integrated biomaterials science - home - springer978-0-306-47583-2/1.pdfintegrated biomaterials...

27
Integrated Biomaterials Science

Upload: hanhu

Post on 13-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Integrated BiomaterialsScience

Integrated BiomaterialsScience

Edited by

ROLANDO BARBUCCIInteruniversity Research Center for Advanced Medical Systems (C.R.I.S.M.A.)andDepartment of Chemical and Biosystem Sciences and TechnologiesUniversity of SienaSiena, Italy

KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47583-9Print ISBN: 0-306-46678-3

©2002 Kluwer Academic PublishersNew York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic/Plenum Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.comand Kluwer's eBookstore at: http://ebooks.kluweronline.com

New York

To my wife, GloriaRolando Barbucci

Contributors

Giovanni AbatangeloInstitute of Histology and EmbryologyFaculty of MedicineUniversity of Padova35121 Padova, Italy

Ron AlkalayOrthopaedic Biomechanics LaboratoryBeth Israel Deaconess Medical CentreBoston, Massachusetts 02215, United States

Luigi AmbrosioInstitute of Composite Materials Technology

C.N.R., and C.R.I.B.University of Naples “Federico II”80125 Naples, Italy

Emma AngeliniDipartimento di Scienza dei Materiali ed

Ingegneria ChimicaPolitecnico di Torino10129 Torino, Italy

Marcus K. H. AuthUniversitätskinderklinik, Abteilung

Allgemeine Kinderheilkunde mitSchwerpunkt, Neuropädiatrie, Klinikumder Universitäts-Gesamthochschule

Essen, Germany

Alfonso BarbarisiIstituto di Biochimica delle Proteine ed

EnzimologiaConsiglio Nazionale delle Richerche0072 Arco Felice, Napoli, Italy

Marc BollaLaboratoire de biomatériaux dentairesUFR OdontologieUniversité de Nice Sophia Antipolis04537 Nice Cedex 05, France

Paola BrunInstitute of Histology and EmbryologyFaculty of MedicineUniversity of Padova35121 Padova, Italy

Paolo CalicetiDepartment of Pharmaceutical SciencesUniversity of Padova35131 Padova, Italy

Angelo CaputoAdvanced Prosthodontics, Biomimetics and

Hospital Dentistry DepartmentUCLA School of DentistryLos Angeles, California 90095-1668,

United States

Marie-Paule CarrenoLaboratoire d’Immunopathologie HumaineINSERM U430, Hôpital Broussais75014 Paris, France

Gerardo CatapanoDepartment of Chemical and Materials

EngineeringUniversity of Calabria87036 Arcavacata di Rende (CS), Italy

Luigi CelliClinica Ortopedica e TraumatologicaUniversità degli Studi di Modena e Reggio

EmiliaDepartimento delle Discipline Chirurgiche e

delle Emergenze41100 Modena, Italy

Elisabetta CenniLaboratorio di Fisiopatologia degli Impianti

OrtopediciIstituti Ortopedici Rizzoli40136 Bologna, Italy

vii

viii Contributors

Roberto ChiesaDipartimento di Chimica Fisica ApplicataPolitecnico di Milano20131 Milano, Italy

Krishnan K. ChitturChemical and Materials Engineering

DepartmentUniversity of Alabama at HuntsvilleHuntsville, Alabama 35899, United States

Gabriela CiapettiLaboratorio di Fisiopatologia degli Impianti

OrtopediciIstituti Ortopedici Rizzoli40136 Bologna, Italy

Alberto CigadaDipartimento di Chimica Fisica ApplicataPolitecnico di Milano20131 Milano, Italy

Roberta CortiroInstitute of Histology and EmbryologyFaculty of MedicineUniversity of Padova35121 Padova, Italy

Stephen P. DenyerSchool of Pharmacy and Biomolecular

SciencesUniversity of BrightonBrighton, BN2 4GJ, United Kingdom

Alfredo De RosaIstituo di Biochimica delle Proteine ed

EnzimologiaConsiglio Nazionale delle Ricerche0072 Arco Felice, Napoli, Italy

Roberto De SantisInstitute of Composite Materials Technology

C.N.R., and C.R.I.B.University of Naples “Federico II”80125 Naples, Italy

Luca FambriDepartment of Materials EngineeringUniversity of Trento38050 Trento, Italy

Antonietta M. GattiINFM, Laboratorio dei BiomaterialiDipartimento di Discipline Chirurgiche e

delle EmergenzeUniversità di Modena e Reggio Emilia41100 Modena, Italy

Roberto GiardinoExperimental Surgery DepartmentCodivilla-Putti I.O.R. Research Institute40136 Bologna, Italy

Francisco-Javier GilCREB (Biomedical Engineering Research

Center)Department of Materials Science and

Metallurgical EngineeringUniversitat Politècnica de Catalunya08028 Barcelona, Spain

Maria-Pau GinebraCREB (Biomedical Engineering Research

Center)Department of Materials Science and

Metallurgical EngineeringUniversitat Politècnica de Catalunya08028 Barcelona, Spain

