =  ________    *3.   Is   i  a  real  number?      

*4.   Is   −9  a  real  number?    

*5.   Is   −9  in  its  most  simplified  form?    

*6.   Show  the  steps  to  simplify:   −9      

*7.   If   −9 is  not  a  real  number,  what  kind  of  number  is  it?    

*8.   Complete  the  statement:      If    b > 0 ,    then   −b = ___________    It  is  NEVER  simplified  to  leave  a  negative  number  under  a  square  root  symbol.  Anytime  there  is  a  negative  number  under  a  square  root,  the  first  step  is  to  rewrite  it  as  the  square  root  of  the  absolute  value  of  that  number  (so  it’s  positive)  times  the  square  root  of  -­‐1—which  is     i .  The  i is  NOT  under  the  square  root  symbol.  To  clarify  this,  some  people  write  the   i  in  front  of  the  square  root  if  the  square  root  does  not  simplify  to  a  rational  number.  See  below  for  an  example:    

−18 = 18 ⋅ −1 = 3 2i    Note  the   i  is  NOT  under  the  square  root  sign.  Be  careful  NOT  to  write  3 2i    Or  you  may  do  it  this  way:    

−18 = −1 ⋅ 18 = i ⋅3 2 = 3i 2    

So  you  may  see   −18 written  either  of  these  ways  in  simplified  form:  3i 2  or  3 2i  You  need  to  get  used  to  seeing  it  in  either  form.  It  is  easier  to  pick  out  the  imaginary  part  if  the   i  is  at  the  end,  but  make  sure  you  do  not  extend  the  square  root  symbol  over  the  i .          

Page 73: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 73 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Simplify.  There  should  be  no  negative  numbers  under  the  square  root,  and  all  radicals  need  to  be  simplified.  Show  all  steps.    

*9.   −25    

*10.   −18    

11.   −90    

12.   −28    Any  number  that  can  be  written  in  the  the  form  bi  where  b  is  a  real  number  and  i = −1  is  called  an  imaginary  number  (or  pure  imaginary  number).    Any  number  that  can  be  written  in  the  form  a + bi  where  a and  b  are  real  numbers  and  i = −1  is  an  imaginary  number  is  called  a  complex  number.    a is  called  the  real  part  and  b  is  called  the  imaginary  part  of  a + bi .  Note  that  the  imaginary  part  is  only  the  real  number  b ,  not  bi .    13.     Below  are  examples  of  numbers  that  can  be  put  in  the  form  a + bi  so  it  is  easy  to  

identify  the  real  and  imaginary  parts.    See  the  examples  at  the  beginning  and  then  fill  in  the  real  and  imaginary  parts  for  the  rest.  Simplify  a  and    b  as  needed  when  you  put  it  in  the  form  a + bi  so  that  the  real  and  imaginary  parts  are  simplified.  

 Number   In  form  a + bi   Real  part   Imaginary  Part  3− 5i   3− 5i   3   −5  2 3   2 3 + 0i   2 3   0  8i   0 + 8i   0   8  −7 + i   −7 + i  or  −7 +1i   −7   1  −3+ 13i   −3+ 13i      

13 − i        

−2 5i        

17        

−36        

5 − −16        

75 + −13        

     

Page 74: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 74 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Simplify  each  of  the  following.  Answer  to  each  will  either  be  1,  −1 ,   i ,  or  −i .  Show  your  reasoning  and  steps.      14.   i2           *15.   i3      

 

*16.   i4           *17.   i5      

 

*18.   i6           *19.   i7      

 

20.   i8           *21.   i20      

 

*22.   i32           23.   i40      

 

*24.   i22           *25.   i33    

*26.   i103           27.   i17      

 

*28.   i57           *29.   i30      

 

30.   i102           *31.   i23      

 

*32.   i44           33.   i501      

 

*34.   i50           35.   i69      

 

These  next  two  are  a  little  tricky.  You  can  do  them!  

*36.   i−1           37.   i−2      

   

Page 75: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 75 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Below  are  some  important  definitions  and  properties.    It’s  very  important  to  note  the  property  below  is  only  true  if  both  a  and  b  are  positive.  

If    a ≥ 0  and  b ≥ 0 ,  then   a ⋅ b = ab    For  any  numbers  a  and  b,  positive  or  negative,  the  following  are  always  true.  

