initial observations from the australian regional environmental asset condition accounts trials

24
Initial Observations from the Australian Regional Environmental Asset Condition Accounts Trials November 2013 Australian Regional Proof of Concept Trials Environmental Asset Condition Accounts Peter Cosier and Carla Sbrocchi Wentworth Group of Concerned Scientists Sydney, Australia.

Upload: wentworthgroup

Post on 30-Mar-2016

215 views

Category:

Documents


1 download

DESCRIPTION

In this paper we describe how the Accounting for Nature model uses the disciplines of science and statistics to create a common unit of measure for environmental asset condition accounting, we present some initial results from these trials, and describe how these accounts can be used to make policy and investment decisions at a landscape (catchment) scale.

TRANSCRIPT

 

 

Initial  Observations  from  the  Australian    Regional  Environmental  Asset  Condition  Accounts  Trials  

November  2013    

 

Australian  Regional  Proof  of  Concept  Trials  Environmental  Asset  Condition  Accounts

   

 

 

 

 

 

Peter  Cosier  and  Carla  Sbrocchi  Wentworth  Group  of  Concerned  Scientists  

Sydney,  Australia.  

 

 

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements  This  paper  is  a  synthesis  of  the  work  of  the  many  people  who  have  contributed  to  the  development  of  the  regional  proof  of  concept  accounts  listed  in  the  Appendix,  and  draws  on  two  primary  sources:    Accounting  for  Nature:  A  Model  for  Building  the  National  Environmental  Accounts  of  Australia,  2008,1  and  A  Common  Currency  for  Building  Environmental  (Ecosystem)  Accounts,  2010,2  and  the  interim  results  from  Regional  Proof  of  Concept  Accounts.3      

We  gratefully  acknowledge  the  financial  support  of  the  Purves  Environmental  Fund  and  the  Ian  Potter  Foundation.    The  authors  also  acknowledge  the  assistance  of  Carley  Bartlett,  Dr  Celine  Steinfeld,  Dr  Ian  Ball,  Professor  Bruce  Thom  AM,  and  Jane  McDonald  in  the  preparation  of  material  for  this  paper.  

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  3  

1. Introduction  The  industrial  revolution  has  led  to  dramatic  improvements  in  living  standards  for  many  people  across  many  parts  of  the  world,  but  it  has  also  resulted  in  the  depletion  of  natural  capital  at  a  scale  that  is  approaching,  and  in  many  cases  has  already  exceeded,  the  ability  of  biophysical  systems  to  meet  future  demands  on  them.4  

Our  challenge  is  that  “economic  activity  may  degrade  environmental  assets  such  that  they  are  not  able  to  deliver  the  same  range,  quantity  or  quality  of  ecosystem  services  on  an  ongoing  basis.”5  

It  is  not  possible  to  make  decisions  that  will  lead  to  a  healthy  and  productive  environment  unless  we  have  a  system  of  environmental  accounts  that  measures  the  condition  of  environmental  assets  (rivers,  soil,  native  vegetation,  groundwater,  etc)  appropriate  to  the  scales  at  which  economic  and  policy  decisions  are  made.6  

In  2008,  the  Wentworth  Group  of  Concerned  Scientists  and  other  experts  in  science,  economics,  statistics  and  public  policy  in  Australia,  developed  the  Accounting  for  Nature  model  to  place  scientific  information  about  the  condition  of  our  environment  into  an  accounting  framework.7      

The  purpose  of  the  Accounting  for  Nature  model  is  to  provide  a  consistent  framework  for  tracking  the  change  in  condition  of  assets  through  time,  at  any  scale,  using  a  single  unit  of  measure.    This  ‘common  currency’  enables  policy  makers  to  synthesise  disparate  sources  of  information  so  that  it  is  possible  to  compare  the  condition  of  different  assets,  in  different  locations,  at  all  scales  at  which  policy  and  investment  decisions  are  made.    We  call  this  common  unit  of  measure  an  Econd.    

Over  the  past  three  years,  Australia’s  Regional  Natural  Resource  Management  authorities,  in  cooperation  with  scientists,  economists  and  statisticians  in  universities,  Commonwealth  and  State  government  agencies  have  undertaken  an  Australia-­‐wide  trial  to  test  the  practical  application  of  the  Accounting  for  Nature  model.    The  ten  regions  that  took  part  in  the  proof  of  concept  trials  reflect  different  landscapes  (forests,  savannahs,  rangelands,  woodlands,  urban),  they  are  subject  to  different  environmental  pressures,  and  have  different  levels  of  resourcing  and  access  to  information.    These  trials  are  now  in  the  process  of  formal  evaluation  and  peer  review.  

In  this  paper  we  describe  how  the  Accounting  for  Nature  model  uses  the  disciplines  of  science  and  statistics  to  create  a  common  unit  of  measure  for  environmental  asset  condition  accounting,  we  present  some  initial  results  from  these  trials,  and  describe  how  these  accounts  can  be  used  to  make  policy  and  investment  decisions  at  a  landscape  (catchment)  scale.  