Donatella GranchiLaboratorio di Fisiopatologia degli Impianti

OrtopediciIstituti Ortopedici Rizzoli40136 Bologna, Italy

Giuseppe GuidaIstituto di Clinica OrtopedicaUniversità di Napoli80138 Napoli, Italy

Franck J. HagegeLaboratoire de biomatériaux dentairesUFR OdontologieUniversité de Nice Sophia Antipolis04537 Nice Cedex 05, France

Richard T. HartDepartment of Biomedical EngineeringTulane UniversityNew Orleans, Louisiana 70118,United States

Kunihiro HisatsuneDepartment of Dental Materials ScienceNagasaki University School of DentistryNagasaki 852, Japan

Contributors ix

Yoshito IkadaResearch Center for Biomedical EngineeringKyoto UniversitySakyo-kuKyoto 606, JapanPresent address:Department of Medical ElectronicsFaculty of Medical EngineeringSuzuka University of Medical ScienceSuzuka City, Mie 510-0293, Japan

Kemal KesenciChemical Engineering Department and

Bioengineering DivisionHacettepe University, Beytepe06530 Ankara, Turkey

Jonathan C. KnowlesDepartment of Biomaterials-Eastman Dental

InstituteUniversity College LondonLondon WC1X8LD, United Kingdom

Adriano KrajewskiResearch Institute for Ceramic Technology of

the Italian National Research Council48018 Faenza (Ravena), Italy

Denis LabarreLaboratoire de Biomatériaux et PolymèresUMR CNRS 8612Université Paris-Sud XI92290 Châtenay-Malabry, France

Domenico LeporeDepartment of OphthalmologyCatholic University of the Sacred Heart00168 Rome, Italy

Andrew W. LloydSchool of Pharmacy and Biomolecular

SciencesUniversity of BrightonBrighton, BN2 4GJ, United Kingdom

Patrizia LoriaDepartment of Biophysical Medical and

Odontostomatological Sciences andTechnologies

University of Genova16132 Genoa, Italy

Donald LymanDepartment of Materials Science and

Engineering and Department ofBioengineering

University of UtahSalt Lake City, Utah 84122, United States

Agnese MagnaniDipartimento di Scienze e Tecnologie

Chimiche e dei BiosistemiUniversità degli Studi di Siena53100 Siena, Italy

Walter MarconiDepartment of ChemistryUniversity of Rome “La Sapienza”00185 Rome, Italy

Sabrina MargarucciIstituto di Biochimica delle Proteine ed

EnzimologiaConsiglio Nazionale delle Ricerche0072 Arco Felice, Napoli, Italy

Claudio MigliaresiDepartment of Materials EngineeringUniversity of Trento38050 Trento, Italy

Arturo N. NataliCentre of Mechanics of Biological MaterialsDipartimento di Costruzioni e TrasportiUniversity of Padova35131 Padova, Italy

Paolo A. NettiInstitute of Composite Materials Technology

C.N.R., and C.R.I.B.University of Naples “Federico II”80125 Naples, Italy

Luigi NicolaisInstitute of Composite Materials Technology

C.N.R., and C.R.I.B.University of Naples “Federico II”80125 Naples, Italy

Nicolò Nicoli AldiniExperimental Surgery DepartmentCodivilla-Putti I.O.R. Research Institute40136 Bologna, Italy

Sandro PaciENEA00100 Roma, Italy

Alessandro PegorettiDepartment of Materials EngineeringUniversity of Trento38050 Trento, Italy

Gianfranco PelusoIstituto di Biochimica delle Proteine ed

EnzimologiaConsiglio Nazionale delle Ricerche0072 Arco Felice, Napoli, Italy

x Contributors

Orsolina PetilloIstituto di Biochimica delle Proteine ed

EnzimologiaConsiglio Nazionale delle Ricerche0072 Arco Felice, Napoli, Italy

Maria Rosa PinascoDipartimento di Chimica e Chimica

IndustrialeUniversità degli Studi di Genova16146 Genova, Italy

Antonella PiozziDepartment of ChemistryUniversity of Rome “La Sapienza”00185 Rome, Italy

Erhan PiskinChemical Engineering Department and

Bioengineering DivisionHacettepe University, Beytepe06530, Ankara, Turkey

Arturo PizzoferratoLaboratorio di Fisiopatologia degli Impianti

OrtopediciIstituti Ortopedici Rizzoli40136 Bologna, Italy

Josep-Anton PlanellCREB (Biomedical Engineering Research

Center)Department of Materials Science and

Metallurgical EngineeringUniversitat Politècnica de Catalunya08028 Barcelona, Spain

Maria Vittoria PrimiceriNotarbartolo & Gervasi SpA00198 Roma, Italy

Marco RadiceInstitute of Histology and EmbryologyFaculty of MedicineUniversity of Padova35121 Padova, Italy

Antonio RavaglioliResearch Institute for Ceramic Technology of

the Italian National Research Council48018 Faenza (Ravenna), Italy

Peter A. RevellDepartment of HistopathologyRoyal Free and University College Medical

