innovation benefits realization for industrial research (part-3)

95

Click here to load reader

Upload: iain-sanders

Post on 16-Apr-2017

1.312 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: Innovation Benefits Realization for Industrial Research (Part-3)

Technology Innovation Management Framework for Industrial Research

Part-3

January 2005

Dr. Iain Sanders

Page 2: Innovation Benefits Realization for Industrial Research (Part-3)

2

Page 3: Innovation Benefits Realization for Industrial Research (Part-3)

3

Page 4: Innovation Benefits Realization for Industrial Research (Part-3)

4

Page 5: Innovation Benefits Realization for Industrial Research (Part-3)

Technical Contradiction Analysis Tool

Platform 1:(Stages II, Part 5)

Page 6: Innovation Benefits Realization for Industrial Research (Part-3)

6

What Resources can Help?

Analytic and Knowledge-based Tools (Examples) Technical Contradiction Analysis (Knowledge-based Tool): A

challenge to be overcome is called a technical contradiction when known alternatives available to improve one aspect of a design do so at the expense of another aspect of the design. In other words, a technical contradiction exists if improving parameter “A” of the system causes parameter “B” to deteriorate (e.g. as a container becomes stronger it becomes heavier). A physical contradiction exists if some aspect of a product or service must have two opposing states (e.g. the product is hot, and it is cold). A table of conflicts (known as a contradiction table or matrix) between 39 design parameters addresses these and similar kinds of problems, by offering 1201 generic problems that were solved using at least one of 40 generic inventive principles (derived from an investigation of 200,000 patents).

PLATFORM 1: II (5)

Page 7: Innovation Benefits Realization for Industrial Research (Part-3)

7

Contradiction

HarmfulFunction

Useful FunctionA

Useful FunctionB

PLATFORM 1: II (5)

Page 8: Innovation Benefits Realization for Industrial Research (Part-3)

8

VISUALIZING CONTRADICTIONS

Parameter A

Parameter B

Normal Design Tradeoff or Current Performance Barrier Curve Constant Design Capability

TRIZ Moves Performance Barrier Curve toward the Origin

Good

Bad

Good Bad

PLATFORM 1: II (5)

Page 9: Innovation Benefits Realization for Industrial Research (Part-3)

9

THE CONTRADICTION TABLE

The first organized form of TRIZ A little bulky and unwieldy without

computerization, but still useful in quick and dirty screening for solutions

Computerized in software products, available on line at various web sites, in many publications

Applies to technical contradictions

PLATFORM 1: II (5)

Page 10: Innovation Benefits Realization for Industrial Research (Part-3)

10

Productivity

Level ofAutomation

Weight ofMoving Object

Weight ofNonmoving Object

1

2

39

38

Undesired Result (Degraded Feature)

Featureto Improve

• Possible contradictions represented in 39 x 39 table

• Intersections of contradicting rows and columns are references to 40 inventive principles for contradiction elimination (now extended to at least 44 inventive principles)

28 Replace a mechanical system with a non mechanical system27 An inexpensive short-life object instead of an expensive durable one18 Mechanical vibration40 Composite materials

Prod

uctiv

ity

Leve

l of

Aut

omat

ion

Wei

ght o

fN

onm

ovin

g O

bjec

t

Stre

ngth

14 38 392W

eigh

t of

Mov

ing

Obj

ect

1

28, 27,18, 40

Proposed Solution Pathways:

CONTRADICTION TABLEPLATFORM 1: II (5)

Page 11: Innovation Benefits Realization for Industrial Research (Part-3)

11

Required Strength of join

Ada

ptab

ility

One-time

Infinitelyre-usable

nailstaplePaper glue

Post-it

velcro

Lock-nut

brazeMIG/TIG

weld

Frictionbond

Self-tappingscrew

epoxy

rope

MAPPING CONTRADICTIONS

ZipperLock-nut

braid wire

paper-clip

FUNCTION: JOIN PHYSICAL OBJECT

PLATFORM 1: II (5)

Page 12: Innovation Benefits Realization for Industrial Research (Part-3)

12

Required Strength of join

One-time

Infinitelyre-usable

nailstaplePaper glue

Post-it

velcro

Lock-nut

brazeMIG/TIG

weld

Frictionbond

Self-tappingscrew

epoxy

rope

Place your solution on the graph ofMain Useful Attributes to helpIdentify opportunities

ZipperLock-nut

braid wire

paper-clip

Contradiction EliminationDirection

SYSTEM EVOLUTION TOWARDIDEALITY

Ada

ptab

ility

PLATFORM 1: II (5)

Page 13: Innovation Benefits Realization for Industrial Research (Part-3)

13

Contradictions - Jet EngineBoeing wanted to install larger engines on a redesigned 737. A larger air intake would reduce ground clearance to unacceptable levels.

Contradiction: Increasing air intake reduces ground clearance

Control parameter: Intake radius

#5 VS. #3 in table

PLATFORM 1: II (5)

Page 14: Innovation Benefits Realization for Industrial Research (Part-3)

14

Contradictions - Jet Engine

Make the radius large laterally for high air flow.

Make the radius smaller downward for high ground clearance.

Resolve the contradiction by Separation

PLATFORM 1: II (5)

Page 15: Innovation Benefits Realization for Industrial Research (Part-3)

15

Contradictions Defined

Improving one system parameter results in the deterioration of another system parameter.

Examples:

Strength vs. Light Weight

Product Features vs. Simplicity and Ease of Use

PLATFORM 1: II (5)

Page 16: Innovation Benefits Realization for Industrial Research (Part-3)

16

Piling Problem

Easy to driveStays in

placeCompromise

PLATFORM 1: II (5)

Page 17: Innovation Benefits Realization for Industrial Research (Part-3)

17

Contradictions

A BA and B are desirable features of

the system.

PLATFORM 1: II (5)

Page 18: Innovation Benefits Realization for Industrial Research (Part-3)

18

Contradictions

A

B

Improving one feature harms the

other feature.

PLATFORM 1: II (5)

Page 19: Innovation Benefits Realization for Industrial Research (Part-3)

19

Contradictions

Improving one feature harms the

other feature.A

B

PLATFORM 1: II (5)

Page 20: Innovation Benefits Realization for Industrial Research (Part-3)

20

Contradictions

A B

There exists a control feature of the system that ties the

two desirable features together.