Whilst  there  are  still  questions  to  be  resolved,  they  serve  to  demonstrate  that  it  is  practical  and  feasible  to  create  asset  condition  accounts  using  a  common  environmental  currency  to  simplify  nature’s  complexity  without  reducing  the  rigour  of  scientific  measurement,  and  to  then  use  these  accounts  to  inform  the  cost-­‐effectiveness  of  policy  and  investment  decisions.      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  4  

2. Environmental  assets  “The  first  step  towards  the  integration  of  sustainability  into  economic  development  is  the  establishment  of  better  measurement  of  the  crucial  role  of  the  environment  as  a  source  of  natural  capital  and  as  a  sink  for  by-­‐products  generated  during  the  production  of  man-­‐made  capital  and  other  human  activities.”8  

The  environmental  asset  approach  to  measuring  degradation  to  the  environment  is  a  practical  way  of  describing,  understanding  and  making  better  decisions  in  managing  the  environment.9    

It  is  an  accepted  measure  internationally  (e.g.  the  System  of  Environmental  Economic  Accounts  (SEEA)  Central  Framework10,  the  Convention  on  Biological  Diversity11),  and  nationally  in  Australia  (e.g.  regional  natural  resource  management  plans12,13  national  and  state  government  investment  programs,14,15  and  state  and  national  State  of  the  Environment  reports16).  

In  this  paper  we  define  environmental  assets  as  biophysical  features  in  the  landscape  that  are  measurable  in  time  and  space,17  and  condition  as  a  scientific  measure  of  the  capacity  of  an  environmental  asset  to  continue  to  provide  benefits  to  society.18  It  must  incorporate  elements  of  both  the  quantity  of  an  asset  (for  example,  the  area  of  a  forest)  and  the  quality  of  that  asset  (for  example,  the  diversity  of  plant  and  animal  species  that  inhabit  that  forest).      

An  environmental  asset  can  be  an  ecosystem  such  as  a  forest  or  a  river  or  an  estuary,  it  can  be  an  individual  species  of  mammal  or  bird,  or  it  can  be  any  other  feature  in  nature,  such  as  a  fishery,  agricultural  soil,  or  a  groundwater  resource.    This  is  consistent  with  the  SEEA  Central  Framework  which  defines  environmental  assets  as  the  naturally  occurring  living  and  non-­‐living  components  of  the  Earth,  together  comprising  the  biophysical  environment  that  may  provide  benefits  to  humanity.19      

The  SEEA  Central  Framework  also  describes  the  relationship  between  environmental  assets  and  ecosystem  services  as  “the  interactions  between  different  environmental  assets  within  a  given  area  that  generate  ecosystem  services”.20    To  illustrate  this  relationship,  the  following  diagram  (Figure  1)  shows  that  an  environmental  asset,  such  as  an  estuary,  provide  some  services  and  goods  to  people  (blue)  and  but  also  produce  services  by  maintaining  themselves  through  regulating  processes  (green).  

 Figure  1:        Environmental  Assets  comprise  the  physical  form  of  both  ecosystems  and  other  natural  

resources  which  provide  goods  and  ecosystem  services.                                    (Adapted  from  CSIRO,  2001)21    

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  5  

3. A  common  currency  for  measuring  the  condition  of  environmental  assets  

The  SEEA  Central  Framework  provides  methods  for  accounting  for  those  environmental  assets  which  produce  market-­‐based  goods  and  services.    It  identifies  the  need  to  measure  the  quality  of  environmental  assets  to  fully  address  degradation.22    

The  Accounting  for  Nature  model  is  underpinned  by  two  important  concepts:  1. Environmental  asset  condition  needs  to  be  measured  both  at  scales  where  biophysical  

processes  operate,  and  at  scales  where  economic  and  policy  decisions  are  made;  and  2. Asset  condition  accounts  need  to  be  constructed  using  a  common  unit  of  measure  -­‐  a  

common  currency  -­‐  so  that  the  relative  condition  of  different  assets  can  be  compared:  in  different  places,  at  different  scales,  at  any  time,  and  when  using  different  indicators.  

This  common  currency  is  called  an  Econd.    An  Econd  is  a  scientific  measure  of  the  condition  of  an  environmental  asset.      It  does  not  imply  a  monetary  value,  nor  does  it  describe  a  desired  state.      

An  Econd  describes  the  condition  of  an  environmental  asset  against  a  scientific  estimate  of  the  condition  of  that  asset  in  the  absence  of  significant  post-­‐industrial  human  alteration  (the  reference  benchmark.    An  Econd  is  a  number  between  0  and  100,  where  100  indicates  the  asset  is  in  the  same  condition  as  it  was  prior  to  significant  post-­‐industrial  human  alteration,  and  0  indicates  system  function  is  absent.23      

The  reference  benchmark  acts  as  a  normalising  factor  by  setting  the  upper  boundary  for  the  measurement  of  an  environmental  asset.    Its  purpose  is  to  provide  a  reference  point,  or  baseline,  by  which  both  past  and  future  changes  in  the  condition  of  any  environmental  asset  can  be  measured  and  the  relative  condition  of  the  asset  can  be  compared  with  other  assets  across  time  and  space.  This  reference  benchmark  does  not  have  to  mean  a  pre-­‐industrial  date,  although  that  is  often  the  most  convenient  way  to  describe  it.    Another  option  is  to  measure  an  asset  that  is  known  to  be  in  an  undisturbed  condition  -­‐  what  science  calls  a  reference  site.    Another  option  is  for  science  to  estimate  this  biophysical  condition  using  models.    For  more  information  on  the  science  behind  reference  benchmarking  see  Cosier  and  McDonald  (2010)24.  

The  benefit  of  using  this  reference  benchmark  method  is  that  it  creates  a  standardised  numerical  unit  that  is  capable  of  comparison  and  aggregation,  at  any  scale  where  policy  and  economic  decisions  that  affect  the  environment  are  being  made.  