SchoolRoyal Free CampusLondon NW3 2PF, United Kingdom

Dante RoncaIstituto di Clinica OrtopedicaUniversità di Napoli80138 Napoli, Italy

Matteo SantinSchool of Pharmacy and Biomolecular

SciencesUniversity of BrightonBrighton, BN2 4GJ, United Kingdom

Lucia SavarinoLaboratorio di Fisiopatologia degli Impianti

OrtopediciIstituti Ortopedici Rizzoli40136 Bologna, Italy

Luigi ScullicaDepartment of OphthalmologyCatholic University of the Sacred Heart00168 Rome, Italy

Susanna SteaLaboratorio di Fisiopatologia degli Impianti

OrtopediciIstituti Ortopedici Rizzoli40136 Bologna, Italy

Francesco M. VeroneseDepartment of Pharmaceutical SciencesUniversity of Padova35131 Padova, Italy

Libero VitielloDepartment of BiologyUniversity of Padova35121 Padova, Italy

Fabrizio ZucchiCentro Studi Corrosione A. DaccòUniversità di Ferrara44100 Ferrara, Italy

Preface

Progress in medical science has led to an extension of the average humanlifetime, which has brought a rising demand for materials for tissue andorgan replacement. These materials are called biomaterials and the disci-pline involved is called Biomaterials Science,

Biomaterials Science was born to fulfill the demands of patients andphysicians for more efficient as well as new products. These products aredesigned and, first, tested in vitro in research laboratories; they then mustpass through in vivo and clinical experimentation before being introducedinto the market. Integrated Biomaterials Science provides an intriguinginsight into that world, exploring the materials and the technology that hasbrought us new biomaterials. The book covers knowledge in chemistry,engineering, biology, and medicine that has had a significant impact onbiomaterials. In particular, it highlights the way in which modern biologyand medicine is inextricably linked to the other scientific disciplines, allcontributing to the process of discovery and helping us to understand thecomplex world of biomaterials.

Biomaterials Science is multidisciplinary because it needs the supportof many classical disciplines, including Physics, Chemistry, Biology, Engin-eering, and Medicine. Indeed, the special feature of this science is theinterdiscipline among the different areas involved; this means that theremust be perfect integration among the several disciplines in order to developand advance Biomaterials Science. This is its main characteristic and thegreatest difficulty that a researcher faces when studying or simply tryingto understand Biomaterials Science. None of the disciplines involved inBiomaterials Science can be considered the most important; researchersknow perfectly well that no one discipline takes precedence over another,but that there is only good research and bad research.

Although the chapters of this book can be read independently of oneanother, they are arranged in a logical sequence.

The book starts with the study of properties and characteristics ofmaterials used to produce biomaterials. Before dealing with the use of thesebiomaterials as implants, the nature and characteristics of tissues to bereplaced are explained. The interactions occurring between the material andthe biological environment, and thus the tests necessary to prove their

xi

xii Preface

biocompatibility, are treated starting from the intended applications. Somechapters deal with tissue engineering and gene therapy, too. We have alsoincluded aspects less often covered in other biomaterials books, such aspatents and regulations as well as standards on biomaterials, with a viewtoward covering interactions with the industrial world and its needs.

One huge area that we have been unable to include is physicochemicalcharacterization. This subject is so large that it would easily fill a volumeon its own. We do, of course, fully recognize that analytical techniquesdesigned to solve the structures, both in the bulk and on the surface ofbiomaterials, have revolutionized research in biomaterials science, but thetechniques utilized are extremely sophisticated and continuously beingupgraded, so there is a risk that they will be obsolete by the time the bookis published.

This book is a good guide to understanding the subject. Admittedly,there are still large areas of ignorance in biomaterials and many facts thatcannot yet be explained. However, these unsolved problems provide muchof the excitement, and we have tried to point them out in a way that willstimulate readers to join in the enterprise of discovery.

While previous books have supplied extensive information on allsubjects concerning biomaterials, this one is not just informative but isdesigned to provide all the researchers involved in the biomaterials fieldwith an opportunity to probe further: researchers using biomaterials andstudying their properties as well as those involved in their industrialproduction. The book will be extremely useful for students of biomaterialscourses and can be used as a textbook.

Rolando Barbucci

Contents

1. Biological MaterialsYoshito Ikada

1.1.1.2.

1.3.

1.4.

IntroductionFundamentals of Biological Materials1.2.1.1.2.2.1.2.3.1.2.4.1.2.5.

PolypeptidesPolysaccharidesPolyestersInorganic MaterialsComposites

Medical Application of Biological Materials1.3.1.1.3.2.1.3.3.1.3.4.

General SurgeryReplacement of Diseased TissuesDrug Delivery Systems (DDS)Tissue Engineering

ConclusionsReferences

122

511121214141619202222

2. Structure and Properties of Polymeric MaterialsWalter Marconi and Antonella Piozzi

2.1.2.2.

2.3.

2.4.

IntroductionPolymers2.2.1.2.2.2.2.2.3.2.2.4.2.2.5.2.2.6.

