interannual to decadal variabilities of the maritime continent monsoon from modeling and observation...

31
variabilities of the maritime variabilities of the maritime continent monsoon from continent monsoon from modeling and observation modeling and observation perspective perspective Edvin Aldrian Edvin Aldrian Agency for the Assessment and Application of Technology Agency for the Assessment and Application of Technology (BPPT), Indonesia (BPPT), Indonesia Marine Study Program, University of Indonesia, Jakarta Marine Study Program, University of Indonesia, Jakarta Email: Email: [email protected] [email protected] http://geocities.com/e_aldrian http://geocities.com/e_aldrian International Workshop on Asian Monsoon Year 2008, Beijing 23-25 Apri International Workshop on Asian Monsoon Year 2008, Beijing 23-25 April

Upload: sandra-terry

Post on 13-Jan-2016

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Interannual to decadal variabilities Interannual to decadal variabilities of the maritime continent of the maritime continent

monsoon from modeling and monsoon from modeling and observation perspective observation perspective

Edvin AldrianEdvin AldrianAgency for the Assessment and Application of Technology (BPPT), Agency for the Assessment and Application of Technology (BPPT),

IndonesiaIndonesiaMarine Study Program, University of Indonesia, JakartaMarine Study Program, University of Indonesia, Jakarta

Email: Email: [email protected]@webmail.bppt.go.idhttp://geocities.com/e_aldrianhttp://geocities.com/e_aldrian

International Workshop on Asian Monsoon Year 2008, Beijing 23-25 April 2007International Workshop on Asian Monsoon Year 2008, Beijing 23-25 April 2007

Page 2: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Climatology of regional Climatology of regional rainfallrainfall

► Mainly monsoonalMainly monsoonal► Three distinct rainfall climate Three distinct rainfall climate

regionsregions

monsoonalmonsoonal

Semi-monsoonalSemi-monsoonal Anti-monsoonalAnti-monsoonal

Aldrian and Susanto, 2003, Intl J Climatol.

Page 3: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Interannual variability in Region AInterannual variability in Region A

Aldrian et al, 2007, Theo. Appl. Climatol.

Page 4: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Interannual variability in Region BInterannual variability in Region B

Aldrian et al, 2007, Theo. Appl. Climatol.

Page 5: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Interannual variability in Region CInterannual variability in Region C

Aldrian et al, 2007, Theo. Appl. Climatol.

Page 6: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Wide range SST responses to rainfall in Wide range SST responses to rainfall in region Aregion A

• Weak response in spring, no ENSO influenceWeak response in spring, no ENSO influence• Strong two dipoles in SON (Walker cell)Strong two dipoles in SON (Walker cell)• Role of SPCZ in SONRole of SPCZ in SON

Aldrian and Susanto, 2003, Intl J Climatol.

Page 7: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Wide range SST responses to rainfall in Wide range SST responses to rainfall in region Bregion B

• Weak response in all season, especially in springWeak response in all season, especially in spring• no ENSO influence and walker cellno ENSO influence and walker cell

Aldrian and Susanto, 2003, Intl J Climatol.

Page 8: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Wide range SST responses to rainfall in Wide range SST responses to rainfall in region Cregion C

• Weak response in springWeak response in spring• Strong two dipoles in SON (Walker cell) like region AStrong two dipoles in SON (Walker cell) like region A• Role of SPCZ in SON like in region ARole of SPCZ in SON like in region A

Aldrian and Susanto, 2003, Intl J Climatol.

Page 9: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Skills of monthly rainfall Skills of monthly rainfall variabilityvariability

Response to ENSO Response to ENSO

Variability in Variability in comparison to comparison to observationsobservations(correlation (correlation values)values)

•Negative Negative responses to responses to NINO3 SSTNINO3 SST•Significant in Significant in MJJASMJJAS(similar to Hendon, (similar to Hendon, 2003)2003)

•Strong Strong responses in responses in Region A and CRegion A and C•Spring is the Spring is the least responsive least responsive seasonseason•ECHAM4 ECHAM4 responds well to responds well to ENSOENSO

Aldrian et al, 2007, Theo. Appl. Climatol.