The  Econd  is  calculated  by  combining  a  number  of  individual  indicator  condition  scores  (e.g.  pH  and  salinity  in  rivers  or  organic  carbon  and  erosion  measures  in  soils)  to  produce  a  scientific  measure  of  the  condition  of  the  asset  as  a  whole.25    

The  Econd  is  calculated  for  the  categories  within  the  asset  (eg.  for  each  subcatchment  in  the  rivers  asset,  for  each  native  vegetation  type  in  the  native  vegetation  asset,  for  each  land  management  unit  within  the  soils  asset).    These  are  then  assembled  to  generate  an  overall  Econd  for  each  asset  in  a  region  (e.g.  for  rivers,  for  native  vegetation,  for  soils).        

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  6  

4. Application  of  the  common  currency    In  this  section  we  take  you  through  the  structure  of  the  regional  asset  condition  accounts  and  then  present  examples  of  the  application  of  the  Accounting  for  Nature  model  in  the  regional  proof  of  concept  trials  across  Australia.  

First  some  background.    These  asset  condition  accounting  trials  were  led  by  the  Chairs  of  Australia’s  54  regional  natural  resource  management  bodies,  in  partnership  with  the  Wentworth  Group  and  assisted  by  other  scientists,  economists,  and  statisticians  from  the  Australian  Bureau  of  Statistics,  the  Australian  Bureau  of  Meteorology,  Australia's  premier  scientific  research  agency  -­‐  CSIRO,  the  Ian  Potter  Foundation  (a  major  philanthropic  institution  in  Australia),  and  experts  in  a  number  of  state  government  agencies  (see  Appendix  1).  

The  trials  were  conducted  to  test  whether  it  is  practical  and  affordable  to  apply  a  scientifically  robust  measure  of  the  condition  of  any  environmental  asset,  using  the  common  currency  at  a  regional  (landscape)  scale,  with  the  objective  of  then  aggregating  this  information  to  form  a  set  of  national  environmental  asset  condition  accounts.      

Part  of  these  trials  is  to  see  what  is  feasible  using  existing  information,  with  limited  resources.    For  this  reason,  no  new  funds  were  sought  from  government  to  conduct  the  trials.      

The  ten  regions  participating  in  the  trials  were  selected  because  they  reflect  different  landscapes  (forests,  savannahs,  rangelands,  woodlands,  urban),  they  are  subject  to  different  environmental  pressures,  and  have  different  levels  of  resourcing  and  access  to  information.      

This  has  enabled  us  to  test  the  practical  application  of  the  model:  whether  those  regions  with  the  least  data,  in  the  remotest  locations,  with  the  fewest  resources,  have  the  capability  to  create  a  set  of  accounts  that  still  satisfy  high  scientific  standards.  

Figure  2  displays  the  assets  that  were  tested  in  each  of  the  regions.  

Environmental  AssetsSelected  for  the  Australian  

Regional  Proof  of  Concept  Trials

Coast

Native  VegNative  Fauna Soil Rivers Wetlands

Ground-­‐water Floodplains Estuaries Fauna Other

Central  West

Corangamite

EPSouthern  

Right  Whales

NACC Birds

Namoi

North  Central

Northern  Gulf

NRM  North

QMDC

SEQ Dugongs Moreton  Bay

Region

Land Freshwater Marine

Figure  2

 

One  asset  common  to  all  regions  (native  vegetation)  was  chosen  so  that  we  could  test  whether  different  measures  of  the  same  asset  could  be  aggregated  to  create  national  accounts.      

A  range  of  other  assets  across  the  regions  were  also  tested  so  that  we  could  evaluate  the  practical  and  technical  implications  for  constructing  a  holistic  set  of  assets  across  the  continent.  

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  7  

Whilst  there  are  still  many  questions  to  be  resolved,  the  initial  results  from  these  trials  demonstrate  the  potential  for  this  common  currency  (an  Econd)  to  help  policy  makers  set  measurable  policy  standards,  and  then  inform  the  cost-­‐effectiveness  of  investments  aimed  at  meeting  those  policy  standards.    

The  Accounting  for  Nature  model  requires  any  environmental  account,  at  any  scale,  to  be  accredited  by  an  independent  scientific  body,  against  national  accounting  standards.    This  is  important,  because  scientific  accreditation  is  essential  to  the  credibility  of  the  accounts  so  that  community  and  policy  makers  can  have  confidence  in  the  data  when  making  policy  and  investment  decisions.26    These  accounts  that  have  been  created  in  these  regional  trials  are  now  being  assessed  by  our  Scientific  Standards  and  Accreditation  Committee.    

Structure  of  the  Environmental  Condition  Accounts:  

Environmental  assets  are  categorised  into  what  we  call  Asset  Classes:  Land,  Freshwater,  Coasts,  Marine  and  Atmosphere  (Figure  3).  

Structure  of  Environmental  Asset  Condition  Accounts

Figure  3

2006 2013 2018Native  Vegetation 54 50

Soils 60Native  Fauna 72

Rivers 60 65Wetlands 54FloodplainsGroundwater 68 52Estuaries 61 61Beaches 81Dunes 57Reefs 38 42

Fisheries 45 45Marine  Fauna

Air  quality  in  citiesGreenhouse  emissions

MARINE

ATMOSPHERE

Environmental  Asset  Class

Examples  of  Environmental  Assets

Environmental  Asset  Condition  (Econd)

LAND

FRESHWATER

COASTS

 

Each  asset  class  comprises  a  range  of  environmental  assets.    An  environmental  asset  is  a  biophysical  feature  in  the  landscape  that  is  measurable  in  time  and  space.27  It  can  be  any  biophysical  feature  in  nature  that  society  considers  to  be  an  asset.    It  can  be  an  ecosystem  such  as  a  forest  or  a  river  or  an  estuary,  it  can  be  an  individual  species  of  mammal  or  bird,  or  it  can  be  any  other  feature  in  nature,  such  as  a  fishery,  agricultural  soil,  or  a  groundwater  resource.    