C

PLATFORM 1: II (5)

Page 21: Innovation Benefits Realization for Industrial Research (Part-3)

21

Contradictions

A

B

When the control feature is small or absent, one of the features increases

while the other decreases.

C

PLATFORM 1: II (5)

Page 22: Innovation Benefits Realization for Industrial Research (Part-3)

22

Contradictions

A

B

When the control feature is large or

present, the second features increases

while the first decreases.

C

PLATFORM 1: II (5)

Page 23: Innovation Benefits Realization for Industrial Research (Part-3)

23

Contradictions

A BWhat we want is c

small to give large A and c large to give

large B.

CC

PLATFORM 1: II (5)

Page 24: Innovation Benefits Realization for Industrial Research (Part-3)

24

ContradictionsResolve by Separation

A B

• Space• Time• Parts From the

Whole• Upon Condition

CC

PLATFORM 1: II (5)

Page 25: Innovation Benefits Realization for Industrial Research (Part-3)

25

Separation PrinciplesSpace

Example: Strength vs. Weight of a plastic panel

The control parameter is thickness. Reinforcing ribs are placed only where additional strength is needed.

PLATFORM 1: II (5)

Page 26: Innovation Benefits Realization for Industrial Research (Part-3)

26

Contradictions - Jet EngineBoeing wanted to install larger engines on a redesigned 737. A larger air intake would reduce ground clearance to unacceptable levels.

Contradiction: Increasing air intake reduces ground clearance

Control parameter: Intake radius

PLATFORM 1: II (5)

Page 27: Innovation Benefits Realization for Industrial Research (Part-3)

27

Contradictions - Jet Engine

Make the radius large laterally for high air flow.

Make the radius smaller downward for high ground clearance.

Resolve the contradiction by Separation

PLATFORM 1: II (5)

Page 28: Innovation Benefits Realization for Industrial Research (Part-3)

28

Separation PrinciplesTime

C

AB

At time 1, C is small

C AB

At time 2, C is large

PLATFORM 1: II (5)

Page 29: Innovation Benefits Realization for Industrial Research (Part-3)

29

Separation PrinciplesTime

Example: Strength vs. Lightweight of a automobile frame

The control parameter is thickness. Reinforcing brackets are needed for shipping the vehicles but not for normal operation. The weight degrades fuel economy. The brackets are bolted on at the factory and then removed at the dealership.

PLATFORM 1: II (5)

Page 30: Innovation Benefits Realization for Industrial Research (Part-3)

30

Separation PrinciplesParts From the Whole

Large company composed of small semi-autonomous divisions to keep small company responsiveness.

PLATFORM 1: II (5)

Page 31: Innovation Benefits Realization for Industrial Research (Part-3)

31

Separation PrinciplesUnder Conditions

C

AB

Condition 1, C is small

C AB

Condition 2, C is large

PLATFORM 1: II (5)

Page 32: Innovation Benefits Realization for Industrial Research (Part-3)

32

Separation Principles Under Conditions

Example: Privacy Glass

There is a liquid crystal film (made by 3M) that can be laminated to a window. When there is no current applied to the film, the film is opaque. When a current is applied, the liquid crystals align and the film is nearly transparent.

PLATFORM 1: II (5)

Page 33: Innovation Benefits Realization for Industrial Research (Part-3)

33

Piling Problem

Easy to drive Stays in placeCompromise

PLATFORM 1: II (5)

Page 34: Innovation Benefits Realization for Industrial Research (Part-3)

34

Piling ProblemSeparation In Space

PLATFORM 1: II (5)

Page 35: Innovation Benefits Realization for Industrial Research (Part-3)

35

Piling ProblemSeparation By Parts From Whole

Drive bundles of smaller piles

PLATFORM 1: II (5)

Page 36: Innovation Benefits Realization for Industrial Research (Part-3)

36

Piling ProblemSeparation Under Condition

When the pile is turned, it goes down.

When the pile is not turning, the threads stop the downward movement

PLATFORM 1: II (5)

Page 37: Innovation Benefits Realization for Industrial Research (Part-3)

37

Piling ProblemSeparation In Time

During driving After pile is in position

PLATFORM 1: II (5)

Page 38: Innovation Benefits Realization for Industrial Research (Part-3)

38

200,000

40,000

Key Findings• Definition of inventive problems• Levels of invention• Patterns of evolution• Patterns of invention

Patents *(Worldwide)

* Today over 2,000,000 patents have been investigated.

TRIZ IS BASED ON PATTERNS IN THE PATENT DATABASE

PLATFORM 1: II (5)

Page 39: Innovation Benefits Realization for Industrial Research (Part-3)

39

What Has Been Discovered so far…

After investigating over 2 million patents, at least 44 distinct Patterns of Inventive Problem Solving have been discovered for tackling technical contradictions

PLATFORM 1: II (5)

Page 40: Innovation Benefits Realization for Industrial Research (Part-3)

40

44 Ways to Improve Technology Characteristics with TRIZ1. Segmentation (Fragmentation)

12. Equipotentiality 23. Feedback 34. Discarding & Recovering

2. Removal / Extraction 13. Reverse (“The other way round”)

24. Intermediary (Mediator) 35. Parameters & Properties Changes (Transformation)

3. Local Quality 14. Spheroidality – Curved 25. Self-Service and Self-Organization

36. Phase Transition

4. Asymmetry 15. Dynamism 26. Copying 37. Thermal Expansion

5. Consolidation 16. Partial, Satiated or Excessive Actions

27. Inexpensive Short-Lived Objects (Dispose)

38. Accelerated Oxidation (Strong Oxidants)

6. Universality 17. Another Dimension 28. Mechanical Substitution 39. Inert Environment (Atmosphere)

7. Nested Structures 18. Mechanical Vibration 29. Pneumatic or Hydraulic Construction

40. Composite Materials

8. Anti-Weight (Counterweight)

19. Periodic Action 30. Flexible Shells and Thin Films

41. Multistep

9. Preliminary Anti-Action (Counter-action)

20. Continuity of Useful Action (Uninterrupted Useful Effect)

31. Porous Materials and Membranes

42. Use of Epenthetic (Insert) Parts

10. Preliminary Action 21. Skipping (Rushing Through)

32. Changing the Colour 43. Match of Impedances

11. Beforehand Cushioning (Cushion in Advance)

22. Convert Harm into Benefit (Blessing in Disguise)

33. Homogeneity 44. Concentration- Dispersion

Page 41: Innovation Benefits Realization for Industrial Research (Part-3)

41

1945: Patent for processing peppers. Force air inside of the peppers. Suddenly reduce the pressure. Seeds and stems separate from pepper body.