Page 10: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Several finished and on going Several finished and on going applications of climate modelingapplications of climate modeling►Rainfall simulation (dissertation project)Rainfall simulation (dissertation project)►Forest Fire smoke distribution (INSIDE Forest Fire smoke distribution (INSIDE

project). project). An EU Asia ProEco Project with a collaboration An EU Asia ProEco Project with a collaboration

between BPPT, MPI and Univ. Cambridgebetween BPPT, MPI and Univ. Cambridge

►Local ocean model simulation (LITHMOS Local ocean model simulation (LITHMOS project)project) A proposed DFG Project with a collaboration A proposed DFG Project with a collaboration

between BPPT, IfM Uni Hamburg and Uni Syiah between BPPT, IfM Uni Hamburg and Uni Syiah Kuala of Aceh IndonesiaKuala of Aceh Indonesia

Page 11: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

The atmosphere and ocean The atmosphere and ocean modelmodel► REMO ECHAM PhysicsREMO ECHAM Physics

► allows only one surface type in each allows only one surface type in each grid cellgrid cell

► 0.50 : 101x55 grid cells for entire 0.50 : 101x55 grid cells for entire Indonesia, Indonesia,

► 1/60 : 73x61 grid cell over Sulawesi1/60 : 73x61 grid cell over Sulawesi► 20 layers20 layers► boundary forcing every 6 hr:boundary forcing every 6 hr:► ERA15 1979-1993, ERA15 1979-1993, ► NCEP/NCAR 1979-1993, NCEP/NCAR 1979-1993, ► ECHAM4 1979-1988ECHAM4 1979-1988► Higher resolution product Higher resolution product ► allow a detailed investigation allow a detailed investigation ► of five large islandsof five large islands► and three sea regionsand three sea regions

•MPI OM1 MPI OM1 •Using a conformal grid system with desired pole Using a conformal grid system with desired pole locationslocations• `North` pole: 112E 29N `North` pole: 112E 29N • `South` pole: 132E 22S`South` pole: 132E 22S • Two model resolutions: 182x105 and 362x210Two model resolutions: 182x105 and 362x210 • 20 layers for low resolution, 30 layers for high 20 layers for low resolution, 30 layers for high resolutionresolution• highest resolution over the Maritime Continenthighest resolution over the Maritime Continent• boundary forcings every 6 hr:boundary forcings every 6 hr: ERA15 1979-1993, ERA15 1979-1993, NCEP/NCAR 1948-1998,NCEP/NCAR 1948-1998, OMIP climatologyOMIP climatology

Page 12: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Improvement by higher resolution with Regional Improvement by higher resolution with Regional ModelModel

These two examples are taken from a normal or non-ENSO yearThese two examples are taken from a normal or non-ENSO year Aldrian et al, 2004, Clim Dyn.

Page 13: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Rainfall Predictability by Regional Rainfall Predictability by Regional ModelModel

Ensemble runs with REMO-ERA and REMO-ECHAM: 6 members with 12 hr diff. in initial conditionEnsemble runs with REMO-ERA and REMO-ECHAM: 6 members with 12 hr diff. in initial condition

RMSRMSErrorErroragainstagainstcontrolcontrolrunrun

Aldrian et al, 2004, Clim Dyn.

Page 14: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Coupling mechanismCoupling mechanism

The coupling is performed without flux correctionsThe coupling is performed without flux correctionsand performed only inside REMO domainand performed only inside REMO domain Aldrian et al, 2005, Clim Dyn.

Page 15: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Improvement by Improvement by couplingcoupling

uncoupleduncoupled coupledcoupledJava Java

Southern South China Sea Southern South China Sea

Molucca Sea Molucca Sea

Aldrian et al, 2005, Clim Dyn.

Page 16: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Local ocean aspect of Local ocean aspect of the three climate the three climate

regionsregions

122E-135E,6S-2N

0

2

4

6

8

10

12

14

16

18

20

25 26 27 28 29 30 31

Local SST (C)

Rai

nfa

ll (m

m/d

ay)

January

February

March

April

May

June

July

August

September

October

November

December

120E-135E,15S-5S

0

2

4

6

8

10

12

14

16

18

20

25 26 27 28 29 30 31Local SST (C)

Rai

nfa

ll (

mm

/day

)

January

February

March

April

May

June

July

August

September

October

November

December

102E-110E,1.5S-8N

0

2

4

6

8

10

12

14

16

18

20

25 26 27 28 29 30 31Local SST (C)

Ra

infa

ll (

mm

/da

y)

January

February

March

April

May

June

July

August

September

October

November

December

Similar results to Bony Similar results to Bony et alet al, 1997a,b, Lau , 1997a,b, Lau et alet al, 1997, 1997