General PropertiesSynthesisMolecular WeightIsomerismCrystallinityMechanical Properties

Polymers in Medicine2.3.1.2.3.2.2.3.3.

Synthetic PolymersBiodegradable and Bioresorbable PolymersPolymers for Extracorporeal Enzymatic Detoxification

Requirements and Evaluation of Polymeric Materials2.4.1. Bulk and Surface Properties

2527272930323335363740414343

xiii

xiv Contents

2.4.2.2.4.3.2.4.4.

Chemical ModificationsProduction of Polymeric MaterialsBiological Interaction of Polymer Materials

References

50566366

3. Fundamentals of Polymeric Composite MaterialsClaudio Migliaresi and Alessandro Pegoretti

3.1.3.2.

3.3.

3.4.3.5.3.6.

3.7.

3.8.3.9.

IntroductionFiber Reinforcements3.2.1.3.2.2.3.2.3.

Inorganic FibersCarbon (Graphite) FibersPolymeric Fibers

Matrix Resins3.3.1.3.3.2.

Thermoset MatricesThermoplastic Matrices

Fiber/Matrix AdhesionVolume and Weight FractionsMechanics of Continuous-Fiber-Reinforced Composites3.6.1.3.6.2.3.6.3.

Elastic Properties of a Unidirectional LaminaElastic Properties of a LaminateFailure of a Unidirectional Lamina

Mechanics of Discontinuous-Fiber-Reinforced Composites3.7.1.3.7.2.3.7.3.

Fiber/Matrix Stress TransferElastic Properties of Discontinuous-Fiber CompositesUltimate Properties of Discontinuous-Fiber Composites

Mechanics of Particulate CompositesManufacture of Composites3.9.1.3.9.2.

Manufacture of Thermosetting Polymer CompositesManufacture of Thermoplastic Polymer Composites

References

69717273767879818487888894979999

101105106108108113114

4. Biodegradable PolymersLuca Fambri, Claudio Migliaresi, Kernal Kesenci, and Erhan Piskin

4.1.4.2.4.3.4.4.4.5.

4.6.

IntroductionDefinitionMechanismsProperties and ApplicationsNatural Polymers4.5.1.4.5.2.4.5.3.

Polysaccharide-Based PolymersProtein-Based PolymersMicrobial Polyesters

Synthetic Polymers4.6.1. Aliphatic Polyesters

119120121126129129137143145145

Contents xv

4.6.2.4.6.3.4.6.4.4.6.5.4.6.6.4.6.7.4.6.8.4.6.9.

Poly(ester-amides)PolyorthoestersPolyanhydridesPoly(alkyl 2-cyanoacrylate)Polyimino CarbonatesPolyphosphazenesPolyethyleneterephthalatePolyamides

4.6.10. Polyurethanes4.7. Factors Affecting the Degradation of Polymeric MaterialsReferences

150152154155156157159161163165170

5. Bioceramics and Biological GlassesA. Krajewski and A. Ravaglioli

5.1.

5.2.5.3.

5.4.

The Structure of Ceramics from Synthesis to Processing5.1.1.5.1.2.5.1.3.5.1.4.

CeramicsThe Outstanding Properties of CeramicsThe Drawbacks of CeramicsThe Structural Properties of Ceramics andTheir Possibilities

5.1.5.5.1.6.5.1.7.

Processing of CeramicsThe Thermal ProcessSintering

Design and Duration of Ceramic Devices under LoadCeramics for Surgical Implants5.3.1.5.3.2.5.3.3.5.3.4.5.3.5.

Inert BioceramicsBioactive CeramicsCeramic and Polymeric CarbonsBiological GlassesCoatings

A Survey on the Adhesion of Ceramics to Bone TissueReferences

189190191192

193200202202207208209217240244249252252

6. Metallic MaterialsAlberto Cigada, Roberto Chiesa, Maria Rosa Pinasco,and Kunihiro Hisatsune

6.1.6.2.

The Crystalline Structure of Metallic MaterialsLattice Defects6.2.1.6.2.2.6.2.3.6.2.4.

Point Defects and Solid State DiffusionLinear Defects and Plastic DeformationSurface Defects and Grain BoundariesEffect of Plastic Deformation Temperature on Grain Size

255256257257260261

xvi Contents

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

Structure of Metallic Alloys6.3.1.6.3.2.6.3.3.6.3.4.

Interstitial Solid SolutionsSubstitutional Solid SolutionsIntermetallic PhasesPresence of More Phases

Phase Diagrams6.4.1.6.4.2.6.4.3.6.4.4.6.4.5.6.4.6.6.4.7.6.4.8.6.4.9.

PhaseVariance and Phase RuleGraphic Representation of Binary Phase DiagramsPresence of One PhasePresence of Two Phases and the Lever RulePresence of Three PhasesIron–Carbon Phase DiagramsIron–Nickel and Iron-Chromium DiagramsTitanium–Aluminum and Titanium–Vanadium Diagrams

6.4.10. Other Phase DiagramsThermal Treatments6.5.1.6.5.2.6.5.3.6.5.4.

Full AnnealingNormalizationQuenchingTempering

Strengthening of Metals6.6.1.6.6.2.6.6.3.6.6.4.6.6.5.