 

ab= a

b         a a = a             a( )2 = a  Definition  of  i  (Note  that  i  is  NOT  a  variable)  :    i = −1    and       i2 = −1      

If    b > 0 ,  then   −b = bi      or       −b = i b  If  there  is  a  negative  number  under  a  square  root,  use  the  above  property  for  the  first  step.    If  a  negative  number  is  under  a  square  root,  the  FIRST  STEP  is  to  rewrite  the  expression  using   i so  only  a  positive  number  is  under  the  square  root.  Then,  if  possible,  simplify  the  square  root  using  properties  of  square  roots.      

Example:   −6 = 6i      NOTE:  i  is  NOT  under  the  square  root  symbol.    You  can  also  write  it  this  way:     −6 = i 6    Simplify.  If  a  negative  number  is  under  a  square  root,  the  FIRST  STEP  is  to  rewrite  the  expression  using  i so  only  a  positive  number  is  under  the  square  root.  Then,  if  possible,  simplify  the  square  root  using  properties  of  square  roots.  Show  steps.  BOX  answer.      

*38.   −50      

39.   −15      

40.   −90      

*41.   −6 −9      

Page 76: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 76 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Simplify.  If  a  negative  number  is  under  a  square  root,  the  FIRST  STEP  is  to  rewrite  the  expression  using  i so  only  a  positive  number  is  under  the  square  root.  Then,  if  possible,  simplify  the  square  root  using  properties  of  square  roots.  Show  steps.  BOX  answer.      

*42.   5 −45      

43.   2 −54      

For  any  number,       a a = a          and           a( )2 = a  44.   In  the  following  few  examples,  you  may  use  the  properties  above.  These  are  special  

cases  where  you  do  not  have  to  first  rewrite  it  with  i  since  the  properties  are  true  for  all  values  of  a.  You  will  get  the  same  answer  using  the  properties  above,  or  by  first  rewriting  each  square  root  with   i  and  a  positive  number  under  the  square  root  before  simplifying.  

 

*a.   −11 ⋅ −11    

*b.   −41 ⋅ −41    

c.   −73 ⋅ −73    

d.   −26( )2    This  property  applies    only  when  both  a  and  b  are  positive:    a ≥ 0  and  b ≥ 0 ,  then   a ⋅ b = ab        Simplify.  If  a  negative  number  is  under  a  square  root,  the  FIRST  STEP  is  to  rewrite  the  expression  using  i so  only  a  positive  number  is  under  the  square  root.  Then,  if  possible,  simplify  the  square  root  using  properties  of  square  roots.  Show  steps.  BOX  answer.      

*45.   −2 ⋅ −8        

46.   −27 ⋅ −3      

Page 77: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 77 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

47.   −5 ⋅ −6        

*48.   2 −12          

49.   −5 −63          

*50.   −6 ⋅ −10            

51.   −10 ⋅ −15              

*52.   3 −7 ⋅2 −14              

53.   −5 −21 ⋅2 −15        

Page 78: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 78 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Product  Rule:    If    a ≥ 0  and  b ≥ 0 ,  then   a ⋅ b = ab    

Quotient  Rule:      ab= a

b    

*54.  −182

 

     

55.  −18−2  

     

*56.  −40−5

 

       

57.  −120−15

 

         

58.   −5 33 ⋅4 −22  

Page 79: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 79 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Add  complex  numbers  like  you  add  like  terms  even  though  i  is  not  a  variable.  Add  the  real  numbers  together,  and  add  the  imaginary  numbers  together.  Simplify  the  real  and  

imaginary  parts  as  needed.    

To  subtract,  distribute  the  negative  sign:   a + bi( )− c + di( ) = (a − c)+ (b − d)i    Add  or  Subtract  as  indicated.  Simplify  the  real  and  imaginary  parts.  Write  your  answer  as  a  real  number,  a  pure  imaginary  number,  or  as  a  complex  number  in  the  form  a + bi  or  a − bi .  Show  steps.    BOX  answer.    *59.   3− 2i( ) + 6 + 4i( )    60.   −3+ 7i( ) + −4 − 7i( )    61.   3+ 2i( ) + −3− 5i( )    62.   3+ 2i( )− −3+ i( )    

63.   6 3 + 2i( ) + −3 3 + 5 2i( )        

64.   6 3 + 2i( )− 3 3 − 5 2i( )  

       

65.   3− −9( )− 2 + −16( )            

66.   5 3 − −8( ) + 12 + −2( )        

a + bi( ) + c + di( ) = (a + c)+ (b + d)i

Page 80: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 80 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Multiply.    Simplify  the  real  and  imaginary  parts.  Do  not  leave   i2 in  answer  as  that  can  be  simplified  to  -­‐1.    Write  your  answer  as  a  real  number,  a  pure  imaginary  number,  or  as  a  complex  number  in  the  form  a + bi  or  a − bi .  Show  all  steps.  BOX  answer.    *67.   −4i ⋅3i      *68.   −5 ⋅−2i      69.   −i ⋅−i      70.   −4i ⋅9      