Page 17: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Role of ocean circulation in driving the Role of ocean circulation in driving the rainfall characteristics of all three rainfall characteristics of all three

regionsregions

dxdzTvdydzTucdxdyQdt

dxdydzzyxcT

dt

dEsurf

tT ),,(15 yr Correlations North 15 yr Correlations North

MoluccaMolucca•Horz adv – heat:0.207Horz adv – heat:0.207•Heat – SST : 0.394Heat – SST : 0.394•Horz adv – SST: 0.194Horz adv – SST: 0.194

15 yr Correlations SSCS15 yr Correlations SSCS•Horz adv – heat:0.613Horz adv – heat:0.613•Heat – SST : 0.711Heat – SST : 0.711•Horz adv – SST: 0.842Horz adv – SST: 0.842

Using a heat budget calculationUsing a heat budget calculation

Page 18: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

► An EU Asia ProEco programAn EU Asia ProEco program► The INSIDE project aims to The INSIDE project aims to

determine the amount and determine the amount and distribution of smoke haze distribution of smoke haze in Indonesia and the in Indonesia and the adjacent countries adjacent countries generated from vegetation generated from vegetation and peat fires, and the and peat fires, and the related implications for related implications for human health (e.g. human health (e.g. respiratory diseases) and respiratory diseases) and climate (droughts, floods, climate (droughts, floods, aerosol-cloud interactions, aerosol-cloud interactions, CO2 release). The main CO2 release). The main goal of the project is to goal of the project is to provide, optimize and apply provide, optimize and apply a regional model tool for a regional model tool for Indonesia. Due to the Indonesia. Due to the sparse air quality sparse air quality monitoring in Indonesia our monitoring in Indonesia our initiative with the country-initiative with the country-wide determination of wide determination of ambient air quality offers ambient air quality offers guide to local decision guide to local decision makersmakers

The INSIDE ProjectThe INSIDE Project

Page 19: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Examples of modeling Examples of modeling resultresult

K u ch in g

0

20 0

40 0

60 0

80 0

10 001.7

15.7

29.7

12.8

26.8

9.9

23.9

7.10

21.10

4.11

18.11

2.12

16.12

30.12

TPM

in μ

g/m

3

Peta ling Jaya

0

100

200

300

400

500

1.7

15.7

29.7

12.8

26.8

9.9

23.9

7.10

21.10

4.11

18.11

2.12

16.12

30.12

PM10

in μ

g/m

3

P o n t ia n a k

0

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

1.7

15.7

29.7

12.8

26.8

9.9

23.9

7.10

21.10

4.11

18.11

2.12

16.12

30.12

TPM

in μ

g/m

3

O b s e rv a t io n E X P _ R E F E X P _ N O P E A T E X P _ M E T 9 6

Pa

rtic

le C

on

ce

ntr

ati

on

in

μg

/m3

Distribution of PM10 concentration

Comparison of observed and simulated particle concentration over Kuching (northwest Borneo) and Petaling Jaya (Malaysian Peninsula)

Heil, Langmann, Aldrian, 2007 Mit. Adapt. Stra. Global Change

Page 20: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

The LITHMOS ProjectThe LITHMOS Project► A DFG proposed projectA DFG proposed project► Simulate local ocean Simulate local ocean

with boundary forcing with boundary forcing from the coupled ocean from the coupled ocean atmosphere modelatmosphere model

► Use forcing from NCEP Use forcing from NCEP or ERA40or ERA40

► Use observed deep Use observed deep ocean data from the ocean data from the INSTANT project (2004-INSTANT project (2004-2006) of 11 mooring 2006) of 11 mooring locationslocations

Page 21: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Climate trend of rainfall in Climate trend of rainfall in IndonesiaIndonesia

► Investigation from 1960 to 1998 in 63 Investigation from 1960 to 1998 in 63 major stationsmajor stations