The  most  basic  structure  of  an  environmental  asset  condition  account  is  a  summary  table,  which  describes  the  asset  classes,  each  environmental  asset,  and  the  Econds  for  each  asset  at  a  particular  time  and  over  different  time  periods  to  establish  trend.  

A  series  of  tables  that  sit  underneath  the  summary  tables  show  the  number  and  types  of  assets  in  the  region,  the  individual  indicator  condition  scores  and  the  calculated  Econds  for  each  asset.      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  8  

Figure  4  is  an  example  of  a  section  of  the  Native  Vegetation  Account  for  the  Eyre  Peninsula  region  in  South  Australia.  

Eyre  Peninsula,  South  AustraliaNative  Vegetation  Condition  Account  2012

Regional  Area  

(hectares)

Regional  Indicator  Condition  Score                (Extent)

Regional  Indicator  Condition  Score  

(Compos ition)

Regional  Indicator  Condition  Score  

(Configuration)

Regional                                            Econd                                  Extent  x  

(Comp+Config/2)

5,130,353 47 60 47 25.0

Condition  Measure

Indicator  Condition  Score

Econd

Eyre  Peninsula  Region 5,130,353 25.062

Extent  (Ha) 186,558 3.6 165246 89Composition  (index) 100 66.30 66Configuration  (index) 100 73.62 74

11Extent  (Ha) 23,320 0.5 5013 21Composition  (index) 100 59.67 60Configuration  (index) 100 46.67 47

42Extent  (Ha) 23,320 0.5 17595 75Composition  (index) 100 62.80 63Configuration  (index) 100 48.17 48

7Extent  (Ha) 233,198 4.5 30911 13Composition  (index) 100 54.40 54Configuration  (index) 100 50.67 51

52Extent  (Ha) 233,198 4.5 190628 82Composition  (index) 100 61.16 61Configuration  (index) 100 66.01 66

NATIVE  VEGETATION  ASSET  ACCOUNT  -­‐  EYRE  PENINSULA,  SOUTH  AUSTRALIA  -­‐  2012

Asset  Category

Indicator  of  Asset  Condition  (unit  of  measure)

Reference  Benchmark %  Total  Area

2012

Arid  &  semi-­‐arid  acacia  low  open  woodlands  &  shrublands  with  

Arid  &  semi-­‐arid  hummock  grasslands

Callitris  forests  &  woodlands

Casuarina  &  Allocasuarina  forests  &  woodlands

Chenopod  shrublands

Figure  4

 

It  shows  how  the  asset  condition  accounts  measure  the  quality  of  an  asset,  not  just  its  quantity.      

This  is  essential  if  they  are  to  be  of  any  value  in  addressing  the  degradation  of  an  asset,28  and  the  impact  of  this  degradation  on  the  services  those  assets  provide  to  people.29  

In  this  example,  the  quality  of  the  native  vegetation  asset  measures  both  the  extent  (i.e.  what  proportion  of  the  area  of  the  original  vegetation  remains),  and  the  composition  (i.e.  the  structural  integrity  of  the  vegetation,  such  as  species  richness  and  weediness).    If  possible,  it  should  also  measure  the  configuration  of  that  asset  (i.e.  where  the  remaining  vegetation  is  located  in  the  landscape).30  

Presentation  of  the  Condition  Measures:  

One  of  the  great  powers  of  an  accounting  system  using  the  Econd  (the  common  environmental  currency)  is  that  it  allows  information  for  all  assets,  irrespective  of  the  indicators  used  or  the  scale  of  measure,  to  be  presented  graphically.  

Figure  5  is  a  summary  of  the  relative  condition  of  all  of  the  assets  that  have  been  submitted  from  each  of  the  regions  as  part  of  the  proof  of  concept  trials.    It  displays  the  relative  condition  of  every  asset  in  every  region,  across  the  continent.      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  9  

Condition  of  Environmental  Assetsin  each  Region  (Econds)

0

20

40

60

80

100

Native  Fauna

Econ

d

Central  West  CMANew  South  Wales

0

20

40

60

80

100

Native  Vegetation Wetlands

Corangamite  CMAVictoria

020406080100

Native  Vegetation Whales

Eyre  Peninsula  NRM  BoardSouth  Australia

020406080100

Native  Vegetation Native  Fauna  (birds)

Econ

d

Northern  AgriculturalWestern  Australia

020406080100

Native  Vegetation  (Partial)

Namoi CMANew  South  Wales

0

20

40

60

80

100

Native  Vegetation Rivers Wetlands

North  Central  CMA  Victoria

0

20

40

60

80

100

Rivers Estuaries

Econ

d

NRM  North  Tasmania

020406080100

Native  Vegetation Rivers Wetlands

Queensland  Murray  Darling  Queensland

020406080100

NativeVegetation

Rivers MoretonBay  (Novel)

Estuaries Dugongs

SEQ  Catchments  Queensland

Figure  5

 

It  shows,  for  example,  that  native  vegetation  in  the  Northern  Agricultural  Catchments  region  of  Western  Australia  is  in  a  better  condition  than  native  vegetation  in  the  North  Central  region  in  Victoria,  and  that  the  regional  population  of  Dugongs  in  the  Ramsar-­‐listed  Moreton  Bay  estuary  in  Queensland  are  in  a  relatively  poorer  condition  than  the  population  of  Southern  Right  Whales  in  the  Great  Australian  Bight  of  South  Australia.  