Strengthening by AlloyingStrengthening by Work HardeningStrengthening by Addition of OligoelementsStrengthening by Thermal TreatmentsStrengthening by Order–Disorder Transformations

Working Technologies6.7.1.6.7.2.6.7.3.6.7.4.6.7.5.6.7.6.

Hot or Cold Plastic DeformationMoldingPowder MetallurgyTool MachiningBondingSurface Finishing

Main Metallic Materials Used as Biomaterials6.8.1.6.8.2.6.8.3.6.8.4.

Austenitic Stainless SteelCobalt AlloysTitanium and Titanium AlloysPrecious Metal Alloys

262262262263263263263264264265266267268269269271272276277277277277278278278279279280281285287288288289289290291292294

7. Degradation Processes on Metallic SurfacesEmma Angelini, Angelo Caputo, and Fabrizio Zucchi

7.1.7.2.

IntroductionThe Biological Environment

297297

Contents xvii

7.3.

7.4.

7.5.

Metallic Corrosion7.3.1.7.3.2.7.3.3.7.3.4.

Dry CorrosionWet CorrosionKineticsInfluence of the Biological Environment

Corrosion Forms7.4.1.7.4.2.7.4.3.7.4.4.7.4.5.

Generalized CorrosionLocalized CorrosionGalvanic CorrosionSelective CorrosionWear Corrosion

Corrosion PreventionReferences

298298299303308308309309316320320320323

8. Characterization of BiomaterialsDonald Lyman

8.1.8.2.8.3.

8.4.

Requirements of Biomedical CharacterizationStructure of MaterialsThe Nature of Surface Dynamics and Surface Analysis8.3.1.8.3.2.

Metal and Ceramic SurfacesPolymer Surfaces

Organization of Polymer Surfaces8.4.1.8.4.2.

Anisotropy of Polymer SurfacesMicrophase Heterogeneous Surfaces

References

325327328328329330331332336

9. TissuesLuigi Ambrosio, Paolo A. Netti, and Peter A. Revell

9.1.9.2.9.3.

IntroductionSoft TissuesHard Tissues

References

339340342345

10. Soft TissueLuigi Ambrosio, Paolo A. Netti, and Luigi Nicolais

10.1.

10.2.

Structure–Property Relationship of Soft Tissue10.1.1.10.1.2.10.1.3.

IntroductionMechanical PropertiesTransport Properties

Skin

347347349352353

xviii Contents

10.3.

10.2.1.10.2.2.

Composition and StructureMechanical Properties

Tendons and Ligaments10.3.1.10.3.2.

Composition and StructureMechanical Properties

References

354356357358359363

11. The EyeDomenico Lepore, Luigi Ambrosio, Roberto De Santis,Luigi Nicolais, and Luigi Scullica

11.1.11.2.11.3.11.4.

IntroductionThe CorneaThe ScleraThe Vitreous

References

367368373375379

12. Articular CartilagePaolo A. Netti and Luigi Ambrosio

12.1.12.2.

IntroductionComposition and Structure12.2.1.12.2.2.

CompositionStructure

12.3. Mechanical Properties12.3.1.12.3.2.12.3.3.12.3.4.12.3.5.12.3.6.12.3.7.

Static PropertiesTime-Dependent PropertiesViscoelastic Shear PropertiesViscoelastic Properties in CompressionHydraulic Conductivity of CartilageCompressive Behavior of Articular CartilageConfined Compression

12.4.12.5.

Electromechanical TransductionRemodeling and Repair

References

3813823823 8 3386386388388389390391393394396398

13. The Mechanical and Material Properties of the Healthyand Degenerated Intervertebral DiscRon Alkalay

13.1.13.2.

IntroductionAnatomy13.2.1. Nucleus Pulposus

403404404

Contents xix

13.2.2.13.2.3.

Annulus FibrosusEnd Plate

13.3. Material Properties of the Structures of the Disc13.3.1.13.3.2.13.3.3.

Nucleus PulposusAnnulus FibrosusEnd Plate

13.4.13.5.

Mechanical Behavior of the Intervertebral DiscThe Effect of Degradation on the Mechanical Propertiesof the Disc

13.6.13.7.

Intervertebral Disc ProsthesesSummary

References

405406406406408411411

415416419420

14. Soft Tissue ReplacementMatteo Santin, Luigi Ambrosio, Andrew W. Lloyd,and Stephen P. Denyer

14.1.14.2.

IntroductionCardiovascular Devices14.2.1.14.2.2.14.2.3.

Vascular GraftsVascular StentsSubstitute Heart Valves (SHV)

14.3. Intraocular Devices14.3.1.14.3.2.

Intraocular LensesKeratoprostheses

14.4. Other Applications in Soft Tissue Replacement14.4.1.14.4.2.14.4.3.14.4.4.14.4.5.

Artificial SkinHernia RepairUrological DevicesLigament and Tendon ProsthesesIntervertebral Disc Prostheses

14.5. ConclusionsReferences

425426427431434436437441444444445445446447449450

15. Mechanics of Hard TissuesArturo N. Natali and Richard T. Hart

15.1.15.2.

