injection molding (mit 2.008x lecture slides)

87
2.008x Injection Molding MIT 2.008x Prof. John Hart

Upload: a-john-hart

Post on 06-Jan-2017

2.588 views

Category:

Engineering


29 download

TRANSCRIPT

Page 1: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection MoldingMIT 2.008x

Prof. John Hart

Page 2: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Page 3: Injection Molding (MIT 2.008x Lecture Slides)

2.008xPlastics: 1950-2014

Data from Statistahttp://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

0

50

100

150

200

250

300

350

1950 1960 1970 1980 1990 2000 2010 2020

Volu

me

[mill

ion

met

ric to

ns]

Year

Page 4: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Adapted from: Figure 1, "Ideas in Motion Control from Moog Industrial" Newsletter Issue 34 © Moog, 2014

In North America and Europe, injection molding is used to process >10 million tons (10 billion kg) of polymers per year

Packaging

Automotive parts

Technical parts

Electronics and telecommunications

Medical, pharmaceutical, and

optical products

White goods, construction

Page 5: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Routsis Associates: https://youtu.be/cANvFsvY0Aw

Page 6: Injection Molding (MIT 2.008x Lecture Slides)

2.008xAn IM machine in the MIT manufacturing shop

Page 7: Injection Molding (MIT 2.008x Lecture Slides)

2.008xAgenda:

Injection Molding§ Fundamentals of polymers§ Mold tooling§ Process parameters and

equipment§ Cycle time, cooling, and

shrinkage§ Defects and design guidelines§ Advanced topics

Page 8: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection Molding:

2. Fundamentals of polymers

Page 9: Injection Molding (MIT 2.008x Lecture Slides)

2.008xIM feedstock: polymer pellets

Page 10: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Alibaba, February 2016http://www.alibaba.com/product-detail/Extruded-PP-granules-Polypropylene-PP-

Crush_60255030501.html?spm=a2700.7724857.35.1.1Fnwad

Page 11: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Kalpakjian and Schmid, Manufacturing Engineering and TechnologyGroover, Fundamentals of Modern Manufacturing

Poly (many) + mer (structural unit)-[C2H4]n- = poly[ethylene]

Page 12: Injection Molding (MIT 2.008x Lecture Slides)

2.008xThe ‘families’ of materials: modulus vs. density

Ashby, Materials Selection in Mechanical Design.

Page 13: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Manufacturing Engineering & Technology (7th Edition) by Kalpakjian, Schmid. © Upper Saddle River; Pearson Publishing (2014).

“Giant Dishes.” Daryl Mitchell (CC BY-SA 2.0) via Flikr

“Hydraulic seal kit cylinder seals o ring.” Devendra Dave (CC BY-SA 2.0) via Flikr

Page 14: Injection Molding (MIT 2.008x Lecture Slides)

2.008xPolymer network architectures

Thermoset Thermoplastic

(semi-crystalline)

(amorphous, linear) (amorphous, crosslinked)

à In all cases, the polymer chain length, interactions, bonding influence the part mechanics

Page 15: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

What does the polymer ‘feel’ during injection molding?

à heat and pressure

Page 16: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

What does the polymer ‘feel’ during injection molding?

à heat and pressure

Page 17: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

J.L. Throne, Technology of Thermoforming

Page 18: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

J.L. Throne, Technology of Thermoforming

Page 19: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Kalpakjian and Schmid, Manufacturing Engineering and Technology

Page 20: Injection Molding (MIT 2.008x Lecture Slides)

2.008xViscosity: resistance to shear

*at typical injection shear rate and melt temperature

Material Dynamic viscosity

Water (room temp) 1×10-3 kg/m-s [Pa-s]

Honey 10

Liquid thermoplastic* 102-103

Molten aluminum (600 C) 3×10-3

yU¶¶

= µt

Ux(H) = Ux

Ux(y)

Ux(0) = 0

h

Ux

x

y

Page 21: Injection Molding (MIT 2.008x Lecture Slides)

2.008xViscosity of polypropylene versus shear rate

and temperature

From Solidworks Plastics

µ = k !γ (n−1)

100 C

250 C

Ux(H) = Ux

Ux(y)

Ux(0) = 0

h

Ux

x

y

Page 22: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection Molding:

3. Mold tooling and configurations

Page 23: Injection Molding (MIT 2.008x Lecture Slides)

2.008xInjection molding of LEGO bricks

Excerpt from: https://www.youtube.com/watch?v=y1Zhpdx-XtA

Page 24: Injection Molding (MIT 2.008x Lecture Slides)

2.008xThe injection molding machine

Groover, Fundamentals of Modern Manufacturing

Page 25: Injection Molding (MIT 2.008x Lecture Slides)

2.008xKey features of mold tooling

Protomold ‘demo mold’

Page 26: Injection Molding (MIT 2.008x Lecture Slides)

2.008xVideo: MIT 2.008 injection molds and machine

Page 27: Injection Molding (MIT 2.008x Lecture Slides)

2.008xAn injection molded cap§ What features do you notice?§ Compare quality to LEGO bricks; what is different?§ What do the molds look like (draw the molds)?