Figure  6  shows  the  relative  condition  of  native  vegetation  in  seven  regions  which  completed  or  partially  completed  a  full  condition  based  Econd.      

Condition  of  Native  Vegetationacross  7  Trial  Regions

0

10

20

30

40

50

60

70

80

90

100

Namoi QMDB NACC SEQ Eyre  Peninsula Corangamite North  Central

Econ

d

Region

Figure  6

     

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  10  

Figure  7  shows  the  level  of  detail  that  sits  behind  each  of  the  regional  native  vegetation  condition  accounts,  using  the  Northern  Agricultural  Catchments  of  Western  Australia  as  one  example.  

0

10

20

30

40

50

60

70

80

90

100

Halosarcia  open  chenopod  shrubland

Acacia  sparse  shrubland

Eucalyptus  open  mallee  shrubland  /  Beaufortia  m

ixed  shrubland  /  Spinifex  mixed  open  tussock  grassland

Atriplex  mixed  open  chenopod  shrubland

Melaleuca  m

ixed  heath  /  Baeckea  mixed  heath

Atriplex  mixed  sparse  chenopod  shrubland

Melaleuca  isolated  trees

Dryandra  shrubland  /  Eucalyptus  woodland  /  Eucalyptus  w

oodland

Spinifex  mixed  open  tussock  grassland  /  Calocephalus  m

ixed  open  forbland  /  Acacia  open  shrubland  /  Melaleuca  closed  shrubland  /  Acacia…

Acacia  mixed  shrubland

Acacia  mixed  open  shrubland  /  Banksia  m

ixed  open  shrubland  /  Calytrix  mixed  heath

Acacia  open  shrubland  /  Spinifex  mixed  open  tussock  grassland  /  Spinifex  m

ixed  open  tussock  grassland  /  Myoporum

 mixed  open  shrubland…

Acacia  closed  shrubland

Dodonaea  open  shrubland

Banksia  woodland  /  Banksia  m

ixed  shrubland  /  Melaleuca  isolated  trees

Allocasuarina  mixed  closed  shrubland

Eucalyptus  open  woodland  /  Acacia  shrubland  /  M

elaleuca  shrubland

Atriplex  open  chenopod  shrubland

Actinostrobus  mixed  open  shrubland

Acacia  mixed  shrubland  /  Eucalyptus  open  w

oodland

Allocasuarina  open  shrubland  /  Allocasuarina  shrubland

Halosarcia  open  sam

phire  shrubland

Hakea  open  shrubland

Verticordia  mixed  heath  /  Acacia  open  shrubland

Melaleuca  open  forest

Dryandra  shrubland

Allocasuarina  mixed  shrubland

Hakea  heath  /  M

elaleuca  mixed  open  shrubland

Verticordia  heath  /  Acacia  shrubland  /  Allocasuarina  closed  shrubland  /  Acacia  isolated  trees

Hakea  m

ixed  closed  shrubland  /  Melaleuca  closed  shrubland

Banksia  open  woodland

Acacia  mixed  open  forest

Acacia  closed  shrubland  /  Eucalyptus  sparse  mallee  shrubland  /  M

elaleuca  closed  shrubland

Acacia  open  shrubland  /  Allocasuarina  shrubland

Allocasuarina  open  shrubland

Eucalyptus  woodland

Gastrolobium

 mixed  shrubland  /  Allocasuarina  m

ixed  shrubland

Dryandra  closed  shrubland

Halosarcia  m

ixed  open  samphire  shrubland

Agonis  mixed  open  shrubland

Allocasuarina  closed  shrubland

Acacia  mixed  shrubland  /  Allocasuarina  m

ixed  shrubland  /  Eucalyptus  open  mallee  shrubland  /  Acacia  closed  shrubland

Actinostrobus  mixed  open  shrubland  /  Allocasuarina  closed  shrubland

Econ

d

Northern  Agricultural  Catchments, Western  AustraliaCondition  of  Native  Vegetation,  2012  

Regional  Econd =  27

Figure  7

 

It  shows  that  the  overall  condition  of  native  vegetation  in  this  region  has  an  Econd  of  27.    It  also  shows  that  there  are  22  vegetation  types  with  an  Econd  of  less  than  10.      

This  means  that  the  quality  of  this  vegetation:    how  much  there  is  (extent),  combined  with  its  functional  and  structural  integrity  (composition)  and  how  it  is  configured  across  the  landscape  (configuration),  is  less  than  10  per  cent  of  what  it  would  have  been  prior  to  the  clearing  of  the  native  vegetation  and  the  damage  to  the  vegetation  that  remains  by  the  introduction  of  weeds  and  feral  animals.  

Figure  8  shows  the  same  information  for  native  vegetation  in  six  regions  across  the  continent.  

