integrated science 2015 -...

13
2015 Integrated Science O’Ryan Amusement Park Challenge Purpose: A land developer in Snohomish has decided to build an amusement park on farm land near the river. They have all their permits in place. Now they need to select a ride designer, so they are accepting bids for various designs. The team that produces the best design within budget will win a lucrative contract. You have assembled a team of engineers to help design a coaster/zipline that meets the developer’s requirements. You want your coaster to be taller than the record holding Kingda Ka in New Jersey which is 139 meters tall. You are aiming for 140 to 150 meters tall. [The model will be on a 1:100 scale, so 150 meters will be 1.50 meters or 150 cm on your model.] The land available for the structure is 60 X 80 meters. You will present your model and an inventory of all material costs on the due date. The amusement park design team will consider all of the following when comparing your coaster proposal with the other group’s proposals. See the rubric for point value. Total materials cost on your inventory. [Cheaper is better.] Length of ride. [Longer is better.] Reliability of ride. [Marble makes it safely to the end every time.] Interesting features. [Loops, funnels, turns, uphill sections.] Technical features work. [Starting switch, marble catcher, zipline transfer.] Requirements: 1. Height between 140 and 150 centimeters tall. 2. Minimum ride time of 10 seconds. 3. Average speed for 5 trials calculated. 4. Minimum of 5 different elements to provide interest 1 or more loops 4 or more turns 1 or more funnels 1 or more uphill sections Zipline Element. [+10 bonus points if zipline is NOT at begining or end. ] Extra Credit: Marble is stopped by magnet at the end of the ride. (You will use a magnetic marble for this option.) 5. Working electromagnet start switch. [Must be designed so the person starting it does NOT have to touch the battery or bare wire with their fingers.] 6. Ride name displayed with decorations to match your groups proposed theme. 7. Catcher bucket at the end to stop the marble. [Not applicable if doing extra credit.] 8. Group Self-Assessment completed 9. 8.5 X 11 inch diagram showing *energy transformations. Kinetic <--> Potential 10. 8.5 X 11 inch diagram *labeling physics concepts. [See List of required concepts] *See attached papers

Upload: trinhhanh

Post on 07-Mar-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

2015 Integrated Science

O’Ryan

Amusement Park Challenge

Purpose: A land developer in Snohomish has decided to build an amusement park on farm land near the river. They have all their permits in place. Now they need to select a ride designer, so they are accepting bids for various designs. The team that produces the best design within budget will win a lucrative contract. You have assembled a team of engineers to help design a coaster/zipline that meets the developer’s requirements. You want your coaster to be taller than the record holding Kingda Ka in New Jersey which is 139 meters tall. You are aiming for 140 to 150 meters tall. [The model will be on a 1:100 scale, so 150 meters will be 1.50 meters or 150 cm on your model.] The land available for the structure is 60 X 80 meters. You will present your model and an inventory of all material costs on the due date. The amusement park design team will consider all of the following when comparing your coaster proposal with the other group’s proposals. See the rubric for point value.

Total materials cost on your inventory. [Cheaper is better.]

Length of ride. [Longer is better.]

Reliability of ride. [Marble makes it safely to the end every time.]

Interesting features. [Loops, funnels, turns, uphill sections.]

Technical features work. [Starting switch, marble catcher, zipline transfer.]

Requirements:

1. Height between 140 and 150 centimeters tall.

2. Minimum ride time of 10 seconds.

3. Average speed for 5 trials calculated.

4. Minimum of 5 different elements to provide interest

1 or more loops

4 or more turns

1 or more

funnels

1 or more uphill sections

Zipline Element. [+10 bonus points if zipline is NOT at begining or end. ]

Extra Credit: Marble is stopped by magnet at the end of the ride.

(You will use a magnetic marble for this option.)

5. Working electromagnet start switch. [Must be designed so the person starting it does

NOT have to touch the battery or bare wire with their fingers.]

6. Ride name displayed with decorations to match your groups proposed theme.

7. Catcher bucket at the end to stop the marble. [Not applicable if doing extra credit.]

8. Group Self-Assessment completed

9. 8.5 X 11 inch diagram showing *energy transformations. Kinetic <--> Potential

10. 8.5 X 11 inch diagram *labeling physics concepts. [See List of required concepts] *See attached papers

Page 2: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

2015 Integrated Science

O’Ryan

Data:

Testing data before proposal (Do yourself) Testing data for official submission (Testing day)

Trial Seconds Trial Seconds

1 1

2 2

3 3

4 4

5 5

Total Total

Average Average

Average Speed

Average Speed_

Category Point Value Group Score .. Group Score

Evaluators Score Electronic Start Switch 10 points

Average time (3 trials) each second = 1 point 1 point/second

Reliability Bonus (all 3 trials work) * (10 Bonus) *10 points Ride at least 10 seconds 10 points

Height > 140 – 150 cm tall 10 points

1 working loop element 10 points

1 working funnel element 10 points

4 or more turns 10 points

Zipline Length between 30 - 50 cm Zipline NOT at beginning or end + (10 Bonus)