Page 28: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Page 29: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Gate

Parting?

Parting

Draft

Page 30: Injection Molding (MIT 2.008x Lecture Slides)

2.008xMulti-part / multi-cavity molds

Kalpakjian and Schmid, Manufacturing Engineering and Technology

Page 31: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Kalpakjian and Schmid, Manufacturing Engineering and Technology

Three-plate mold

Two-plate mold

Page 32: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Kalpakjian and Schmid, Manufacturing Engineering and Technology

Hot runner mold (three plates)

Page 33: Injection Molding (MIT 2.008x Lecture Slides)

2.008xLego bricks: three-plate mold

http://www.cnet.com/pictures/how-lego-makes-its-bricks-photos/

Page 34: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

https://www.youtube.com/watch?v=JSkz5eBJrCI

Page 35: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection Molding:

4. Injection process parameters

Page 36: Injection Molding (MIT 2.008x Lecture Slides)

2.008xHow would you choose

an IM machine?(important specs?)

§ Clamping force: force available to hold plates together.

§ Injection pressure: maximum pressure that can be developed to force the plastic into the mold cavity.

§ Shot size: amount of material that can be transferred to the mold (i.e., the part volume plus runners, gates, etc).

Page 37: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSpecs of the IM machine at MIT

Page 38: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSpecs of the IM machine at MIT

Page 39: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

à Let’s relate the machine specifications to a basic model of the mold filling process

Page 40: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Page 41: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

L

hh/2

h/2

Page 42: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

L

hh/2

h/2

dPdx

= µd 2Udy2

Page 43: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimple scaling of injection parameters for a

2D rectangular channel

÷÷ø

öççè

æµ

÷øö

çèæ=D

=D

2

3

2

3

12

12

hwLF

hLP

whQLP

fillclamp

fill

µ

Page 44: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulating injection using Solidworks Plastics

A simple plate:§ L = W = 100 mm§ h (thickness) = 2 mm§ Polypropylene (PP)§ Tmelt = 250C§ Tmold = 70C

à Above, we predicted injection pressure DP = 3 MPa

Page 45: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulation: injection flow

Page 46: Injection Molding (MIT 2.008x Lecture Slides)

2.008xViscosity of polypropylene versus shear rate

and temperature

From Solidworks Plastics

µ = k !γ (n−1)

100 C

250 C

Ux(H) = Ux

Ux(y)

Ux(0) = 0

h

Ux

x

y

Page 47: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulation: injection pressure

Page 48: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection Molding:

5. Cycle time, cooling, and shrinkage

Page 49: Injection Molding (MIT 2.008x Lecture Slides)

2.008xThe injection molding

cycle

Page 50: Injection Molding (MIT 2.008x Lecture Slides)

2.008xTemperature vs time

Page 51: Injection Molding (MIT 2.008x Lecture Slides)

2.008xHow do we model cooling of the part?

2

2

2

2

yT

yT

ck

tT

p ¶¶

=¶¶

=¶¶ a

r

Mold

Mold

Part

x

y

L

hh/2

h/2

Page 52: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Exact solution for a plateTm = melt temperatureTw = wall temperatureTe = ejection temperature

Drawing from Leinhard, A Heat Transfer TextbookAlso see BASF ‘estimating cooling time’ http://www2.basf.us/PLASTICSWEB/displayanyfile?id=0901a5e1801499d3

a4

2htcool =

MoldMold Part

a = thermal diffusivity = k / rcp~0.1 mm2/s for thermoplastics

÷÷ø

öççè

æ--

=we

wmcool TT

TThtpap4ln2

2

à We define the cooling timeas the time until the temperature at the centerline of the part reaches the specified ejection temperature

‘Rule of thumb’

if (Tm-Tw) ≈ 10(Te-Tw)

Page 53: Injection Molding (MIT 2.008x Lecture Slides)

2.008xCooling time scaling for plate geometry

Tm = 200 ºC = 473 K Tw = 77 ºC = 350 K

tcool =h2

4αtcool =

h2

π2αln

!