Page 22: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

No Station name

Period

n

Mann-Kendall trend Sen's slope estimate location

from to Test Z Signific Q B longitude latitude

1 Banda Aceh 1952 1997 44 -1,884 + -4,88 1569,7 95,43 5,52

2 Meulaboh 1953 1997 43 -3,473 *** -26,17 3630,5 96,10 4,20

3 Medan 1950 1997 48 -0,462 -1,27 2197,7 98,48 3,57

4 Sibolga 1953 1997 45 -2,847 ** -24,25 4610,1 98,92 1,57

5 Padang 1950 1997 48 -1,449 -14,48 4297,0 100,35 -0,88

6 Pekanbaru 1953 1997 45 -1,722 + -9,47 2745,8 101,43 0,47

7 Tanjung Pinang 1951 1997 47 -1,843 + -13,41 3132,6 104,50 0,90

8 Jambi 1952 1997 46 -1,988 * -11,92 2481,6 103,70 -1,60

9 Bengkulu 1968 1997 30 -4,229 *** -71,79 5450,7 102,33 -3,88

10 Palembang 1950 1997 48 -1,120 -6,02 2582,7 104,70 -2,90

11 Rejosari 1951 1997 47 -1,229 -7,43 2139,3 105,11 -5,15

12 Pangkal Pinang 1951 1997 47 -4,347 *** -25,24 3070,7 106,13 -2,17

13 Tanjung Pandan 1950 1997 48 -2,498 * -17,73 3458,7 107,80 -2,80

14 Pontianak 1950 1997 48 -3,173 ** -14,38 3375,9 109,40 -0,10

15 Ketapang 1950 1997 48 -4,204 *** -29,71 3459,0 110,00 -1,90

16 Pangkalan Bun 1951 1997 47 -2,815 ** -18,16 3215,7 111,70 -2,70

17 Nangahpinoh 1951 1997 47 -2,889 ** -20,40 3551,2 111,70 -0,40

18 Muaratewe 1951 1997 47 -3,852 *** -30,30 3845,5 114,80 -0,40

19 Banjarmasin 1951 1997 47 -2,394 * -15,56 2911,0 114,80 -3,40

20 Balikpapan 1950 1997 48 -2,302 * -12,41 2827,2 116,90 -1,30

21 Tarakan 1950 1997 48 -2,409 * -18,24 3877,0 117,57 3,33

22 Palu 1953 1997 45 -1,468 -3,58 783,3 119,88 -0,90

23 Gorontalo 1961 1997 37 -0,392 -1,99 1192,4 123,10 0,50

24 Manado 1950 1997 48 -1,262 -9,85 3226,1 124,90 1,50

25 Luwuk 1960 1997 38 -1,358 -4,12 1184,9 122,70 -0,90

26 Poso 1974 1997 22 -0,769 -17,99 2607,8 120,80 -1,40

27 Majene 1960 1997 36 -0,767 -4,12 1404,4 118,97 -3,52

28 Kendari 1951 1997 47 -1,871 + -12,11 2291,9 122,40 -4,10

29 Bau Bau 1961 1997 37 -1,609 -13,39 2111,0 122,62 -5,47

30 Makassar 1950 1997 48 -1,200 -9,58 3328,7 119,60 -5,10

31 Jakarta 1950 1997 48 0,124 0,48 1874,9 106,82 -6,17

32 Bandung 1951 1997 47 -2,806 ** -14,50 2250,5 107,60 -6,90

33 Jatiwangi 1950 1997 48 -2,746 ** -16,06 3040,3 108,27 -6,75

34 Tegal 1950 1997 48 -2,293 * -10,60 1915,0 109,15 -6,85

35 Semarang 1950 1997 48 -0,844 -6,39 2346,0 110,40 -7,00

36 Cilacap 1951 1997 47 -2,384 * -31,80 4055,2 109,02 -7,73

37 Jogjakarta 1951 1997 47 -2,421 * -14,00 2129,0 110,26 -7,47

38 Madiun 1951 1997 47 -0,624 -3,31 1833,2 111,52 -7,62

39 Banyuwangi 1950 1997 48 0,924 3,38 1184,1 114,40 -8,20

40 Kalianget 1951 1997 47 -2,641 ** -9,92 1518,5 113,97 -7,05

41 Bawean 1961 1997 37 -2,564 * -26,01 3000,1 112,63 -5,85

42 Denpasar 1950 1997 48 -0,880 -5,31 1800,0 115,10 -8,45

43 Ampenan 1951 1997 47 0,862 5,11 1334,7 116,07 -8,53

44 Sumbawa 1961 1997 37 1,059 6,23 1047,7 117,42 -8,43

45 Waingapu 1950 1997 48 0,133 0,29 823,2 120,30 -9,70

46 Kupang 1950 1997 48 0,178 0,91 1483,7 123,70 -10,20

47 Dilli 1952 1997 46 -1,932 + -5,21 978,2 125,60 -8,60

48 Saumlaki 1961 1997 37 -2,681 ** -14,66 2096,2 131,30 -7,98

49 Tual 1951 1997 47 -1,311 -9,13 2445,1 132,80 -5,70

50 Geser 1951 1997 47 -1,862 + -12,39 2237,8 113,00 -7,00

51 Ambon 1950 1997 46 -1,244 -13,61 2922,3 128,10 -3,70

52 Sanana 1974 1997 22 -0,074 -1,56 1424,2 126,00 -2,30

53 Ternate 1971 1997 27 -1,501 -27,40 2931,0 127,40 0,80