Using these Patterns of Invention

PLATFORM 1: II (5)

Page 42: Innovation Benefits Realization for Industrial Research (Part-3)

42

1950: Patent for removing the shell of cedar nuts. Under high pressure, water is forced inside of the shells. When the pressure is suddenly reduced, the shells break away.

Using these Patterns of Invention

PLATFORM 1: II (5)

Page 43: Innovation Benefits Realization for Industrial Research (Part-3)

43

1950: Patent for removing shells from sunflower seeds. Air is forced inside the shells. When the pressure is suddenly reduced, the shells break away.

Using these Patterns of Invention

PLATFORM 1: II (5)

Page 44: Innovation Benefits Realization for Industrial Research (Part-3)

44

AND 27 YEARS LATER…..

1972: Patent for breaking artificial diamonds. Diamonds are placed into a pressure chamber. High pressure forces air into micro fractures. Releasing the pressure suddenly breaks the diamonds into crystals.

PLATFORM 1: II (5)

Page 45: Innovation Benefits Realization for Industrial Research (Part-3)

45

• Removing stems from bell peppers• Removing shells from sunflower seeds• Cleaning filters• Unpacking parts wrapped in protective paper• Splitting diamonds along micro-cracks

(+27 years after pepper patent)• Producing sugar powder from sugar crystals• And 200 more!!!

Pattern: Raise Pressure Slowly Then Suddenly Release It

PLATFORM 1: II (5)

Page 46: Innovation Benefits Realization for Industrial Research (Part-3)

46

Pattern: Raise Pressure Slowly Then Suddenly Release It

Or more generally:Store up energy and suddenly release it

Or more generally yet:Store up a resource for later use

PLATFORM 1: II (5)

Page 47: Innovation Benefits Realization for Industrial Research (Part-3)

The 44 Patterns of Technical Inventive Problem Solving

Page 48: Innovation Benefits Realization for Industrial Research (Part-3)

48

1. Segmentation (Fragmentation)A. Divide an object into independent parts

E.G. Multiwire cables E.G. Replace mainframe computer with personal computers & network E.G. A cargo ship is divided into identical sections. If necessary, the ship can be

made longer or shorter E.G. Garden hoses can be joined together to form any length needed E.G. A large air duct has a 90-degree elbow that is segmented to avoid strong

turbulence & to improve air flowB. Make an object modular

E.G. Modular furniture, modular computer components, folding wooden ruler E.G. The pole of a temporary street light consists of a few elements linked by flexible

joints for easy transportation & installation E.G. Quick-disconnect joints in plumbing

C. Increase the degree of fragmentation or segmentation E.G. Replace solid shades with Venetian blinds E.G. Use powdered welding metal instead of foil or rod to get better penetration of the

joint E.G. Roller conveyor

PLATFORM 1: II (5)

Page 49: Innovation Benefits Realization for Industrial Research (Part-3)

49

2. Removal / Extraction

A. Separate (extract) an interfering part or property from an object, or single out the only necessary part (or property) of an object E.G. Place a noisy compressor outside the building where compressed air is

used E.G. Use fibre optics or a light pipe to separate a hot light source from where

the light is needed E.G. Frighten birds away from the airport by using a tape recorder to reproduce

a sound known to scare birds. (The sound is thus separated from the birds)

PLATFORM 1: II (5)

Page 50: Innovation Benefits Realization for Industrial Research (Part-3)

50

3. Local QualityA. Change an object's structure from uniform (homogeneous) to non-

uniform, change an external environment (or external influence) from uniform to non-uniform E.G. Doping silicon wafers in special windows prepared in a photolithography

process allows for making semiconductor devices from this materialB. Make each part of an object function in conditions most suitable for

its operation E.G. Lunch box with special compartments for hot & cold solid foods & liquids

C. Make each part of an object fulfill a different & useful function E.G. Pencil with eraser, hammer with nail puller E.G. Multifunction tool that scales fish & acts as pliers, wire stripper, flathead

screwdriver, Phillips screwdriver, manicure set, etc. E.G. Ultrasonic drill consists of heat conductive head & heat resistant body

PLATFORM 1: II (5)

Page 51: Innovation Benefits Realization for Industrial Research (Part-3)

51

4. AsymmetryA. Change the shape of an object from symmetrical to asymmetrical

E.G. Asymmetrical mixing vessels or asymmetrical vanes in symmetrical vessels improve mixing (cement trucks, cake mixers, blenders)

E.G. The outer side of a car's tire has a higher strength in order to improve resistance to impact with a curb

E.G. Put a flat spot on a cylindrical shaft to attach a knob securely E.G. Dust filter membranes have different porosities E.G. Change from circular O-rings, to oval cross-section, to specialized shapes

to improve sealingB. If an object is asymmetrical, increase its degree of asymmetry

E.G. Use astigmatic optics to merge colours

PLATFORM 1: II (5)

Page 52: Innovation Benefits Realization for Industrial Research (Part-3)

52

5. ConsolidationA. Merge identical or similar objects, assemble identical or similar parts

to perform parallel operations E.G. Personal computers in a network E.G. Millions of transistors in a single microprocessor chip E.G. Catamaran

B. Make operations contiguous or parallel; bring them together in time E.G. Link slats together in a Venetian or vertical blinds E.G. Medical diagnostic instruments that simultaneously analyze multiple blood

parameters E.G. The working element of a rotary excavator has special steam nozzles to

defrost & soften the frozen ground E.G. Mulching lawnmower (demonstrates also Principle 6)

PLATFORM 1: II (5)

Page 53: Innovation Benefits Realization for Industrial Research (Part-3)

53

6. UniversalityA. Make a part or object perform multiple functions; eliminate the need

for other parts E.G. Handle of a toothbrush contains toothpaste E.G. Child's car safety seat cover converts to a stroller E.G. Sofa converts into a bed E.G. Minivan's seat adjusts to accommodate seating, sleeping, or cargo carrying E.G. Charge-coupled device with microlenses on the surface E.G. PC in a library functions as a reference, instructional aid, news source, etc.