71.   −9 ⋅2i      72.   −7 9 − 7i( )      *73.   3i 5 + 7i( )        74.   −2i 4 + 3i( )        

75.   −6 4 + −6( )              *76.   2 + 3i( ) 6 − 5i( )        77.   −1− 2i( ) −1− i( )      

Page 81: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 81 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Remember:     a + b( )2 = a + b( ) a + b( )    

*78.   7 + i( )2              *79.   7 + i( ) 7 − i( )              

*80.   2 + 3i( )2                81.   2 + 3i( ) 2 − 3i( )                

82.   8 − i( )2        

Page 82: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 82 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

*83.   4 + 3i( ) 4 − 3i( )                84.   −5 − 2i( ) −5 + 2i( )                  *85.   3+ 5i( ) 3− 5i( )                  

86.   3− 5i( )2                    *87.   6 + 5i( ) 6 − 5i( )      

Page 83: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 83 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

a + bi  and  a − bi    are  called  Complex  Conjugates.    Multiply  and  simplify,  showing  all  steps.  You  should  get  different  answers  for  these.    88.   a + b( ) a − b( )      89.   a + bi( ) a − bi( )        Simplify.  Show  all  steps.    

90.   2 3 − 3i( ) 2 3 + 3i( )              

91.   5 − 3( ) 5 + 3( )              

92.   2 3 + −7( ) 2 3 − −7( )              

93.   2 3 + 7( ) 2 3 − 7( )      

Page 84: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 84 of 98  Unit  2  Harland     2.8  Complex  Numbers  Intermediate  Algebra  

 

Simplify.  Do  not  leave  any  power  of   i in  answer  as  any  power  of   i  can  be  simplified  to  i ,  −i ,  −1,  or  1 .    Write  your  answer  as  a  real  number,  a  pure  imaginary  number,  or  as  a  complex  number  in  the  form  a + bi  or  a − bi .  Show  all  steps.  BOX  answer.  These  are  a  bit  more  challenging.    

94.   −5 ⋅ −2 ⋅ −3          

95.   −5 ⋅ −3 ⋅ −2 ⋅ −1            96.   3i ⋅2i2 ⋅5i3            

97.   3i3 2i2 − 5i( )            

98.   2i − 5i3( ) 2i + 5i3( )            

99.   2i2 − 5i6( )2    

Page 85: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 85 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

2.9  Dividing  Complex  Numbers    Divide.    Simplify.  Rationalize  all  denominators,  which  means  there  should  not  be  any  imaginary  numbers  or  radicals  in  the  denominator.  All  radicals  should  be  simplified,  with  no  negative  numbers  in  the  radical,  and  all  fractions  should  be  reduced.  Do  not  leave   i2 in  answer  as  that  can  be  simplified  to  -­‐1.    Write  answer  as  a  real  number,  a  pure  imaginary  number,  or  as  a  complex  number  in  the  form  a + bi  or  a − bi .  Show  all  steps.  BOX  answer.    

*1.  3i  

     

2.   − 5i  

     

3.  32  

     

*4.  −52i

 

     

5.  2i3  

     

6.  7

5 3i  

     

Page 86: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 86 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

7.  2i−6  

       

*8.  9 − 6i3i

 

       

*9.  9 − 6i3

 

       

10.  4 −15i−3i

 

         

*11.  34i

 

         

12.  20 − 5i10i

 

     

Page 87: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 87 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

*13.  −8 +12i6i

 

             

14.  4 − 3i6i

 

             

15.  20 − 5i10

 

               

16.  10 − 2i−10

 

     

Page 88: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 88 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