4

π

Tm − Tw

Te − Tw

"

Page 54: Injection Molding (MIT 2.008x Lecture Slides)

2.008xHow do process parameters vary with

part size? ΔP = 12µ

τ fill

Lh"

#$

%

&'2

Fclamp ∝µτ fill

wL3

h2"

#$

%

&'

tcool ∝h2

Page 55: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Pack

Clo

se

Fill

Eje

ct

Gat

e fre

ezes

Time

Pres

sure

[MPa

]5

10

15Cool

Cycle time

Pressure vs time

Page 56: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Page 57: Injection Molding (MIT 2.008x Lecture Slides)

2.008xResidual stress in LEGO® block

(polarized imaging) 2.008x

Page 58: Injection Molding (MIT 2.008x Lecture Slides)

2.008xPolymers change volume with pressure and

temperature

à imagine a sponge that tries to shrink but is glued to the inside walls of a rigid container: residual stress!

Page 59: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

http://www.lati.com/pdf/technical_data/dimensional-molding-shrinkages.pdf

Practically, how much shrinkage?

Longitudinal shrinkage (parallel to flow)

Late

ral s

hrin

kage

(per

pend

icul

ar to

flow

)

Page 60: Injection Molding (MIT 2.008x Lecture Slides)

2.008xIn other words…§ Polymers shrink during cooling; that’s a fact.§ If the shrinkage is constrained by the mold, residual

stresses are ‘trapped’ because the part cannot relax as the polymer shrinks.

§ During injection molding, the variation in shrinkage both globally and through the cross section of a part creates internal stresses or residual stresses that act on a part with effects similar to externally applied stresses.

§ These residual stress can cause the part to will warp upon ejection from the mold or crack when loaded during use.

Page 61: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection Molding:

6. Defects and the ‘process window’

Page 62: Injection Molding (MIT 2.008x Lecture Slides)

2.008xThe injection molding

‘process window’

Page 63: Injection Molding (MIT 2.008x Lecture Slides)

2.008xShort shot

Page 64: Injection Molding (MIT 2.008x Lecture Slides)

2.008xFlash

Page 65: Injection Molding (MIT 2.008x Lecture Slides)

2.008xBurning (thermal degradation)

Page 66: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Page 67: Injection Molding (MIT 2.008x Lecture Slides)

2.008xProtomold ‘design cube’

§ What is the molding orientation?

§ Where are the ejector pins?§ What defects do you notice?§ …

Page 68: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Ribs

Undercuts

‘Living’ hinges

Straight-pull transverse hole

Side-pull transverse hole

Surface finishes

Thick and cored out sections

Page 69: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulation: filling

Page 70: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulation: cooling time

309 s

1.4 s

63 s

124 s

186 s

248 s

Page 71: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulation: shrinkage

0.45 mm

0.01 mm

0.10 mm

Page 72: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSimulation: warp

Page 73: Injection Molding (MIT 2.008x Lecture Slides)

2.008xCorners, fillets and hinges (‘living hinges’)

R = 0.2 mm

2 mm

R = 1 mm

Fillets

Corner radius

2 mm

0.25 mm

Hinges

Note blistered edges

Page 74: Injection Molding (MIT 2.008x Lecture Slides)

2.008xDraft angles

2 mm

Fins on Protomold cube

à Draft angles enable easier part ejection.

à The required draft angle depends on thickness, and surface texture.

LEGO brick

100 µm

Page 75: Injection Molding (MIT 2.008x Lecture Slides)

2.008xSurface finishes

PM-F0 PM-F1

SP-B1 SP-A2

Page 76: Injection Molding (MIT 2.008x Lecture Slides)

2.008xThe process window always applies, but the

conditions are different everywhere in your part!

à Therefore it’s not good enough to be in the process window!

à Beware of common defects, design for maximum uniformity, and reduce risk by following DFM guidelines (see supplements)

Page 77: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Injection Molding:

7. Advanced topics

Page 78: Injection Molding (MIT 2.008x Lecture Slides)

2.008xMolding with ‘side action’

Animation from protomoldElbow fitting: http://www.plastic-injectionmoulds.com/sale-1133447-household-plastic-injection-

molded-parts-pvc-pb-pp-for-water-tank-fitting.html

Page 79: Injection Molding (MIT 2.008x Lecture Slides)

2.008x

Page 80: Injection Molding (MIT 2.008x Lecture Slides)

2.008xInsert molding

Plasticmolded item

Metal terminal

Page 81: Injection Molding (MIT 2.008x Lecture Slides)

2.008xOvermolding (two plastics)

How?§ Insert brush§ Mold rigid base (white)§ Mold elastomer (black) at

lower temperature

Page 82: Injection Molding (MIT 2.008x Lecture Slides)

2.008xMetal injection molding (MIM)à Perform injection molding using a metal powder mixed with polymer binder; then anneal the part to achieve higher density (with significant shrinkage)

Page 83: Injection Molding (MIT 2.008x Lecture Slides)

2.008x8. Conclusion: the big four

Injection Molding Machining

Rate High Low-Medium

Quality Good As good or better!