PLATFORM 1: II (5)

Page 54: Innovation Benefits Realization for Industrial Research (Part-3)

54

7. Nested StructuresA. Place one object into another; place each object, in turn, inside the

other E.G. Measuring cups or spoons E.G. Russian nesting doll (Matrioshka) E.G. Portable audio system (microphone fits inside transmitter, which fits inside

amplifier case)B. Make one part pass through a cavity of the other

E.G. Telescoping radio antenna E.G. Extending pointer E.G. Zoom lens E.G. Mechanical pencil with lead stored inside E.G. Chairs that stack on top of each other for storage E.G. Seat belt retraction mechanism E.G. Retractable aircraft landing gear stow inside the fuselage (also

demonstrates Principle 15, Dynamism)

PLATFORM 1: II (5)

Page 55: Innovation Benefits Realization for Industrial Research (Part-3)

55

8. Anti-Weight (Counterweight)A. To counter the weight of an object, merge it with other objects that

provide lift E.G. Inject foaming agent into a bundle of logs, to make it float better E.G. Boat with hydrofoils E.G. A rear wind in racing cars that increases pressure from the car to the

ground E.G. Use of helium balloon to support advertising signs or a cable above a river E.G. Paintbrush with lightweight handle that floats

B. To compensate for the weight of an object, make it interact with the environment (e.g. use aerodynamic, hydrodynamic, buoyancy, & other forces) E.G. Shape of aircraft wing reduces air density above the wing, increases

density below the wing, to create lift. (This also demonstrates Principle 4, Asymmetry)

E.G. Vortex strips improve lift of aircraft wings E.G. Hydrofoils lift ship out of the water to reduce drag

PLATFORM 1: II (5)

Page 56: Innovation Benefits Realization for Industrial Research (Part-3)

56

9. Preliminary Anti-Action (Counter-Action)

A. If it is necessary to do an action with both harmful & useful effects, this action should be replaced with anti-actions to control harmful effects E.G. Buffer a solution a prevent harm from extremes of pH E.G. A cutting method using a dish cutter rotating on its geometric axis during the

cutting process. In order to prevent vibrations, the dish cutter is charged in advance with forces close in size & direction & directly contrary to the forces arising in cutting process

B. Create actions in an object that will later oppose known undesirable working actions E.G. Pre-stress rebar before pouring concrete E.G. Reinforced concrete column E.G. Reinforced shaft made from several pipes which have been previously twisted

to a specified angle E.G. Corrugated & covered paper for cartons is bent in opposite directions. Carton

becomes flat when the glue between the papers dries E.G. Masking before harmful exposure: lead apron covers parts of the body being

exposed to X-rays; masking tape to protect the part of an object not being painted

PLATFORM 1: II (5)

Page 57: Innovation Benefits Realization for Industrial Research (Part-3)

57

10. Preliminary ActionA. Perform, before necessary, a required change of an object (either fully

or partially). Carry out all or part of the required action in advance E.G. Pre-pasted wallpaper E.G. Self-adhesive stamps E.G. Rubber cement in a bottle is difficult to apply neatly & uniformly. However,

if formed into a tape, the proper amount can be applied more easily E.G. Sterilize all instruments needed for a surgical procedure on a single sealed

tray E.G. World Wide Web search engines (Lycos, Alta Vista) browse through all

possible links & create a fast-access index of keywords to Internet locations. The query engine then looks up answers in the local index database instead of directly retrieving web pages, which would take much more time

B. Pre-arrange objects so that they can act from the most convenient place & without losing time for their delivery E.G. Pre-deposited blade in surgery cast. The blade works during cast removal E.G. Utility knife blade made with a groove allowing the dull part of the blade to

be broken off, restoring sharpness

PLATFORM 1: II (5)

Page 58: Innovation Benefits Realization for Industrial Research (Part-3)

58

11. Beforehand Cushioning (Cushion in Advance)

A. Prepare emergency means beforehand to compensate the relatively low reliability of an object E.G. A strip on photographic film that directs the developer to compensate for

poor exposure E.G. Backup parachute. Tape backup of critical data (unreliable computers or

power systems) E.G. Alternate air system for aircraft instruments E.G. Merchandise is magnetized to deter shoplifting E.G. Usage of old tires at sharp road turns for safety E.G. A cover of steel by a material that resists oxidation

PLATFORM 1: II (5)

Page 59: Innovation Benefits Realization for Industrial Research (Part-3)

59

12. EquipotentialityA. In a potential field, limit position changes (e.g. change operating

conditions to eliminate the need to raise or lower objects in a gravity field E.G. Spring-loaded parts delivery system in a factory E.G. Engine oil in a car is changed by workers in a pit to avoid using expensive

lifting equipment E.G. Locks in a channel between two bodies of water (such as the Panama

Canal) E.G. A device for raising & lowering heavy presses that takes the form of an

attachment with a roll-gang fastened to the press table E.G. "Skillets" in an automobile plant that bring all tools to the right position

PLATFORM 1: II (5)

Page 60: Innovation Benefits Realization for Industrial Research (Part-3)

60

13. Reverse (“The other way round”)A. Invert the actions used to solve a problem (e.g. instead of cooling an

object, heat it) E.G. To loosen stuck parts, cool the inner part instead of heating the outer part

B. Instead of an action dictated by the requirements, one implements the opposite action E.G. Rotate the part instead of the tool

C. Make movable parts or the external environment fixed, & fixed parts movable E.G. Flow water in short pool moving against a swimmer E.G. Moving sidewalk with standing people. Treadmill (for walking or running in

place) E.G. Abrasively cleaning parts by vibrating the parts instead of the abrasive

D. Turn the object or process “upside down” E.G. Turn an assembly upside down to insert fasteners (especially screws) E.G. Empty grain from containers (ship or railroad) by inverting them

PLATFORM 1: II (5)

Page 61: Innovation Benefits Realization for Industrial Research (Part-3)

61

14. Spheroidality - CurvedA. Instead of using rectilinear parts, surfaces, or forms, use curvilinear

ones; move from flat surfaces to spherical, from parts shaped as a cube (parallelepiped) to ball-shaped structures E.G. Use arches & domes for strength in architecture E.G. A circular landing way in airports with "unlimited" length

B. Use rollers, balls, spirals, domes E.G. Spiral gear (Nautilus) produces continuous resistance for weightlifting E.G. A device for welding pipes into a lattice has electrodes in the form of

rotating balls E.G. Computer mouse uses ball construction to transfer linear two-axis motion

into vector motion E.G. Ballpoint & rollerball pens for smooth ink distribution

C. Go from linear to rotary motion, use centrifugal forces E.G. Linearly move the cursor on computer screen using a mouse or a trackball E.G. Spinning clothes instead of wringing to remove water E.G. Use spherical casters instead of cylindrical wheels to move furniture

PLATFORM 1: II (5)

Page 62: Innovation Benefits Realization for Industrial Research (Part-3)

62

15. DynamismA. Allow or design characteristics of an object, external environment, or

process to change to be optimal or to find an optimal operating condition E.G. Adjustable car steering wheel (or seat, back support, mirror position...)

