innelastic light scattering in carbon nanostructures: from the micro to the nanoscale

58
Innelastic Light Scattering in Carbon Nanostructures: From the micro do the nanoscale Ado JORIO Departamento de Física Universidade Federal de Minas Gerais BRAZIL 27 September 2016

Upload: sociedade-brasileira-de-pesquisa-em-materiais

Post on 22-Mar-2017

257 views

Category:

Science


4 download

TRANSCRIPT

Page 1: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Innelastic Light Scattering in Carbon Nanostructures: From the micro do the nanoscale

Ado JORIO

Departamento de Física Universidade Federal de Minas Gerais

BRAZIL

27 September 2016

Page 2: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

INNELASTIC LIGHT SCATTERING RAMAN SPECTROSCOPY

Page 3: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Vibrational modes in sp2 carbons...

3

... nanotubes

and graphene

RBM

G band D band

RBM = C/dt

Page 4: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

“Toy-model” sp2 carbon nanostructures

Time line Graphite Fullerene Nanotube Graphene 1960 1985 1991 2004 Moore et al. Kroto et al. Iijima et al. Novoselov et al.

C – 1s2 2s2 2p2

Page 5: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Graphite amorphization

https://www.sglgroup.com/cms/international/products/lexicon-of-materials/index.html?letter=C&__locale=en

http://www.che.udel.edu/research_groups/nanomodeling/research.html

Page 6: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

C nanostructures in the market

Carbon black C fibers GIC

Amorphous

carbon

Page 7: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Terras Pretas de Índios (TIPs) da Amazonia Indian black earth in Amazon

B. Glaser et al. Naturwis 88, 31-41 (2001)

B. Glaser et al. Org Geochem. (31), 669-678 (2000)

Highly stable carbon in the soil improve fertility

Page 8: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

G and D band imaging of a nano-graphite

Confocal G band and D band imaging

2005 - Experiment performed with

Achim Hartschuh in the

laboratory of Prof. A. J.

Meixner (Tuebingen)

2m

Published in PCCP 9, 1276–1291 (2007)

Page 9: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Near-Field Imaging of a graphene step?

D band optical image

AFM

D band image with 20nm resolution

Umpublished

AFM

Page 10: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

AFM Image

J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, and C. M. Lieber, J. Phys. Chem. B 105, 743 (2001)

Single carbon nanotube spectroscopy “in micro”

Page 11: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

RBM (cm-1)

Raman spectrum

Si

AFM Image

A. Jorio et al., PRL 86, 1118 (2001)

Also Duesberg et al., PRL 85, 5436 (2000)

Single nanotube spectroscopy

Page 12: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Marked Sample Resonant Raman Intensity

with Tunable Laser

A. Jorio et al., Phys. Rev. B 63, 245416 (2001)

Anti-Stokes Raman

CNT JDOS

RBM spectra changing laser line

Resonance window

Lase

r En

erg

y

Page 13: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

0.44 0.88 1.32

1/dt (nm-1)

E11S

E22S

E11M

E33S

E44S

E22M

The Kataura plot

Optics addresses (n,m)-dependent physics

SWNT optical

transitions

Single nanotube spectroscopy

Physical Properties of Carbon Nanotubes Riichiro Saito, G. Dresselhaus, M. S. Dresselhaus Imperial College Press 1998

RBM

Page 14: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Raman spectra

AFM Image

A. Jorio et al., Phys. Rev. Letters 86, 1118 (2001)

Single nanotube spectroscopy

Si

Kataura plot

Page 15: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

RBM Raman spectra from SWNTs bundles

Araujo et al. PRB 77, 241403(R) (2008)

Page 16: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

(Eii, RBM)

(n, m)

E11S

E22S

E11M E33

S E44S E22

M

0.44 1.32

E11S

E22S

E11M

E33S

E44S

E22M

0.88

1/dt (nm-1)