15.3.

IntroductionExperimental Methods and Results: Determination ofMechanical Properties and Structural Configuration15.2.1.15.2.2.

Mechanical TestingUltrasound Analysis

Mechanics of Bone

459

462462468469

xx Contents

15.3.1.15.3.2.

Material PropertiesStructural Properties

15.4.15.5.

Bone PhysiologyFunctional Adaptation of Bone15.5.1.15.5.2.

Phenomenological ModelsMechanistic Models

15.6.15.7.

Numerical ApproachConclusions

References

469471475476478481482486486

16. Hip Joint ReplacementsGiuseppe Guida and Dante Ronca

16.116.2.16.3.

Introduction to Joint ReplacementsHistoryCemented Prostheses16.3.1.16.3.2.

Femoral StemCotyle

16.4.

16.5.

The Noncemented Prostheses16.4.1.16.4.2.

Femoral StemCotyle

Friction and Wear16.5.1.16.5.2.16.5.3.

Femoral Head MaterialsDimensions of the HeadCotyle Materials

References

491492498498503505505512517518519519520

17. Knee Joint ReplacementsDante Ronca and Giuseppe Guida

17.1.17.2.

IntroductionHistory17.2.1.17.2.2.17.2.3.

Total Knee ArthroplastyHinged Knee ArthroplastyUnicompartmental Knee Arthroplasty

17.3.

17.4.

The Knee: Anatomical, Functional, and StructuralConsiderationsPolyethylene17.4.1.17.4.2.17.4.3.17.4.4.17.4.5.17.4.6.

Contact Stress, Congruency, and ConformityThicknessMetal BackingStrengthDegradationDebris

527529529532534

536537537540541542543544

Contents xxi

17.5.17.6.17.7.17.8.

AlignmentFixationPatellofemoral JointConclusion

References

545546547550550

18. Biomaterial Applications: Elbow ProsthesisLuigi Celli

18.1.18.2.18.3.

IntroductionThe Prosthetic DesignCases in which the Elbow Prosthesis Is Advisable

References

555556558558

19. Biomaterial Applications: Shoulder ProsthesisLuigi Celli

19.1.19.2.19.3.19.4.19.5.19.6.

IntroductionThe Prosthetic DesignThe Prosthetic ImplantationConforming Design of the Articular SurfacesArticular and Periarticular ResistancesThe Active Role of Periarticular Muscles

References

561562563564566566568

20. Acrylic Bone CementsMaria-Pau Ginebra, Francisco-Javier Gil, and Josep-Anton Planell

20.1.20.2.

20.3.

20.4.

IntroductionChemistry of Acrylic Bone Cements20.2.1.20.2.2.20.2.3.

Chemical Composition: Powder and LiquidChemical Reactions and Setting ProcessMolecular Weight

Mechanical Properties20.3.1.20.3.2.20.3.3.20.3.4.

Strength and Elastic ModulusViscoelastic BehaviorFracture ToughnessFatigue

Factors Affecting the Microstructure and theMicrostructure–Mechanical Properties Relationship20.4.1. Porosity

569570570571574574575575576576

578579

xxii Contents

20.4.2.20.4.3.

In Vivo EnvironmentAdditives

20.5.20.6.

Biological PropertiesModification of Acrylic Bone Cements

References

579580582582584

21. Mechanical Properties of Tooth StructuresRoberto De Santis, Luigi Ambrosio, and Luigi Nicolais

21.1.21.2.

IntroductionMechanical Properties21.2.1.21.2.2.21.2.3.

Static Mechanical PropertiesHardnessFracture Toughness

References

589592592595595597

22. Dental Materials and ImplantsMaria Rosa Pinasco, Arturo Natali, Patrizia Loria, Marc Bolla,and Franck J. Hagege

22.1.22.2.22.3.

22.4.22.5.

22.6.22.7.

22.8.

IntroductionStomatognatic Apparatus: Some ConsiderationsDental Materials for Hard and Plastic RestorativeTreatment22.3.1.22.3.2.

Tooth Restoration: Filling, Inlay, and OnlayRestorative Materials: Metals and Alloys,Composite Resins, Glass Ionomers

Materials for Complex ReconstructionsProsthetic Therapy Materials22.5.1.22.5.2.22.5.3.

Fixed Prosthesis MaterialsMoving Partial or Total Prosthesis MaterialsPrecious and Nonprecious Alloys for DentalProstheses

Dental Implant Materials: A Few ConsiderationsBiomaterials for Surgical Reconstitution22.7.1.22.7.2.22.7.3.22.7.4.

Periodontal RegenerationGoal of Osseous GraftingFactors Influencing Graft SuccessRegenerative Materials

Dental Implants and Biomechanics22.8.1.22.8.2.22.8.3.