B. Divide an object into parts capable of movement relative to each other E.G. “Butterfly" computer keyword (also shows Principle 7, Nested structures) E.G. Scissors instead of knife E.G. A flashlight with a flexible gooseneck E.G. A transport vessel with a cylindrical body. To reduce the draft of the vessel

under full load, the body is composed of two hinged, half-cylindrical parts which can be opened

C. If an object / process is rigid or inflexible, make it movable or adaptive E.G. The flexible boroscope for examining engines E.G. The flexible endoscope for medical examination E.G. A strip electrode in an automatic arc welding pre-bent at different angles

along its length that allows control of the shape & dimensions of the weld bath during welding

PLATFORM 1: II (5)

Page 63: Innovation Benefits Realization for Industrial Research (Part-3)

63

16. Partial, Satiated or Excessive Actions

A. If 100 percent of an object is hard to achieve using a given solution method, the problem may be considerably easier to solve by using "slightly less" or "slightly more" of the same method E.G. Deposit excess chemical for photolithography in semiconductor production,

then remove excess by spinning E.G. Fill, then "top off" when filling the gas tank of a car E.G. Software: various image encoding algorithms such as JPEG, GIF, etc. E.G. To obtain uniform discharge of a metallic powder from a bin, the hopper

has a special internal funnel, which is continuously overfilled to provide nearly constant pressure

PLATFORM 1: II (5)

Page 64: Innovation Benefits Realization for Industrial Research (Part-3)

64

17. Another DimensionA. Difficulties involved in moving or relocating an object along a line are

removed if the object acquires the ability to move in two dimensions (along a plane). Accordingly, problems connected with movement or relocation of an object on one plane are removed by switching to a three-dimensional space E.G. Infrared computer mouse moves in space, instead of on a surface, for

presentations E.G. Five-axis cutting tool can be positioned where needed

B. Use a multi-story arrangement of objects instead of a single-story arrangement. Use a multi-layered assembly of objects instead of a single layer E.G. Cassette with several CDs to increase music time & variety E.G. Greenhouse that has a concave reflector on the northern part of the house

to improve illumination of that part of the house by reflecting sunlight during the day

E.G. Fourier transform-based software, in which digitized signals are transformed from the time domain to the frequency domain for processing

PLATFORM 1: II (5)

Page 65: Innovation Benefits Realization for Industrial Research (Part-3)

65

17. Another Dimension (Continued)C. Tilt or re-orient the object, lay it on its side

E.G. Dump truckD. Use another side of a given area

E.G. All devices with Mobius beltE. Use optical lines falling onto neighbouring areas or onto the reverse

side of the area available

PLATFORM 1: II (5)

Page 66: Innovation Benefits Realization for Industrial Research (Part-3)

66

18. Mechanical VibrationA. Oscillate or vibrate an object

E.G. Electric carving knife with vibrating blades E.G. Vibrate a casting mold while it is being filled to improve flow & structural

propertiesB. If oscillation exists, increase its frequency

E.G. Distribute powder with vibrationC. Use an object's resonant frequency

E.G. Destroy gall stones or kidney stones by ultrasonic resonance E.G. An instrument for cutting timber without a saw whose pulse frequency is

close to the inherent frequency of vibration of the timberD. Use piezoelectric vibrators instead of mechanical ones

E.G. Quartz crystal oscillations drive highly accurate clocksE. Use combined ultrasonic & electromagnetic field oscillations

E.G. Mix alloys in an induction furnace

PLATFORM 1: II (5)

Page 67: Innovation Benefits Realization for Industrial Research (Part-3)

67

19. Periodic ActionA. Use pauses between actions to perform similar or different actions;

i.e. one action is active during pauses of other action E.G. The auto-control of a personal computer that runs when the computer is

not running other applications E.G. In cardiopulmonary respiration, breathe for victim once every 5 seconds E.G. Squeezing of channels in telephone communications

B. Instead of continuous action, use periodic or pulsating actions E.G. Hitting something repeatedly with a hammer E.G. Replace continuous siren with pulsed sound E.G. A flashing warning lamp is more noticeable than one that is continuously lit

C. If an action is already periodic, change the periodic magnitude or frequency E.G. Use Frequency Modulation to convey information instead of Morse code E.G. Replace a continuous siren with sound that changes amplitude &

frequency

PLATFORM 1: II (5)

Page 68: Innovation Benefits Realization for Industrial Research (Part-3)

68

20. Continuity of Useful Action (Uninterrupted Useful Effect)

A. Continue on actions; make all parts of an object perform UF and / or NF at full load, all the time E.G. Flywheel (or hydraulic system) stores energy when a vehicle stops, so the

motor can keep running at optimum power E.G. A drill with cutting edges, which permits cutting in forward & reverse

directionsB. Eliminate all idle or intermittent actions

E.G. Print during the return of a printer carriage - dot matrix printer, daisy wheel printers, inkjet printers

E.G. Crystal growing machine with permanent raw material supply mechanism

PLATFORM 1: II (5)

Page 69: Innovation Benefits Realization for Industrial Research (Part-3)

69

21. Skipping (Rushing Through)A. Conduct a process or certain stages (e.g. destructible, harmful, or

hazardous operations) at high speed E.G. Use a high speed dentist's drill to avoid heating tissue E.G. Cut plastic faster than heat can propagate in the material to avoid

deforming the shape

PLATFORM 1: II (5)

Page 70: Innovation Benefits Realization for Industrial Research (Part-3)

70

22. Convert Harm into Benefit (Blessing in Disguise)A. Use harmful factors (particularly harmful effects of the environment or

surroundings) to achieve a positive effect E.G. Use waste heat to generate electric power E.G. Sand or gravel freezes solid when transported through cold climates.