Many laser lines probe the Kataura plot

Araujo et al. PRL 98, 067401 (2007) Araujo et al. Physica E 42, 1251 (2010)

Page 17: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

The density of states and dimensionality

DOS

E 0 Dimensional

Page 18: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

The density of states and dimensionality

DOS

E 1 Dimensional

dE

dE

Page 19: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

19

Excitons

Page 20: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Characterization of CNT structures

The gray scale gives the G band frequency or strain

Study of intertube interactions @ carbon nanotube superloops Shadmi et al. Nano Lett. 2016, 16, 2152−2158

Araujo et al. Nano Lett. 2012, 12, 4110−4116 Soares and Jorio, J. of Nanotech 2012, ID 512738 Soares et al Nano Letters 10, 5043–5048, 2010

Study of tube-substrate interactions @ Carbon nanotube serpentines

Page 21: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Bioengineering Applications Carbon Nanotubes “inside the body”

Biocompatibility assessment of fibrous nanomaterials in mammalian embryos Nanomedicine: Nanotechnology, Biology, and Medicine 12 (2016) 1151–1159

Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes Scientific Reports | 6:33588 | DOI: 10.1038/srep33588

Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes Nanotechnology 21, 385101 (2010)

Page 22: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Single nanotube spectroscopy “in nano“

Tip enhanced Raman Spectroscopy (TERS) of Carbon nanotubes

AFM

TERS

Achim Hartschuh et al. Phys. Rev. Lett. 90, 095503 (2003)

Page 23: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Local G' (2D) emission at the defect location

Localized light emission

Red-shifted G´ (2D) at the defect site: n-type doping

I. O. Maciel et al. Nat. Materials 7, 878 (2008)

Page 24: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

OPTICAL MICROSCOPY THE PINHOLE CAMERA PARADIGM

Page 25: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

OPTICAL MICROSCOPY THE PINHOLE CAMERA PARADIGM

Page 26: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Tip Enhanced Raman Spectroscopy special resolution beyond the diffraction limit

Conventional microscope “Near-field” microscope

Abbé, Arch. Mikrosk., Anat.,(1873). Wessel, JOSA B, (1985).

Novotny et al., Ultramicroscopy, (1998).

Page 27: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

TIP UP AND TIP DOWN IN CARBONO NANOTUBES

Jorio & Cancado

PCCP 14, 15246 (2012) Cancado et al. PRL 103, 186101 (2009)

Page 28: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

TERS VS. AFM – CHEMICAL SELECTIVITY

TOPOGRAPHY TERS

Page 29: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Oil Objective

60x NA 1.4

XY STAGE

Gold Tip

Raman Spectro meter

Dichroic mirror

Laser Source

Sample

Tunning fork

Gold tip

• “Home-built” We can do AFM, STM… and optical spectroscopy (Raman, Rayleigh, photoluminecence…) in situ.

• Our best resolution is 10nm

The system

Page 30: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

The system

• “Home-built” We can do AFM, STM… and optical spectroscopy (Raman, Rayleigh, photoluminecence…) in situ.

Page 31: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

31

Page 32: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

NUMERICAL APERTURE OPTICAL MICROSCOPY

RESOLVING POWER DEPENDS ON THE INCIDENCE ANGLE AND NUMERICAL APERTURE

Page 33: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

NUMERICAL APERTURE OPTICAL MICROSCOPY

1086420

10

8

6

4

2

0

X[µm]

Y[µ

m]

PL FROM NYON BLUE

Page 34: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Oil Objective

60x NA 1.4

XY STAGE

Gold Tip Sample

Tunning fork

Page 35: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Radially polarized mode

35

Page 36: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

TERS SYSTEM

Page 37: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

ESQUEMA DO FILTRO

NOTCH (Z),

CENTRADO NA

FREQUÊNCIA DE 32,

7 KHZ

Page 38: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

ESTÁGIOS DE

AMPLIFICAÇÃO

Page 39: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale
Page 40: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

PI 1105968-0 BR 1020120333040

BR 1020120269732

Capít ulo 6. Demais Trabalhos 93

Fig. 6.2: (a) imagem de MEV de uma nanoponteira estruturada por desbaste de íons

acelerados (FIB). (b)-(c) imagens por FIB de uma nanoponteira tipo fenda, em

dois ângulos de visualização.