0

20

40

60

80

100

Halosarcia  open…

Acacia  shrubland  /…Atriplex  m

ixed  sparse…Dryandra  m

ixed  open…Acacia  m

ixed  open…Acacia  open  shrublandAllocasuarina  m

ixed…Eucalyptus  m

ixed  open…Allocasuarina  open…Eucalyptus  m

ixed  open…Dryandra  shrubland

Melaleuca  shrubland

Banksia  open  woodland

Halosarcia  open…

Eucalyptus  woodland

Allocasuarina  shrublandAllocasuarina  closed…Banksia  m

ixed  open  forest

0

20

40

60

80

100

Eucalypt  Open  Forests

Other  G

rasslands,  Herblands,  Sedgelands

and  Rushlands

Callitris  Forests  and  Woodlands

Other  Shrublands

Mallee  W

oodlands  and  Shrublands

Tussock  Grasslands

Eucalypt  Woodlands

Chenopod  Shrublands,  Samphire

Shrublands  and  Forblands

Low  Closed  Forests  and  Tall  Closed

Shrublands

Eucalypt  Open  W

oodlands

Casuarina  Forests  and  Woodlands

Mallee  O

pen  Woodlands  and  Sparse

Mallee  Shrublands

0

20

40

60

80

100

Other  open  w

oodlands  (MVG

31)

Mangroves  (M

VG23)

Low  closed  forests  &

 tall  closed…

Melaleuca  forests  &

 woodlands  (M

VG09)

Other  grasslands,  herblands,…

Heathlands  (M

VG18)

Tussock  grasslands  (MVG

19)

Casuarina  foests  &  woodlands  (M

VG08)

 Inland  aquatic  -­‐  fringing  vegetation…

Eucalypt  tall  open  forests  (MVG02)

Rainforests  &  vine  thickets  (M

VG01)

Eucalypt  open  woodlands  (M

VG11)

Eucalypt  open  forests  (MVG

03)

Eucalypt  woodlands  (M

VG05)

Acacia  forests  and  woodlands  (M

VG06)

0

20

40

60

80

100

Chenopod  shrublands,  samphire…

Naturally  bare  -­‐  sand,  rock,  claypan,…

Acacia  shrublands  (MVG

16)

Other  grasslands,  herblands,…

Eucalypt  tall  open  forests  (MVG02)

Other  shrublands  (M

VG17)

Heathlands  (M

VG18)

Acacia  open  woodlands  (M

VG13)

Tussock  grasslands  (MVG

19)

Eucalypt  open  woodlands  (M

VG11)

Hum

mock  grasslands  (M

VG20)

Other  open  w

oodlands  (MVG

31)

Callitris  forests  &  woodlands  (M

VG07)

Eucalypt  open  forests  (MVG

03)

Eucalypt  woodlands  (M

VG05)

Rainforests  &  vine  thickets  (M

VG01)

Acacia  forests  and  woodlands  (M

VG06)

Melaleuca  forests  &

 woodlands  (M

VG09)

Casuarina  foests  &  woodlands  (M

VG08)

Econ

d

0

20

40

60

80

100

Rainforests  and  Vine  Thickets

Chenopod  Shrublands,  Samphire…

Casuarina  Forests  and  Woodlands

Mangroves

Eucalypt  Open  Forests

Acacia  Forests  and  Woodlands

Other  Shrublands

Eucalypt  Woodlands

Other  Forests  and  W

oodlands

Other  G

rasslands,  Herblands,…

Heathlands

Low  Closed  Forests  and  Tall  Closed…

Eucalypt  Open  W

oodlands

Tussock  Grasslands

0

20

40

60

80

100

Arid  &  sem

i-­‐arid  acacia  low  open…

Chenopod  shrublandsOther  shrublands

Other  Acacia  tall  open  shrublands

Melaleuca  shrublands  &

 open…Tem

perate  tussock  grasslandsMixed  chenopod,  sam

phire  or…Callitris  forests  &

 woodlands

Mallee  w

ith  an  open  shrubby…Mallee  heath  &

 shrublandsWet  tussock  grassland,  herbland,…

Mallee  w

ith  tussock  grass…Eucalyptus  w

oodlands  with…

Arid  &  sem

i-­‐arid  hummock…

Mallee  w

ith  hummock  grass

Eucalyptus  forests  &  woodlands…

Casuarina  &  Allocasuarina  forests…

Mangroves

Melaleuca  open  forests  &

…Other  forests  &

 woodlands

Heath

Eucalyptus  low  open  w

oodlands…

Econ

d

Native  Vegetation  Assets

Eyre  Peninsula,  South  Australia Corangamite  CMA,  Victoria Northern  Agricultural,  WA

Queensland  Murray-­‐Darling SEQ  Catchments,  Queensland North  Central,  Victoria

Figure  8

     

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  11  

Figure  9  is  the  same  information  described  in  Figure  8,  combined  with  geographic  imagery  to  show  the  spatial  distribution  of  the  condition  of  the  remaining  native  vegetation  in  those  same  six  regions.    

Condition  of  Remaining  Vegetation

Eyre  Peninsula,  South  Australia Corangamite  CMA,  Victoria

Queensland  Murray  Darling  Basin SEQ  Catchments,  Queensland North  Central,  Victoria

Northern  Agricultural,  WA

Figure  9

 

Figure  10  shows  the  level  of  detail  that  imagery  can  provide  to  show  the  condition  of  native  vegetation  across  the  Murray  Darling  region  in  Queensland.    

Queensland  Murray  Darling  BasinCondition  of  Remaining  Native  Vegetation

Figure  10

 Because  the  information  was  organised  in  an  agreed  accounting  framework  these  graphics  and  the  following  maps  were  produced  within  a  matter  of  days,  notwithstanding  this  trial  was  run  without  any  additional  funding  from  government,  using  existing  data  where  possible  and  filling  data  gaps  with  the  assistance  of  experts  and  in  a  few  instances  by  direct  survey,.      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  12  

Figure  11  presents  a  further  level  of  detail  in  one  of  the  regional  vegetation  accounts.    It  shows  not  only  the  Econd  for  each  of  the  23  major  vegetation  groups  described  in  Figure  8  (the  red  bars);  it  also  shows  the  main  pressures  that  are  affecting  the  condition  of  the  vegetation.    