Over-freezing (using liquid nitrogen) makes the ice brittle, permitting pouring E.G. Recycle waste material from one process as raw materials for another

B. Eliminate the primary harmful action by adding it to another harmful action to resolve the problem E.G. Add a buffering material to a corrosive solution E.G. Use a helium-oxygen mix for diving to eliminate both nitrogen narcosis &

oxygen poisoning that are a danger with air & other nitrox mixesC. Amplify a harmful factor to such a degree that it is no longer harmful

E.G. Setting a backfire to eliminate fuel from a forest fire E.G. When using high frequency current to heat metal, only the outer layer

became hot. This negative effect was later used for surface heat-treating E.G. Application of extremely low temperatures to frozen aggregate materials to

speed the process of restoring their flow capability

PLATFORM 1: II (5)

Page 71: Innovation Benefits Realization for Industrial Research (Part-3)

71

23. FeedbackA. Introduce feedback (referring back, cross-checking) to improve a

process or action E.G. Automatic volume control in audio circuits E.G. The level of liquid is self-adjusted by a floating valve inside a tank E.G. Feedback inside the software program, analogous to feedback in

mechanical or electrical systems, is commonly used to control the operation of various elements

E.G. Signal from gyrocompass is used to control simple aircraft autopilotsB. If feedback is already used, change its magnitude or influence

E.G. Change sensitivity of an autopilot when within 5 miles of an airport E.G. Change sensitivity of a thermostat when cooling versus heating, since it

uses energy less efficiently when cooling

PLATFORM 1: II (5)

Page 72: Innovation Benefits Realization for Industrial Research (Part-3)

72

24. Intermediary (Mediator)A. Use an intermediary carrier article or intermediary process

E.G. Carpenter's nail set, used between the hammer & the nail E.G. Word processors & spreadsheets include conversion filters to read & write

files in competitive product formatsB. Merge one object temporarily with another (which can be easily

removed) E.G. Pot holder to carry hot dishes to the table E.G. To reduce energy loss when applying current to a liquid metal, cooled

electrodes & intermediate liquid metal with a lower melting temperature are used E.G. Suspensions (adhesive parts can be dissolved or burned out)

PLATFORM 1: II (5)

Page 73: Innovation Benefits Realization for Industrial Research (Part-3)

73

A. Make an object serve itself by performing auxiliary helpful functions E.G. A soda fountain pump that runs on the pressure of the carbon dioxide that

carbonates the drinks. This assures that drinks will not be flat & also eliminates the need for sensors

E.G. To weld steel to aluminium, create an interface from alternating thin strips of the two materials. Cold - weld the surface into a single unit with steel on one face & copper on the other, then use normal welding techniques to attach the steel object to the interface, & the interface to the aluminium. (This concept also has elements of Principle 24, Intermediary, & Principle 4, Asymmetry)

B. The object should service / organize itself & carry out supplementary & repair operations E.G. Halogen lamps regenerate the filament during use - evaporated material is

redeposited E.G. Software programs employ some form of self-checking to verify their integrity

C. Use water resources, energy, or substances E.G. Use heat from a process to generate electricity, "Cogeneration“ E.G. Use animal waste as fertilizer E.G. Use food & lawn waste to create compost E.G. A cone-shaped concrete dam sink in sand on a river's bottom will seal itself on

the event of an earthquake

25. Self-Service & Self-Organization

PLATFORM 1: II (5)

Page 74: Innovation Benefits Realization for Industrial Research (Part-3)

74

26. CopyingA. Instead of an unavailable, expensive, fragile object, use simpler &

inexpensive copies E.G. Virtual reality via computer instead of an expensive vacation E.G. Use the sound of a barking dog, without the dog, as a burglar alarm E.G. Modeling stage in design E.G. Listen to an audio tape instead of attending a seminar

B. Replace an object or process with optical copies E.G. Do surveying from space photographs instead of on the ground E.G. Photolithography in semiconductor production E.G. Measure an object by making measurements in the photograph E.G. The height of tall objects can be determined by measuring their shadows E.G. Use sonograms to evaluate the health of a fetus, instead of risking damage

by direct testingC. If visible optical copies are already used, move to infrared or

ultraviolet copies E.G. Make images in infrared to detect heat sources, such as diseases in crops

or intruders in a security system

PLATFORM 1: II (5)

Page 75: Innovation Benefits Realization for Industrial Research (Part-3)

75

27. Inexpensive Short-Lived Objects (Dispose)

A. Replace an expensive object with multiple inexpensive objects, comprising certain qualities (such as service life, for instance) E.G. Use disposable supplies to avoid the cost of cleaning & storing durable

objects E.G. Plastic cups in motels, disposable diapers, many kinds of medical supplies E.G. Single-roll disposable camera for tourists

PLATFORM 1: II (5)

Page 76: Innovation Benefits Realization for Industrial Research (Part-3)

76

28. Mechanical SubstitutionA. Replace a mechanical means with a sensory (optical, acoustic, taste,

or olfactory) means E.G. Replace a physical fence to confine a dog or cat with an acoustic

(electronic) "fence" (signal audible to the animal) E.G. Use a bad smelling compound in natural gas to alert users to leakage,

instead of a mechanical or electrical sensorB. Use electric, magnetic, & electromagnetic fields to interact with the

object E.G. To mix 2 powders, electrostatically charge one positive & the other

negative. Either use fields to direct them, or mix them mechanically & let their acquired fields cause the grains of the powder to pair

E.G. To increase the bond between metal coating & a thermoplastic material, the process is carried out inside an electromagnetic field which applies force to the metal

E.G. Application of magnetic fields for reducing oxygen effects of performance of semiconductor wafers

PLATFORM 1: II (5)

Page 77: Innovation Benefits Realization for Industrial Research (Part-3)

77

28. Mechanical Substitution (Continued)

C. Change from static to movable fields, from unstructured fields to those having structure E.G. Early communications used omni-directional broadcasting. We now use

antennas with a very detailed structure of the pattern of radiationD. Use fields in conjunction with field-activated particles (e.g.

ferromagnetic) E.G. Heat a substance containing ferromagnetic material by using a varying

magnetic field. When the temperature exceeds the Curie point, the material becomes paramagnetic & no longer absorbs heat

PLATFORM 1: II (5)

Page 78: Innovation Benefits Realization for Industrial Research (Part-3)