(LNC) da UFRGS. O procedimento consiste em part ir de uma nanoponteira previamente

desbastada pelo método eletroquímico. Como queremos um estrutura (fenda) muito pe-

quena em relação à espessura do fio que origina a ponteira, o desbaste diretamente por

FIB consome muitas horas de operação para remover uma grande quant idade do metal.

Contudo, se part imos de uma nanoponteira já desbastada pelo método eletroquímico ne-

cessitamos remover pouco material com o FIB. Desta maneira, um procedimento simples

em duas etapas (aproximadamente 3 horas) resulta em uma boa nanoponteira t ipo fenda

(Fig. 6.1b-c). Este procedimento nos rendeu o registro de uma patente sobre o nome

de "Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia

óptica de campo próximo" (número do pedido: BR 1020120333040), em part icipação junto

à Rede Brasileira de Pesquisa e Instrumentação em NanoEspectroscopia Ópt ica.

Equipamento comercial de NSOM

Em Setembro/ 2013 (instalação) o LNC da UFRGSadquiriu um equipamento comercial

(Nanonics Imaging Ltd.) de microscopia ópt ica de campo-próximo (NSOM - Near-field

Scanning Optical Microscopy). Antes desta instalação, em Março/ 2013, eu est ive em vi-

sita ao laboratório OPTMA (Universidade Federal de Alagoas) para receber t reinamento

em um sistema semelhante em operação nesta inst ituição. Junto ao treinamento, realiza-

mos a microscopia por força atômica (AFM - Atomic Force Microscopy) em amostras de

Tip fabrication and control BR1020150103522 BR1020150312032 14.12.2015 BR1020150312032

DISPOSITIVO METÁLICO PARA MICROSCOPIA POR VARREDURA POR SONDA E MÉTODO DE FABRICAÇÃO DO MESMO 07.05.2015 BR1020150103522 DISPOSITIVO METÁLICO PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO E MÉTODO DE FABRICAÇÃO DO MESMO 27.12.2012 BR 1020120333040 DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 22.10.2012 BR 1020120269732 DISPOSITIVO MACIÇO ENCAPADO COM NANOCONE DE CARBONO PARA MICROSCOPIA E ESPECTROSCOPIA POR VARREDURA DE SONDA 29.12.2011 PI 1105972-9 DISPOSITIVO DE FIBRA ÓPTICA COM ELEMENTO UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 29.12.2011 PI 1107185-0 DISPOSITIVO VAZADO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 29.12.2011 PI 1105968-0 DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO

Page 41: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Tungsten wire

0.1mm

diameter

LARGE SCALE PRODUCTION OF PIRAMID TIPS

15.05.2015 BR1020150112335 MÉTODO E EQUIPAMENTO DE POSICIONAMENTO AUTOMÁTICO PARA MICROSCOPIA POR VARREDURA DE SONDA E ESPECTROSCOPIA ÓPTICA IN SITU

Page 42: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

A. Cano Marques et al. Scientific Reports |5:10408 | DOI: 10.1038/srep10408

Carbon nanocone@gold nanotip

Page 43: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

A. Cano Marques et al. Scientific Reports | 5:10408 | DOI: 10.1038/srep10408

Carbon nanocone@gold

nanotip

Page 44: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Gold nanotip with plasmonic confinement Vasconcelos et al. ACSNano 9(6) 6297 (2015)

Schematics SEM EELS

Page 45: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Gold nanotip with plasmonic confinement Vasconcelos et al. ACSNano 9(6) 6297 (2015)

TIP UP TIP DOWN TIP

Page 46: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Symmetry dependence for coherent near-field Raman