How  much  has  been  cleared  -­‐  the  extent  of  the  remaining  vegetation  (the  green  bars),  the  composition  of  the  remaining  vegetation  in  each  of  these  vegetation  groups  (the  orange  bars),  and  the  configuration  of  the  remaining  vegetation  across  the  landscape  (the  blue  bars).  

0

10

20

30

40

50

60

70

80

90

100

Eucalyptus  low  open  w

oodlands  with  tussock  grass

Heath

Low  closed  forest  or  tall  closed  shrublands

Other  forests  &

 woodlands

Melaleuca  open  forests  &

 woodlands

Mangroves

Casuarina  &  Allocasuarina  forests  &

 woodlands

Eucalyptus  forests  &  woodlands  w

ith  grassy  understorey

Mallee  w

ith  hummock  grass

Arid  &  sem

i-­‐arid  hummock  grasslands

Eucalyptus  woodlands  w

ith  shrubby  understorey

Mallee  w

ith  tussock  grass  understorey

Wet  tussock  grassland,  herbland,  sedgeland  or  rushland

Mallee  heath  &

 shrublands

Mallee  w

ith  an  open  shrubby  understorey

Callitris  forests  &  woodlands

Mixed  chenopod,  sam

phire  or  forblands

Temperate  tussock  grasslands

Melaleuca  shrublands  &

 open  shrublands

Other  Acacia  tall  open  shrublands

Other  shrublands

Chenopod  shrublands

Arid  &  sem

i-­‐arid  acacia  low  open  w

oodlands  &  shrublands

with  chenopods

Cond

ition

 Score

Regional  Econd =  25  

Econd Configuration Composition Extent

Major  Vegetation  Groups

Eyre  Peninsula,  South  AustraliaNative  Vegetation                                      

Asset  Condition  Scores

Figure  11

 For  example,  the  left  hand  side  of  the  graph  shows  that  five  vegetation  groups  have  an  Econd  of  less  than  1,  and  that  the  primary  reason  for  this  is  that  they  have  been  reduced  in  area  to  less  than  1  per  cent  of  their  original  extent.  In  comparison,  the  extent  of  Temperate  tussock  grasslands  (fifth  from  the  right)  is  high  (with  an  indicator  condition  score  of  93),  but  it  has  an  Econd  of  less  than  50  because  the  composition  of  that  vegetation  score  is  only  53.    The  Econd  for  this  asset  is  calculated  by  multiplying  the  quantity  (extent)  by  the  quality  (average  of  composition  and  configuration  indicator  scores).      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  13  

Figure  12  maps  one  of  the  measures  of  the  composition  indicator.      

This  is  possible  because  the  survey  undertaken  to  produce  the  composition  indicator  also  recorded  the  level  of  weeds  that  affect  each  vegetation  type.      

 

   

This  figure  shows  where  weeds  are  having  the  greatest  impact  on  the  condition  of  native  vegetation  across  the  region:    the  darker  the  colour,  the  greater  the  impact  of  weeds.    If  this  measure  was  used  in  all  regions  across  Australia,  we  would  have,  almost  as  a  by-­‐product  of  the  accounts,  a  map  of  the  impact  of  weeds  across  the  entire  country.  

This  is  made  possible  because  all  the  underpinning  information  on  each  indicator  is  now  organised  in  this  single  common  accounting  framework,  using  the  common  environmental  currency.  

Measuring  Trend:  

Understanding  the  health  of  an  environmental  asset  requires  an  understanding  of  the  condition  of  an  asset  at  a  particular  point  in  time.    Of  equal  importance  to  policy  makers  and  investors  is  the  ability  to  monitor  the  direction  and  rate  of  change  in  the  condition  of  those  assets.  

Collecting  trend  data  takes  time,  and  in  landscapes  with  high  climate  variability  such  as  Australia,  it  can  be  many  years  before  sufficient  data  can  be  assembled  to  give  useful  trend  information.      

We  have  however  discovered  that  quite  often  there  is  a  vast  amount  of  existing  data  that  can  be  used  to  measure  the  condition  of  environmental  assets  that  dates  back,  in  some  cases,  decades.    For  example,  many  regions  across  Australia  have  long  time  series  data  for  rivers  and  estuaries.          

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  14  

South  East  Queensland’s  environmental  account  (Figure  13)  includes  data  from  2003  to  2011  for  the  condition  of  estuaries  around  Brisbane.  

0

10

20

30

40

50

60

70

80

90

100

2003 2004 2005 2006 2007 2008 2009 2010 2011

Econ

dAll  Estuaries

Albert  River  estuaryBremer  River  estuaryBrisbane  River  estuaryCabbage  Tree  Creek  estuaryCaboolture  River  estuaryCoomera  River  estuaryCurrumbin  Creek  estuaryEprapah  Creek  estuaryLogan  River  estuaryMaroochy  River  estuaryMooloolah  River  estuaryNerang  River  estuaryNorth  Pine  River  estuaryOxley  Creek  estuaryPimpama  River  estuaryTallebudgera  Creek  estuaryTingalpa  Creek  estuaryNoosa  River  estuary

0102030405060708090100

2003 2004 2005 2006 2007 2008 2009 2010 2011

Econ

d

Moreton  Bay  Ramsar siteBramble  Bay

Broadwater

Central  Bay

Deception  Bay

Eastern  Banks

Eastern  Bay

Pumicestone  Passage

Southern  Bay

Waterloo  Bay

South  East  Queensland  Catchments  Trend  in  Estuary  Condition

Figure  13

 

It  also  shows  in  more  detail,  the  condition  of  various  parts  of  the  Ramsar-­‐listed  Moreton  Bay  estuary  –  a  marine  estuary  of  international  conservation  significance.  