78

29. Pneumatic or Hydraulic ConstructionA. Use gas & liquid parts of an object instead of solid parts (e.g.

inflatable, filled with liquids, air cushion, hydrostatic, hydro-reactive) E.G. Comfortable shoe sole inserts filled with gel E.G. Store energy from decelerating a vehicle in a hydraulic system, then use the

stored energy to accelerate later E.G. Using reducing air pressure in "vacuum holders"

B. Use the Archimedes forces to reduce the weight of an object E.G. To produce an all-metal shell dirigible without high-priced adjustments, the

montage is realized by floating on pontoons in waterC. Use negative or atmosphere pressure

E.G. In order to prevent displacement of friable cargo in a ship, at time of transportation the free surface of cargo is covered by a hermetic rubber-band layer, creating a vacuum which ensures shrinking of the layer by atmospheric pressure

D. A spume or foam can be used as a combination of liquid & gas properties with a light weight E.G. Spume lubricant is used for a stamp instrument E.G. Cavities of electrical soldering pen are filled by spume mass

PLATFORM 1: II (5)

Page 79: Innovation Benefits Realization for Industrial Research (Part-3)

79

30. Flexible Shells and Thin FilmsA. Use flexible shells & thin films instead of three-dimensional

structures E.G. Use inflatable (thin film) structures as winter covers on tennis courts E.G. Coating glass windows with sapphire for high-temperature applications

B. Isolate the object from the external environment using flexible shells & thin films E.G. Float a film of bipolar material (one end hydrophilic, one end hydrophobic)

on a reservoir to limit evaporation E.G. For shipping fragile products, air bubble envelopes or foam-loke materials

are used

PLATFORM 1: II (5)

Page 80: Innovation Benefits Realization for Industrial Research (Part-3)

80

31. Porous Materials & MembranesA. Make an object porous or add porous elements (inserts, coatings,

etc.) E.G. Drill holes in a structure to reduce the weight E.G. To avoid pumping coolant to a machine, some parts are filled with a porous

material soaked in a coolant liquid. The coolant evaporates when the machine is working, providing short-term uniform cooling

E.G. Porous wafers for GaAs devicesB. If an object is already porous, use the pores to introduce a useful

substance or function E.G. Use a porous metal mesh to wick excess solder away from a joint E.G. Store hydrogen in the pores of a palladium sponge. (Fuel "tank" for the

hydrogen car - much safer than storing hydrogen gas)

PLATFORM 1: II (5)

Page 81: Innovation Benefits Realization for Industrial Research (Part-3)

81

32. Changing the ColourA. Change the colour of an object or its external environment

E.G. Use safe lights in a photographic darkroomB. Change the transparency of an object or its external environment

E.G. Use photolithography to change transparent material to a solid mask for semiconductor processing. Similarly, change mask material from transparent to opaque for silk screen processing

C. In order to observe objects or processes that are difficult to see, use coloured additives. If such additives are already used, employ luminescence traces E.G. Fluorescent additives during UV spectroscopy E.G. A water curtain used to protect steel mill workers from overheating blocked

infrared rays but not the bright light from the melted steel. A colouring was added to the water to create a filter effect while preserving the transparency of the water

PLATFORM 1: II (5)

Page 82: Innovation Benefits Realization for Industrial Research (Part-3)

82

33. HomogeneityA. Make objects interacting with a given object of the same material (or

material with identical properties) E.G. Make the container out of the same material as the contents, to reduce

chemical reactions E.G. The surface of a feeder for abrasive grain is made of the same material

that runs through the feeder, allowing a continuous restoration of the surface E.G. Make parts of semiconductor equipment from silicon

PLATFORM 1: II (5)

Page 83: Innovation Benefits Realization for Industrial Research (Part-3)

83

34. Discarding and RecoveringA. Dissociation-Association: this principle allows division & coalition on

the molecular level E.G. Use alloys prepared by molecular beam epitaxy in opto-electronic devices E.G. Use some materials as a working body for sidebars of binary cycle of energy

equipment. These materials can dissociate during the warming semi-cycle with absorbing heat & associate back during the cooling semi-cycle with the extraction of same portions of energy

B. Discard (by dissolving, evaporating, etc.) portions of an object that have fulfilled their functions or modify these directly during operation E.G. Use a dissolving capsule for medicine E.G. Biodegradable plastics E.G. Rocket boosters separate after serving their function E.G. Sprinkle water on cornstarch-based packaging; it reduces its volume by more

than 1000X!C. Conversely, restore consumable parts of an object directly in

operation E.G. Self-sharpening lawn mower blades E.G. Automobile engines that give themselves a "tune-up" while running

PLATFORM 1: II (5)

Page 84: Innovation Benefits Realization for Industrial Research (Part-3)

84

A. Change an object's physical aggregate state (e.g. to a gas, liquid, or solid) E.G. Freeze the liquid centers of filled candies, then dip in melted chocolate,

instead of handling the messy, gooey, hot liquid E.G. Transport oxygen, nitrogen, or petroleum gas as a liquid, instead of a gas,

to reduce volumeB. Change the concentration or consistency ( see also Principle 44

below) E.G. Liquid hand soap is concentrated & more viscous than bar soap at the

point of use, making it easier to dispense in the correct amount & more sanitary when shared by several people

E.G. As a rule, the resistivity of semiconductors changes by concentration of impurities

C. C. Change the degree of flexibility (see also Principle 15 above) E.G. Use adjustable dampers to reduce the noise of parts falling into a container

by restricting the motion of the container's walls E.G. Vulcanize rubber to change its flexibility & durability

D. D. Change the temperatureE. E.G. Raise the temperature above the Curie point to change a

ferromagnetic substance to a paramagnetic substanceF. E.G. Raise the temperature of food to cook it. (Changes taste,

aroma, texture, chemical properties, etc.)G. E.G. Lower the temperature of medical specimens to preserve them

for later analysisH. E.G. Dry objects by hot airI. E.G. ThermocoupleJ. E. Change other characteristics of a techniqueK. E.G. Sphingometer

35. Parameters & Properties Changes (Transformation)

PLATFORM 1: II (5)

Page 85: Innovation Benefits Realization for Industrial Research (Part-3)

85

35. Parameters & Properties Changes (Transformation) - Continued

D. Change the temperature E.G. Raise the temperature above the Curie point to change a ferromagnetic

substance to a paramagnetic substance E.G. Raise the temperature of food to cook it. (Changes taste, aroma, texture,

chemical properties, etc.) E.G. Lower the temperature of medical specimens to preserve them for later

analysis E.G. Dry objects by hot air E.G. Thermocouple

E. Change other characteristics of a technique E.G. Sphingometer

PLATFORM 1: II (5)