Maximiano et al. PRB 85, 235434 (2012); Cancado et al. PRX 4, 031054 (2014)

Page 47: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Calculation for spatially coherent near-field Raman

D

G

G’ (2D)

Tip approach curves

Distance (nm) Distance (nm)

Distance

Beams et al. PRL 113, 186101 (2014); Cancado et al. PRX 4, 031054 (2014)

Phonon coherence length

lC = 30nm

Page 48: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

1 10 100 10000

20

40

60

80

100

120

La (nm)

A G

(cm

-1)

1.96 eV

2.33 eV

2.71 eV

Phonon coherence length (lC) and crystallite size (La)

1000 1200 1400 1600 1800

2800°C

2600°C

2400°C

2300°C

2200°C

2000°C

1800°C

1600°C

1400°C

1200°C

In

tensity (

arb

. units)

Raman shift (cm-1)

3.8 nm

4.6 nm

10 nm

17 nm

30 nm

58 nm

140 nm

217 nm

526 nm

2300 nm

J. Ribeiro Soares et al. Carbon 95 646-652 (2015)

The G band width

STM

D G

La

lC = 30nm

Page 49: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Structurally damaged area

Page 50: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

ActivatedActivated areaarea

Structurally damaged area

Page 51: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

http://www.globalccsinstitute.com/publications/global-status-beccs-projects-2010/online/27026 (2010)

Carbon release in the atmosphere

With and without CCS

With CCS (carbon capture storage)

Page 52: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

M. W. I. Schmidt et al., NATURE 478, 49 (2011)

Data from surface horizons of 20 long-term field experiments (up to 23 years) in temperate climate, using 13C labeling to trace the residence time of bulk SOM and of individual molecular compounds

The persistence of soil organic matter

Page 53: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Tropical soils (google images)

Page 54: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Terras Pretas de Índios (TIPs) da Amazonia Indian black earth in Amazon

B. Glaser et al. Naturwis 88, 31-41 (2001)

B. Glaser et al. Org Geochem. (31), 669-678 (2000)

Highly stable carbon in the soil improve fertility Researchers are trying to reproduce this soil in laboratory

TPI form Balbina Presidente Figueiredo, AM

Lat. 1º 54’ sul Long. 59º 28’ O

altitude 60 m.

Page 55: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

The role of carbon on

soil cation exchange capacity

Liang et al. Soil Sci. Am. J. 70, September-October (2006).

DS: Dona Stella ACU: Acutuba LG: Lago Grande HAT: Hatahara

Page 56: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

The nanocrystallite size have special dimensions

2 to 8 nanometers

Stable Inert

Unstable Reactive

Jorio et al. Soil & Tillage Research 122 (2012) 61–66

Page 57: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Comparison of grain size between different types of biochar

Jorio et al. Soil & Tillage Research (2012)

G La-1

G band Raman FWHM

Page 58: Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale

Acknowledgements UFMG Luiz Gustavo Cançado Cassiano Rabelo Douglas S. Ribeiro Mateus G. da Silva João Luiz E. Campos Marcela Pagano Sugandha Pandei Jenaina Ribeiro-Soares Rodolfo Maximiano Indhira Maciel Jaqueline S. Ribeiro Paulo T. Araujo

INMETRO Carlos Alberto Achete Marcia Lucchese Braulio Archanjo Thiago Vasconcelos Erlon Ferreira Soares

UFRJ Rodrogo Barbosa Capaz

ETH Zurich Lukas Novotny Mark Kasperczik

Univ. Basel Patrick Maletinsky

Univ. Manchester Aravind Vijayaraghavan

NIST Ryan Beams

FINEPFINEP

INPA Newton Falcão

Aalto J. Riikonen

Weitzman Inst Ernesto Joselevich

UNICAMP Pedro A.S. Autreto R. Paupitz Douglas S. Galvão

U. Munich Achim Hartschuh

CNRS Alain Penicaud