54 Sorong 1950 1997 48 -4,826 *** -36,98 3443,5 131,12 -0,93

55 Manokwari 1955 1997 43 -1,361 -9,75 2745,3 134,05 -0,88

56 Biak 1955 1997 43 -1,225 -7,11 2881,9 136,12 -1,18

57 Sarmi 1974 1997 24 -2,779 ** -29,84 3363,6 138,75 -1,85

58 Sentani 1950 1997 48 -2,293 * -7,34 1936,2 140,72 -2,37

59 Wamena 1957 1997 41 -1,831 + -7,29 2021,6 138,92 -4,08

60 Nabire 1970 1997 28 -2,746 ** -57,36 5432,5 135,50 -3,33

61 Kaimana 1959 1997 39 -0,823 -8,00 2507,0 133,75 -3,67

62 Merauke 1952 1997 46 -1,212 -5,06 1474,3 140,38 -8,47

63 Agats 1972 1990 19 -1,225 -57,17 5927,2 138,10 -5,50

Page 23: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Example of climatic rainfall Example of climatic rainfall trendtrend

y = -71.79x + 5450.71

0

1000

2000

3000

4000

5000

6000

7000

19

68

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

mm

/ye

ar

Bengkulu

Linear (Bengkulu)

y = -29.71x + 4010.15

0500

100015002000250030003500400045005000

19

68

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

mm

/ye

ar

Ketapang

Linear (Ketapang)

Page 24: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Potency of water loss during 4 Potency of water loss during 4 decadesdecades

Island groupArea

(km2)*

Z Q (mm/year)annual water lost from Q x area (million m3)

ave max min ave max min ave min max

Sumatra 425000 -2,24 -0,46 -4,35 -18,00 -1,27 -71,79 7652 541 30509

Kalimantan **540615 -3,00 -2,30 -4,20 -19,89 -12,41 -30,30 10755 6707 16379

Sulawesi 174600 -1,19 -0,39 -1,87 -8,52 -1,99 -17,99 1488 347 3141

Java 126700 -1,66 0,92 -2,81 -11,70 3,38 -31,80 1483 -428 4029

Papua ***327160 -2,03 -0,82 -4,83 -22,59 -5,06 -57,36 7391 1654 18767

Page 25: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Monsoon Monsoon weakeningweakening

►Data from Data from Brantas Brantas catchment catchment east Java in east Java in the last 51 the last 51 years years (1955 – (1955 – 2005)2005)

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 20050

500

1000

Time (year)P

reci

pita

tion

(mm

)

a) Kertosono Station Monthly Precipitation (1955-2005)

0 1 2 3

x 105Power (mm2)

c) Global Wavelet Spectrum

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 20050

2

4

6

Time (year)

Pow

er (

mm

2 )

Reg.Gradient = -0.018652

d) One Year Period Wavelet Time Series

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

0.25

0.5

1

2

4

8

16

Time (year)

Per

iod

(yea

rs)

b) Monthly Precipitation Wavelet Power Spectrum (mm2)

-4

-2

0

2

4

Aldrian and Djamil 2007, Intl J Climatol

Page 26: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Extension of dryspellExtension of dryspellDry month period Mojokerto (lowland)

y = -4E-13x5 - 4E-11x4 + 5E-07x3 - 0,0003x2 + 0,0448x + 0,2508

0123456789

10

19

55

19

60

19

65

19

70

19

75

19

80

19

85

19

90

19

95

20

00

20

05

Year

mo

nth

s

Dry month period Pujon (highland)

y = -2E-12x5 + 2E-09x4 - 6E-07x3 - 3E-05x2 + 0,0278x + 0,0143

0123456789

10

19

55

19

60

19

65

19

70

19

75

19

80

19

85

19

90

19

95

20

00

20

05

Year

mo

nth

s

Aldrian and Djamil 2007, Intl J Climatol

Page 27: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Change of Change of ratio rain ratio rain

falls in wet falls in wet season to season to

totaltotal(east Java)(east Java)