IntroductionTissue MechanicsImplant Mechanics and Loading

601602

609609

610621622623624

625629631631631631631639639640642

Contents xxiii

22.8.4. Numerical Formulation of Implant–Tissue InteractionPhenomena

References643647

23. Materials/Biological Environment InteractionsOrsolina Petillo, Alfonso Barbarisi, Sabrina Margarucci,Alfredo De Rosa, and Gianfranco Peluso

23.1.23.2.23.3.23.4.

23.5.

IntroductionCell–Extracellular Matrix InteractionsGrowth Factors–Extracellular Matrix InteractionsExtracellular/Biomaterial Interaction23.4.1.

23.4.2.

23.4.3.

Regulation of Tissue Fibrosis, as an IntegratedCellular Response to BiomaterialFibroblast Cell Activation—a Highly OrchestratedReaction to Biomaterial ImplantationMechano/Transduction by Biomaterials andECM Remodeling

Future PerspectivesReferences

655656658659

659

660

663665666

24. Protein Adsorption and Cellular/Tissue InteractionsAgnese Magnani, Gianfranco Peluso, Sabrina Margarucci,and Krishnan K. Chittur

24.1.24.2.

24.3.

IntroductionProtein Adsorption24.2.1.24.2.2.24.2.3.24.2.4.24.2.5.

What Are Proteins?Protein Structure in Solution and on SurfacesMeasurement of Protein on SurfacesProtein Adsorption to Surfaces: PrinciplesImportance of Protein Adsorption

Cells/Tissue Interactions24.3.1.24.3.2.

The Wound Healing ProcessIn Vivo Models

References

669670670670671674677678678682685

25. Inflammatory Response to Polymeric MaterialsDenis Labarre and Marie-Paule Carreno

25.1.25.2.

IntroductionPolymeric Materials in Contact with Living Tissues

691692

xxiv Contents

25.2.1.25.2.2.

SpecificationsPolymeric Materials

25.3.

25.4.

25.5.

Characteristics of the Materials Involved in the InflammatoryResponse25.3.1.25.3.2.

Size, Surface Area, and Surface MorphologyPhysicochemical Parameters

Assessing the Inflammatory Response to Materials25.4.1.25.4.2.

Materials in Close Contact with BloodMaterials in Contact with Other Tissues

ConclusionAppendix: Abbreviations Used in this ChapterReferences

692695

696697698705706713719723725

26. Inflammatory Response to Metals and CeramicsArturo Pizzoferrato, Elisabetta Cenni, Gabriela Ciapetti,Donatella Granchi, Lucia Savarino, and Susanna Stea

26.1.26.2.

26.3.

26.4.26.5.26.6.

IntroductionMaterials Degradation and Inflammation26.2.1.26.2.2.

Metals and AlloysCeramics

Acute Inflammatory Response26.3.1.26.3.2.26.3.3.26.3.4.26.3.5.

Mediators of the Inflammatory ReactionLeukocyte ExudationCells of the Inflammatory Acute ReactionChemotaxisPhagocytosis

Chronic InflammationToxicity of Biomaterials and InflammationSpecific Immune Response26.6.1.26.6.2.

26.6.3.

Immunogenicity of Metals and CeramicsInteraction between Biomaterials and theImmune SystemMethods for Testing the Immune Specific Response

References

735735736738741742751753755757760767770771

773776780

27. Biocompatibility and Biological TestsAntonietta M. Gatti and Jonathan C. Knowles

27.1.27.2.27.3.

DefinitionBiocompatibility Tests and Their RulesBiological Tests27.3.1.27.3.2.

CytotoxicityGenotoxicity

793795796796802

Contents xxv

27.3.3.27.3.4.27.3.5.27.3.6.27.3.7.27.3.8.27.3.9.

CarcinogenicityReproductive ToxicityIrritation and SensitizationLocal Effect after ImplantationSystemic ToxicityHemocompatibilityDegradation

27.4. Biofunctionality TestsReferences

802803803803804807807810812

28. Infection and SterilizationRoberto Giardino and Nicolò Nicoli Aldini

28.1.

28.2.

Infection28.1.1.28.1.2.28.1.3.28.1.4.

Tissue Reactivity to the ImplantThe Neutrophil ImpairmentThe Protection of the MicroorganismsBacterial Adherence

Sterilization28.2.1.28.2.2.28.2.3.28.2.4.

Steam and Dry HeatEthylene Oxide and Other Chemical AgentsIrradiationElectron (E-Beam) Radiation

References

815816816816817822824824825827829

29. Drug Delivery SystemsFrancesco M. Veronese and Paolo Caliceti

29.1.29.2.

29.3.29.4.

29.5.

IntroductionControlled or Programmable Drug Release versus Slowor Sustained ReleaseBiodegradable and Nonbiodegradable PolymersPolymers for Controlled Release Applications29.4.1.29.4.2.29.4.3.29.4.4.29.4.5.29.4.6.29.4.7.29.4.8.

PolysiloxanesPolyphosphazenesLactic/Glycolic Acid Polymers

PolyanhydridesPolyalkyl AcrylatesPolyacrylate HydrogelsOther Polymers for Controlled Release

Novel Drug Delivery System Preparations29.5.1.29.5.2.