Cost Low (at high volume) Almost always greater

Flexibility Low (tooling cost high) High (within machine constraints)

Page 84: Injection Molding (MIT 2.008x Lecture Slides)

2.008xReferences1 Introduction

Photo of Electrical Plug by User: Taken on PIxabay.com. This work is in the public domain.

Image of Plastic Production Industry © John Hart. Adapted from http://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

Image of Plastic Production Industrial Branches by Burkhard Erne © MOOG Inc. 2013. All Rights Reserved.

Video of Process Overview © A. Routsis Associates Inc. 2015

2 Fundamentals

Photo of Pellet Costs © 1999-2016 Alibaba.com. All Rights Reserved.

Polymer Representation: Figure 8.2(3) from Title: Fundamentals of Modern Manufacturing; Author: Mikell P. Groover; Publisher: Wiley; 4 edition (2010); ISBN: 978-0470-467002

Polymerization Reaction: Figure 7.3b from Title: Manufacturing Engineering & Technology (6th Edition); Authors: Serope Kalpakjian, Steven Schmid; Publisher: Prentice Hall; 6 edition (January, 2009); ISBN-13: 9780136081685

Page 85: Injection Molding (MIT 2.008x Lecture Slides)

2.008xReferencesModulus vs. Density Plot: Figure 4.2, page 60 from Title: Material Selection in Material Design; Author: Michael Ashby; Publisher: Butterworth-Heinemann; 4 edition (2011); ISBN: 9780080952239

Stress-Strain Comparison: Figure 7.10 from Title: Manufacturing Engineering & Technology (7th Edition); Authors: Serope Kalpakjian, Steven Schmid; © Prentice Hall; (2013);

Photo of Giant Dishes by Daryl Mitchell on Flickr. (CC BY-SA) 2.0

Photo of Hydraulic Sealing by Devendra Dave on Flickr. (CC BY-SA) 2.0

Networked Polymer Structure: Figure 7.5d from Title: Manufacturing Engineering & Technology (6th Edition); Authors: Serope Kalpakjian, Steven Schmid; © Prentice Hall; (2009)

Image of Semicrystalline Polymer by Dr. Michael Eastman, P.I.; © Copyright UTEP 2010

Stress-Strain Comparison of Amorphous Thermoplastics: Figure 2.12 from Title: Technology of thermoforming; Author: James L. Throne; © Hanser/Gardner Publications; (1996);

Tensile Strength vs. Temperature: Figure 2.26 from "International Plastics Handbook" by Osswaldet al. © Hanser Publishers (2006).

Page 86: Injection Molding (MIT 2.008x Lecture Slides)

2.008xReferencesGlass Transition Temperature: Table 7.2 from Title: Manufacturing Engineering & Technology (7th Edition); Authors: Serope Kalpakjian, Steven Schmid; © Prentice Hall; (2013);

Image of Viscosity Shear Thinning ©Dassault Systemes; SolidWorks Corporation 2016

3 Mold Tooling + Conf

Video of LEGO © User: Mister Rolls on YouTube

Injection Molding Machine: Figure 13.21 from Title: Fundamentals of Modern Manufacturing; Author: Mikell P. Groover; © Wiley; (2010);

Multi Cavity Mold: Figure 19.10 from Title: Manufacturing Engineering & Technology (7th Edition); Authors: Serope Kalpakjian, Steven Schmid; © Prentice Hall; (2013);

Injection Molding Molds: Figure 19.11 from Title: Manufacturing Engineering & Technology (7th Edition); Authors: Serope Kalpakjian, Steven Schmid; © Prentice Hall; (2013);

Photo of LEGO Mold © Daniel Terdiman / CNET.

Video of Ball Point Pen Clips © ARBURG.

Page 87: Injection Molding (MIT 2.008x Lecture Slides)

2.008xReferences6 Cycle Time Shrinkage

Cooling of Slab: Figure 5.6 from Title: A Heat Transfer Textbook (4th Edition); © 2000-2015, John H. Lienhard IV and John H. Lienhard V. All Rights Reserved.

Specific Volume vs. Temperature and Pressure © John Hart. Image adapted from cnf-moldmaking.com, original image Copyright © 2011 CNF Molds & Plastic Co., Limited.

Image of Shrinkage © LATI S.p.A. 2008

8 Advanced

Image of Side-Action © Proto Labs 1999–2016

Image of Pipe Fitting © Westside Wholesale Inc. 2016. All Rights Reserved.

Photo of Side Action Tooling © 1999-2016 Alibaba.com. All Rights Reserved.