10 points *10 points

Uphill section 10 points

Bucket stop (10 ) or Magnetic Stop * (10 Bonus) 10 + *10 points Theme / decorations (10) + * (10 Bonus) 10 + *10 points

*Extra Credit‐Longest Ride Winner * (10 Bonus) *10 points

Total Score

*Bonus Points

Materials Number Number /Amount Used in Design

Columns & Beams 24

Straight Tracks 12

Turns 8

Funnels 2

Loops 2

Supports 10

String 100 cm

Water Bottle 1

Battery/Wire/Switch 1.5 V + 60 cm wire + switch

Roll of tape 1 roll

Paper clips 10

Straws 10

Cardboard Unlimited NA

Total

Page 3: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

                                                 Energy Transformations  Sketch a model of your amusement park ride. 

Identify at least 4 examples of energy transformation.  

o Kinetic Energy                 Potential Energy 

o At least one calculation of kinetic energy.  KE = ½ MV2 

o At least on calculation of potential energy.  PE = MGH 

Identify the type of kinetic or potential energy.  

o Chemical Energy ‐‐    Electrical Energy  ‐‐ Magnetic ‐‐  Gravitational  ‐‐ Mechanical  

 

 

   

Page 4: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

                                           Calculations  Demonstrate how you used mathematical functions to describe and evaluate your amusement 

park ride.  You must have at least one calculation for each of the following: 

‐   

 

Concept  Formula  Example from your ride. Label on diagram. 

Newton’s 2nd  Law    A    

Kinetic Energy                 B    

Potential Energy    C    

Speed    D     

 

 

 

   

Page 5: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

Conclusion 1. What forces are experienced in both your roller coaster and zip lines motion?

2. How will you transport the marble along the zipline?

3. How will you transfer the marble to and from the zipline?

4. How will frictional forces affect your design?

5. How will gravitational forces affect your design?

6. Where was potential energy and kinetic energy greatest in your ride?

7. What applications in business, industry or the real world relate to a zip line?

The Presentation 

Create a PowerPoint presentation summarizing your research and design that includes: 

Title slide that contains a name for your amusement park ride and the names of your

team members.

Slides that document the Engineering Design Process including:

o The challenge statement (What was the purpose of your project?  Hint: Read

purpose.)

o Constraints for the project  (Identify the 3 main constraints.)

o Criteria for your project (Identify 3 – 5 criteria.)

Your team’s design solution.

o Photo or detailed sketch of design

o Three reasons why you chose that design over other ideas  generated by your team.

The lab design tests and processes used to evaluate your design; provide evidence from

your tests/results that support your explanations.

o the lab design results including data tables and calculations

o Revisions to the design incorporated in your final product,

o Explanations of how your design meets or does not meet the challenge.

Make a 3 to 5 minute team presentation of your PowerPoint in which every team

member presents at least two slides.

Page 6: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

O’R

yan

Mastery Sym

bols 

+ = Confiden

t, I can do this!

 = I can

 do this but I need to work on it

‐ = I am

 still struggling 

Science  –Standards Checklist  EALR 3 Application

Unit 

Concept 

Mastery 

(+, 

, ‐) 

What I kn

ow 

Questions/ 

What I don’t know 

Application 

I can

 work collaboratively with other studen

ts to gen

erate ideas for 

solving a problem. 

I can

 iden

tify constraints for solving a problem. (Constraints are 

limitations im

posed like m

oney, m

aterials or time.) 

I can

 iden

tify criteria for solving a problem. (Criteria are the 

standards used to m

easure success. For exam

ple, in the Amusemen

t Park Ride Project, the ride needs to be 10 seconds or longer.) 

I can

 research the problem and use the inform

ation collected

 to 

generate possible solutions. 

I can

 compare alternatives to choose the best solution to a problem. 

I can

 create a model or drawing of the final design and devise a way 

to test it.   

I can

 red

esign the solution when

 my tests don’t produced the 

needed

 result.  (For exam

ple, if you were designing a device that 

collected

 rainwater from roofs and it didn’t work very well, you 

could red

esign it and present it to your peers.) 

I can

 use m

athem

atical functions to calculate and describe the 

forces and m

otion in

 my Amusemen

t Park ride.  

I can

 apply m

y knowledge of the electromagnetic force by designing 

a device that affects the motion of the m

arble in

 the ride.  (An 

exam

ple is using electricity to start, stop or slow down the 

movemen

t of the marble in

 the ride.) 

Page 7: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

Tigh

t C

urv

e

Page 8: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

Wid

e C

urv

e

Page 9: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

Funnel

Page 10: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

 

Page 11: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

Co

lum

ns

and

bea

ms

Page 12: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

Lon

g an

d

Sh

ort

Su

pp

ort

s

Page 13: Integrated Science 2015 - glacierpeakscience.orgglacierpeakscience.org/wp-content/uploads/2015/01/Amusement-Park... · The amusement park design team will consider all of the following

 Straight Tracks