►Higher risk of Higher risk of flood and flood and droughtdrought

Birowo (195m)

y = 0.1994x - 315.1

0102030405060708090

100

1955 1965 1975 1985 1995 2005Year

Ra

tio

(%

)

Wates Sawahan (620m)

y = 0.1614x - 241.69

0

10

20

30

40

50

60

70

80

90

100

1955 1965 1975 1985 1995 2005Year

Ra

tio

(%

)

Aldrian and Djamil 2007, Intl J Climatol

Page 28: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

The leading annual eigen coefficients of PC1 and PC2 (black The leading annual eigen coefficients of PC1 and PC2 (black lines) along with the NINO3 aSST (grey lines; in unit oC) for lines) along with the NINO3 aSST (grey lines; in unit oC) for the PC1. For the PC2, the linear straight grey lines highlight the PC1. For the PC2, the linear straight grey lines highlight the bi-decadal variability at level 0.0, 0.2 and -0.18 during the the bi-decadal variability at level 0.0, 0.2 and -0.18 during the period 1955-1973, 1974-1988 and 1989-2005, respectively.period 1955-1973, 1974-1988 and 1989-2005, respectively.

Annual PC1-2.0-1.5-1.0-0.50.00.51.01.52.0

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

PC1-Coeff

NINO3-aSST

Annual PC2-0.6

-0.4

-0.2

0.0

0.2

0.4

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

PC2-Coeff

Page 29: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

The leading The leading seasonal seasonal eigen eigen coefficients coefficients of PC1 (black of PC1 (black lines) after lines) after removing the removing the annual signal annual signal along with along with the NINO3 the NINO3 aSST (grey aSST (grey lines; in unit lines; in unit oC). oC).

MAM-2.0-1.5-1.0-0.50.00.51.01.52.0

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

PC1-Coeff

NINO3-aSST

JJA-2.0-1.5-1.0-0.50.00.51.01.52.0

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

PC1-Coeff

NINO3-aSST

SON-2.0-1.5-1.0-0.50.00.51.01.52.0

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

PC1-Coeff

NINO3-aSST

DJF-2.0-1.5-1.0-0.50.00.51.01.52.0

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

PC1-Coeff

NINO3-aSST

Aldrian and Djamil 2007, Intl J Climatol

Page 30: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

ConclusionsConclusions► the rainfall climate of this region is predictable at monthly and the rainfall climate of this region is predictable at monthly and

seasonal scales, but only for aseasonal scales, but only for a limitedlimited and specificand specific periodperiod in in specificspecific regionsregions. The. The predictability barrierpredictability barrier is an intrinsic is an intrinsic character of Indonesian rainfall and a challenge to climate character of Indonesian rainfall and a challenge to climate modelling in the region because it limits model applications.modelling in the region because it limits model applications.

► besidebeside monsoonmonsoon, important rainfall variability from monthly to , important rainfall variability from monthly to interannually is the coherentinterannually is the coherent ENSOENSO..

► The global atmospheric models produce the large scale The global atmospheric models produce the large scale precipitationprecipitation characteristics characteristics well, but the regional model well, but the regional model shows a regional shows a regional phenomenon obscured within global models phenomenon obscured within global models throughthrough better orography better orography..

► A coupled regional atmosphere/ocean model showsA coupled regional atmosphere/ocean model shows improved improved dynamicsdynamics through the ocean and the atmosphere sea-air through the ocean and the atmosphere sea-air interaction and feedback. interaction and feedback.

► The ocean regulates the SST with persistence time lag at the The ocean regulates the SST with persistence time lag at the ocean surface. The horizontal advection fluxes changes the ocean surface. The horizontal advection fluxes changes the heat content of the water column, which eventually changes heat content of the water column, which eventually changes the surface condition (SST). The SST regulates the local the surface condition (SST). The SST regulates the local precipitation through a specific SST rainfall relationship.precipitation through a specific SST rainfall relationship.

► Decreasing climatic trend of rainfall due to global climate Decreasing climatic trend of rainfall due to global climate change with much decrease of rainfall in dry period than change with much decrease of rainfall in dry period than increase of rainfall in wet period.increase of rainfall in wet period.

Page 31: Interannual to decadal variabilities of the maritime continent monsoon from modeling and observation perspective Edvin Aldrian Agency for the Assessment

Thank You very much for Thank You very much for your kind attentionyour kind attention