Page 86: Innovation Benefits Realization for Industrial Research (Part-3)

86

36. Phase TransitionsA. Use phenomena that occur during phase transitions (e.g. volume

changes, loss or absorption of heat, etc.) E.G. Heat pumps use the heat of vaporization & heat of condensation of a

closed thermodynamic cycle to do useful work E.G. Crystallization E.G. Superconductivity

PLATFORM 1: II (5)

Page 87: Innovation Benefits Realization for Industrial Research (Part-3)

87

37. Thermal ExpansionA. Use thermal expansion (or contraction) of materials

E.G. Fit a tight joint together by cooling the inner part to contract, heating the outer part to expand, putting the joint together, & returning to equilibrium

E.G. To control the expansion of ribbed pipes, they are filled with water & cooled to a freezing temperature

B. If thermal expansion is being used, use multiple materials with different coefficients of thermal expansion E.G. The basic leaf spring thermostat: 2 metals with different coefficients of

expansion are linked so that the object bends one way when warmer than normal & the opposite way when cooler. To control the opening of roof windows in a greenhouse, bimetallic plates are connected to the windows, so temperature change bends the plates, causing the window to open or close

E.G. A lid of a hothouse is controlled by hinged hollow pipes with spreading water inside. The center of gravity of the pipes shifts with a change in temperature & therefore the pipes raise & lower the lid

PLATFORM 1: II (5)

Page 88: Innovation Benefits Realization for Industrial Research (Part-3)

88

38. Accelerated Oxidation (Strong Oxidants)

A. Replace common air with oxygen-enriched air E.G. Scuba diving with non-air mixtures have high concentration of oxygen for

extended enduranceB. Replace enriched air with pure oxygen

E.G. Cut at a higher temperature using an oxy-acetylene torch E.G. Treat wounds in a high pressure oxygen environment to kill anaerobic

bacteria & aid healingC. Expose air or oxygen to ionizing radiation

E.G. Ionize air to trap pollutants in an air cleaner for ultra-cleanrooms (class 100 & better in the semiconductor industry)

D. Use ionized oxygen E.G. Ionize oxygen to increase the speed of semiconductors' surface oxidation

E. Replace ozonized (or ionized) oxygen with ozone E.G. Speed chemical reactions by ozone

PLATFORM 1: II (5)

Page 89: Innovation Benefits Realization for Industrial Research (Part-3)

89

39. Inert Environment (Atmosphere)A. Replace a normal environment with an inert one

E.G. Prevent degradation of a hot metal filament by using an argon atmosphere E.G. Prevent cotton from catching fire in a warehouse by treating it with inert

gas while being transported to the storage area E.G. Foam is used to isolate a fire from oxygen in air

B. Add neutral parts or inert additives to an object E.G. Increase the volume of powdered detergent by adding inert ingredients.

This makes it easier to measure with conventional tools

PLATFORM 1: II (5)

Page 90: Innovation Benefits Realization for Industrial Research (Part-3)

90

40. Composite MaterialsA. Change from uniform to composite (multiple) materials

E.G. Composite (Copper-Ceramic-Copper) substrates for power semiconductors have high thermal conductivity & high electrical insulation

E.G. Military aircraft wings are made of composites of plastics & carbon fibers for high strength & low weight

E.G. Composite ferro-electrics for high-frequency applications are smaller, lighter, & more reliable than traditional parts

PLATFORM 1: II (5)

Page 91: Innovation Benefits Realization for Industrial Research (Part-3)

91

41. Multi-stepA. Efficiency of action increases due to consequent usage of a group of

uniform objects instead of the single object E.G. A multicylinder combustion engine E.G. Thousands of cells in a power MOSFET transistor

PLATFORM 1: II (5)

Page 92: Innovation Benefits Realization for Industrial Research (Part-3)

92

42. Use of Epenthetic (Insert) PartsA. Overcome problems in fabricating an object by using some temporary

insert during the manufacturing process, deleting the insert when finished E.G. During fabrication of semiconductor devices, the surface at some

operations is protected by photoresistors or silicon dioxide E.G. Bullet casings are ejected after the gun fires

PLATFORM 1: II (5)

Page 93: Innovation Benefits Realization for Industrial Research (Part-3)

93

43. Match of ImpedancesA. During design, determine the input impedance level & set the system

internal impedance to that input signal. If an exact match is impossible, minimize losses by amplifying or attenuating the input signal or dispersing the input signal via a few channels, each of whose impedance can be matched with the system impedance E.G. System impedance (complex resistance) matches input impedance to

provide a maximum transfer of energy across systems, such as electrical, fiber optics, hydraulic, gas, information & transmission lines, measurement apparatus, & devices with distributed parameters

PLATFORM 1: II (5)

Page 94: Innovation Benefits Realization for Industrial Research (Part-3)

94

44. Concentration-Dispersion Concentration / Dispersion is a systems transformation method

consisting of a set of objects (at least two), managing their mutual arrangement & relative quantity - a concentration can be absolute (expressed by number of objects in unit of volume or in the given spatial area) & relative (expressed by the relation of number of the given objects to total number of all objects in the given area). The essence of the Dispersion sub-Principle is partially crossed with essence of Splitting & Removal Principles, as well as the Concentration sub-Principle with the Association & Local Quality Principles; however, they are not reduced to each other. On the other hand, a part of this Principle is included in Principle 35

PLATFORM 1: II (5)

Page 95: Innovation Benefits Realization for Industrial Research (Part-3)

95

44. Concentration-Dispersion (cont.)A. Concentrate essential resources, elements, actions in a key place &

moment of time in order to achieve the purpose (e.g. increase technique effectiveness) E.G. Sublimated food products, encyclopedias, notebook computers versus

desktop computersB. If concentrated objects or actions cause undesirable effects, they

should be disseminated, dispersed in space and / or time E.G. Preparing food from concentrates, thermal treatment of semiconductors

after ion implantation, harmful effects of medical drugs at high concentrations, activation of diffusion

Typical ways of realizing this Principle E.G. Changing distance between objects or interval of time between actions E.G. Changing quantity of objects in given area or distribution density of objects

in space E.G. Changing amount of objects – dilution E.G. Expanding / convoluting a flow in different or same directions E.G. Moving from or to the center

PLATFORM 1: II (5)