Complex  Conjugates    a + bi  and  a − bi  are  called  complex  conjugates.  Below  is  the  product  of  two  complex  conjugates.    a + bi( ) a − bi( ) = a2 − b2i2 = a2 − b2 (−1) = a2 + b2  This  essentially  is  first  the  difference  of  two  squares,  but  since  there  was  an  i2 ,  −1  is  multiplied  by  b2  to  end  up  with  a2 + b2  for  the  simplified  answer.    Remember  that  a  and  b  represent  the  real  and  imaginary  parts.  b  is  the  coefficient  of  i.  The  product,  a2 + b2 ,  is  a  real  number,  since  there  is  no  i  in  the  answer.  This  will  be  used  to  rationalize  denominator  that  are  complex  numbers.    If  both  the  real  and  imaginary  parts  are  rational  numbers  and/or  square  roots,  the  product  of  complex  conjugates  will  not  only  be  real,  it  will  also  rational.    Note  that  a2 + b2  is  a  SUM  of  two  positive  numbers  since  if  both  a  and  b  are  real  numbers,  then  when  you  square  each  of  them,  you  get  positive  numbers.  So  any  time  you  multiply  conjugates,  you  end  up  adding  two  positive  numbers.    Example:  State  the  conjugate  of  5 − 2i .  Then  multiply  5 − 2i  by  its  conjugate.    The  conjugate  of    5 − 2i  is  5 + 2i .    If  we  multiply  5 − 2i  by  its  conjugate,  we  will  get  a  rational  number  in  the  denominator.  5 − 2i( ) 5 + 2i( ) = 25 − 4i2 = 25 − 4(−1) = 25 + 4 = 29    So  when  we  multiply  5 − 2i  by  its  conjugate,  we  get  29,  a  rational  number.    Note  that  since   a + bi( ) a − bi( ) == a2 + b2 ,  the  quick  way  to  multiply  two  conjugates  is  to  add  the  squares  of  the  real  part  and  the  imaginary  part  (the  coefficient  of  i).  It’s  only  a  sum  of  two  squares  if  they  are  complex  conjugates!  5 − 2i( ) 5 + 2i( ) == 52 + 22 = 25 + 4 = 29      Be  really  careful  anytime  the  imaginary  part  is  1  or  -­‐1.  You  won’t  usually  see  the  coefficient  of  1  or  -­‐1.  Remember  that  b,  the  imaginary  part  is  the  coefficient  of  i.      Example:  State  the  real  part,  imaginary  part,  and  conjugate  of  2 − i .    Then  multiply  2 − i its  conjugate  and  simplify.    Solution:  a = 2   b = −1       Conjugate:  2 + i  2 − i( ) 2 + i( ) = 22 +12 = 4 +1= 5      

Page 89: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 89 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

State  the  real  and  imaginary  part  of  each  complex  number.  Then  state  its  conjugate.  Then  multiply  each  complex  number  by  its  conjugate  and  simplify.  Show  all  steps.    17.   4 + 2i     a  =  ________     b  =  ________   Conjugate:___________________    

Multiply  the  complex  number  above  by  its  conjugate  and  simplify.  Show  all  steps.          

18.   7 − 3i     a  =  ________     b  =  ________   Conjugate:___________________    

Multiply  the  complex  number  above  by  its  conjugate  and  simplify.  Show  all  steps.          

19.   5 + 2i     a  =  ________     b  =  ________   Conjugate:___________________    

Multiply  the  complex  number  above  by  its  conjugate  and  simplify.  Show  all  steps.          20.   6 + i     a  =  ________     b  =  ________   Conjugate:___________________    

Multiply  the  complex  number  above  by  its  conjugate  and  simplify.  Show  all  steps.          

21.   2 6 − 3 2i     a  =  ________     b  =  ________   Conjugate:___________________          Rationalize  the  denominator  and  simplify.  Show  all  steps.  Write  answer  in  form  a + bi .    

*22.  53+ i

 

         

Page 90: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 90 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

23.  3

5 − 2i  

               

*24.  103− 4i

 

               

25.  −2

−1+ 4i  

               

*26.  4i5 + i

 

     

Page 91: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 91 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

27.  −22i3− 2i

 

               

*28.  3+ 2i7 + 2i

 

               

29.  5 − i2 − i

 

               

30.  3 + 5i5 + 3i

 

   

Page 92: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 92 of 98  Unit  2  Harland     2.9  Dividing  Complex  Numbers  Intermediate  Algebra  

 

Mixed  Practice  with  Complex  Numbers  

Simplify  as  much  as  possible.  There  should  be  no  negative  numbers  in  square  roots,  and  no  irrational  or  imaginary  numbers  in  the  denominator.  Write  answers  as  a  real  number,  a  pure  imaginary  number  or  as  a  complex  number  in  the  form  a + bi .  Show  all  steps.  BOX  answer.    

31.   −3 −20 + 5i −18     32.   5 −3 ⋅2 −6                  

33.  45−8

          34.   8 − 2i( )− 6 − 3 2i( )                  

35.   4 − 5i( )2         36.   3 2 − 4i( ) 3 2 + 4i( )                  

37.   i39           38.  3

6 + 2i  

   

   

Page 93: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 93 of 98  Unit  2  Harland     2.10  Review  Exercises  Intermediate  Algebra  

 

2.10   Review  Exercises  

Answer  all  problems  completely.  Show  all  steps  and  work.    It’s  important  to  be  able  to  do  all  problems  on  your  own  in  any  order  without  referring  to  examples  or  notes.  