Monolithic MatricesMicrospheres and Nanospheres

833

834836837837839840842844845846848849850851

xxvi Contents

29.5.3. Microcapsules and Nanocapsules29.6.

29.7.

29.8.

29.9.

Internally or Externally Controlled Drug Delivery Systems29.6.1.29.6.2.29.6.3.

Device Erosion Controlled by pHSelf-Modulated DevicesExternally Triggered Devices

Transdermal Therapeutic Delivery Systems29.7.1.29.7.2.29.7.3.

Monolithic DevicesReservoir DevicesSkin Permeability Enhancers

Mechanisms of Drug Release29.8.1.29.8.2.29.8.3.29.8.4.

Undegradable and Unswellable DevicesSwellable and Undegradable MatricesReservoir SystemsBiodegradable Matrices

Overviews of Problems Involving Long-Term Contactbetween Tissues and Drug Delivery Systems

References

852853853855857859860861862864865867868869

870872

30. Gene Delivery as a New Therapeutic ApproachLibero Vitiello and Francesco M. Veronese

30.1.30.2.30.3.30.4.

30.5.

IntroductionDifferent Kinds of Therapeutic Nucleic AcidsViral VectorsSynthetic Vectors30.4.1.30.4.2.30.4.3.

PolyplexesLipoplexesLipopolyplexes

Clinical Applications of Gene TransferReferences

875876877877877879881881882

31. Tissue EngineeringGiovanni Abatangelo, Paola Brun, Marco Radice, Roberta Cortiro,and Marcus K. H. Auth

31.1.31.2.

IntroductionCell Culture and In Vitro Tissue Development31.2.1.31.2.2.31.2.3.31.2.4.

31.2.5.

ECM CompositionECM ReceptorsSignal TransductionTesting Biomaterials and New Strategies forIn Vitro Tissue CultureAssociation of Gene Therapy to Tissue Engineering

885888889892894

895897

Contents xxvii

31.3.

31.4.

31.5.

31.6.

Artificial Skin31.3.1.31.3.2.31.3.3.

EpidermisDermisConclusions

Artificial Cartilage31.4.1.31.4.2.31.4.3.31.4.4.31.4.5.31.4.6.

Properties of Normal and Injured CartilageChondrocyte Cultures In VitroIn Vitro and In Vivo Studies: Cell TherapyCartilage-like Tissue ConstructsMesenchymal Stem CellsConclusions

Artificial Bone31.5.1.31.5.2.31.5.3.31.5.4.31.5.5.

Basic Histology and Physiology of BoneAcellular Approaches for Tissue Engineering of BoneCellular Approaches for Tissue Engineering of BoneTissue Engineered Products: Clinical ConsiderationsSummary

Glandular Parenchyma: The Liver31.6.1.31.6.2.31.6.3.31.6.4.31.6.5.31.6.6.31.6.7.

IntroductionAnatomyLiver MicroarchitectureParenchymal and Nonparenchymal Liver CellsExtracellular MatrixFactors Affecting Liver Cell FunctionPerspectives

References

900901902907907908909910911914916916917918920923924925925926926927927928936936

32. Assist DevicesGerardo Catapano

32.1.32.2.32.3.

32.4.

IntroductionBiomaterials Used in Extracorporeal Blood ProcessingArtificial Devices32.3.1.32.3.2.32.3.3.32.3.4.32.3.5.32.3.6.32.3.7.32.3.8.32.3.9.

Membranes and Their PropertiesTherapeutic Membrane ProcessesMaterials in Artificial DevicesMembrane Preparation TechniquesMembrane MaterialsBiocompatibility IssuesActivation of Blood Coagulation (Thrombogenicity)Complement ActivationCell Activation

Bioartificial Devices32.4.1. Proposed Bioartificial Devices

947949950951956960961964968969971973976976

xxviii Contents

32.4.2.32.4.3.32.4.4.32.4.5.

Materials in Bioartificial DevicesMatrices and ScaffoldsImmunoisolation MaterialsBiocompatibility Issues

Suggested ReadingNomenclature

980981982983983984

33. Standards on BiomaterialsMaria Vittoria Primiceri and Sandro Paci

33.1.

33.2.33.3.

Introduction33.1.1.33.1.2.33.1.3.

The Need for StandardsNational, EN, and ISO StandardsStandard of Quality System

ISO Standards and OverviewEuropean System33.3.1.33.3.2.33.3.3.33.3.4.

EC Directive on Medical DevicesConformity Assessment and CE MarkProcedure to Obtain CEE MarkingAttuned Technical Standards

Bibliography

985985986987989992992994999

10021002

34. Biomaterials and PatentsMaria Vittoria Primiceri

34.1.

34.2.34.3.

Introduction34.1.1.34.1.2.34.1.3.34.1.4.

Historical OverviewThe European Patent ConventionThe Patent Cooperation TreatyThe Patent Application—General Remarksand Patentability Criteria

Patentable InventionsPatentability of Biomaterials

Bibliography

1003100310061007

1009100910121013

Index 1015

Integrated BiomaterialsScience