Simplify.  Assume  all  variables  are  positive.  All  radicals  need  to  be  simplified.  All  denominators  needs  to  be  rational,  and  all  fractions  need  to  be  reduced.    

1.   14x15 ⋅ 21x7                      

2.   −5mn3 108m16n13              

3.   −3xy −40x11y153                    

4.   3x 125 − 5 50x2              

5.   5x2 x54 − x3 16x4        

Page 94: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 94 of 98  Unit  2  Harland     2.10  Review  Exercises  Intermediate  Algebra  

 

Simplify.  Assume  all  variables  are  positive.  All  radicals  need  to  be  simplified.  All  denominators  needs  to  be  rational,  and  all  fractions  need  to  be  reduced.    

6.   5 10 3 2 − 15( )              

7.   2 3 + 3 5( ) 3 3 − 4 5( )              

8.   2 3 + 3 5( )2              

9.   2 3 + 3 5( ) 2 3 − 3 5( )      

           

10.   − 252 15

 

     

Page 95: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 95 of 98  Unit  2  Harland     2.10  Review  Exercises  Intermediate  Algebra  

 

Simplify.  Assume  all  variables  are  positive.  All  radicals  need  to  be  simplified.  All  denominators  needs  to  be  rational,  and  all  fractions  need  to  be  reduced.    

11.  −3549x3

           

               

12.  −12

3 2 + 2  

                 Write  each  expression  using  radical  notation,  and  simplify  if  possible.  If  there  are  negative  exponents,  rewrite  the  problem  using  positive  exponents  before  writing  in  radical  notation.  If  the  answer  is  not  a  real  number,  state  that.  Show  all  steps.  

13.   −843              

           

14.   81− 34  

           

Page 96: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 96 of 98  Unit  2  Harland     2.10  Review  Exercises  Intermediate  Algebra  

 

Solve  each  equation,  and  check  each  solution.  Show  all  steps,  including  all  steps  to  checking  each  solution.  PUT  a  BOX  around  solution(s)  that  check.    

15.   2x −1 + 2 = 5                                

16.   x +1= 8 − x + 5                          

17.   3x +1 − x + 4 = 1        

Page 97: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 97 of 98  Unit  2  Harland     2.10  Review  Exercises  Intermediate  Algebra  

 

Find  the  exact  answer  (simplifying  any  radicals  if  possible)  of  the  missing  side  of  the  right  triangle,  where  a  and  b  represent  the  legs  and  c  represents  the  hypotenuse.  and  then  use  a  calculator  to  round  the  answer  to  one  place  after  the  decimal  point.  Draw  a  picture  of  the  triangle  and  Show  work.    18.   a  =  5;    b  =  11;    c  =  ______                  19.   a  =  9;  c  =  13;  b  =  ______                20.   Use  the  distance  formula  to  compute  the  exact  distance  between   −1,1( )  and  

−3,−7( ) ,  simplifying  any  radical  if  possible.  Write  the  exact  answer.  Then  use  a  calculator  to  round  to  the  nearest  tenth—one  place  after  decimal  point.  Show  all  steps.  

  Exact  answer:  __________   Approximation:  ____________              Simplify.  There  should  be  no  powers  of  i,  no  negative  numbers  under  a  square  root,  and  no  square  roots  or  imaginary  numbers  in  the  denominator.    All  radicals  and  fractions  need  to  be  simplified.  Show  all  steps.    21.   i43    

22.   3 + 2i( )− 5 3 − 4 2i( )  

 

23.   −7 ⋅3 −35                

Page 98: Intermediate’Algebra’Unit’2’ Radicals,’Rational’Exponents ... · Page 5 of 98’Unit2Harland’ ’ 2.1Square Roots’ Intermediate’Algebra’’ MultiplicationPropertyofSquareRoots’

Page 98 of 98  Unit  2  Harland     2.10  Review  Exercises  Intermediate  Algebra  

 

Simplify.  There  should  be  no  powers  of  i,  no  negative  numbers  under  a  square  root,  and  no  square  roots  or  imaginary  numbers  in  the  denominator.    All  radicals  and  fractions  need  to  be  simplified.  Show  all  steps.    

24.   4 2 + 3i( ) 4 2 − 3i( )                

25.   7 − 3i( )2                

26.  3− −15

−6i                

27.  2i

4 − 2i