In  this  next  example  (Figure  14),  we  use  Landsat  data  (which  dates  back  to  the  1970s)  acquired  for  the  National  Carbon  Accounting  System  used  to  measure  Australia’s  greenhouse  emissions  from  land  use  change.  

Central  West,  NSWTrend  in  Native  Vegetation  Extent

0

10

20

30

40

50

60

70

80

90

100

1970 1975 1980 1985 1990 1995 2000 2005 2010

Extent  (%

 of  referen

ce)

Dry  sclerophyll  forests  (Shrubby  subformation) Dry  sclerophyll  forests  (Shrub/grass  subformation)

Semi-­‐arid  woodlands  (Shrubby  subformation) Wet  sclerophyll  forests  (Grassy  subformation)

Forested  wetlands Grassy  woodlands

Grasslands Freshwater  wetlands

Semi-­‐arid  woodlands  (Grassy  subformation) Arid  shrublands  (Acacia  subformation)

Arid  shrublands  (Chenopod  subformation) TOTAL  EXTENT

Figure  14

 

The  former  national  Department  of  Industry  and  Climate  Change  used  this  same  dataset  to  hindcast  trend  in  the  change  in  extent  of  the  various  vegetation  groups.    It  shows  that  the  total  extent  of  native  vegetation  (one  major  indicator  of  condition)  in  the  Central  West  region  of  NSW  

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  15  

is  very  low  (<  20%).    It  also  shows  that  there  has  been  a  noticeable  change  around  1998  and  1999,  particularly  in  two  vegetation  groups:  the  ‘Dry  sclerophyll  forests’  and  the  ‘Arid  shrublands”.  

Another  innovation  to  overcome  the  lack  of  historical  data  is  to  combine  oral  history,  local  knowledge  and  expert  opinion  to  construct  a  long  term  trend  graph  (Figure  15)31  which  sets  past  and  current  management  into  context  against  the  condition  of  the  asset  and  documents  changes  to  the  asset  over  time.    

Wooroonooran Nature  RefugeNorth  Queensland

Benefits  of  Trend  Information

Source:  Richard  Thackway,  VAST

Limited  land  management by  Ngadyan people

Figure  15

 

   

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  16  

5. Using  asset  condition  accounts  for  policy  and  investment  decisions  

The  purpose  of  creating  a  system  of  environmental  accounts  is  to  link  the  maintenance  of  our  natural  capital  into  everyday  economic  decisions  so  that  people  can  make  informed  decisions  that  lead  to  a  healthy  and  productive  environment.    

Placing  scientific  information  into  an  accounting  framework  does  this  by  allowing  policy  makers  and  the  community  to:  

1. Better  understand  complex  scientific  information;  2. Set  and  evaluate  measurable  standards  and  policy  targets;  3. Estimate  the  cost  of  meeting  those  standards  and  targets;  4. Evaluate  the  cost-­‐effectiveness  of  investment  decisions;  and  then  5. Monitor  progress  over  time.  

The  first  step  towards  a  healthy  and  productive  society  that  is  in  harmony  with  nature  –  the  promise  the  world’s  leaders  signed  up  to  in  Rio  in  1992  -­‐  is  to  understand  how  our  natural  systems  operate,  and  the  impact  policies  and  economic  decisions  have  on  our  natural  capital.  

Natural  systems  are  complex,  and  when  information  is  too  complex,  it  makes  effective  decisions  impossible.  

Presenting  complex  information  using  different  indicators  for  a  range  of  different  assets  is  confusing  even  to  experts.    Just  imagine  how  impossible  it  is  to  non-­‐experts  who  rely  on  this  information  to  make  judgements  with  all  this  complexity.    The  simple  truth  is  they  can’t,  and  so  they  are  forced  to  resort  to  opinion,  and  as  a  result  we  have  conflict  when  we  should  have  agreement.  

The  creation  of  a  common  environmental  currency  provides  the  opportunity  to  simplify  complexity  without  reducing  scientific  rigour.    In  doing  so,  environmental  condition  accounts  can  fundamentally  change  our  understanding  of  development  and  environment.  

It  is  important  to  emphasise  that  an  Econd  does  not  imply  a  monetary  value,  nor  does  it  describe  a  desired  state,  but  it  does  inform  the  setting  of  targets,  provides  for  metrics  to  estimate  the  cost-­‐effectiveness  of  investments  aimed  at  reaching  those  targets,  and  then  monitors  the  success  of  these  interventions  over  time.  

The  condition  of  a  river  which  provides  safe  drinking  water  may  differ,  for  example,  from  that  which  flushes  salt  out  of  inland  river  systems,  or  provides  habitat  for  a  sustainable  fishing  industry,  or  provides  opportunities  for  recreation.    

The  target  condition  for  native  vegetation  might  vary  not  only  depending  on  the  service  that  it  is  providing,  but  also  where  that  service  is  located  in  the  landscape.    For  example,  a  target  condition  may  include  protecting  water  quality  in  rivers,  or  controlling  dryland  salinity,  or  providing  habitat  for  threatened  species,  or  protecting  agricultural  soil  from  wind  and  water  erosion.      

One  method  of  communicating  this  information,  increasingly  adopted  by  natural  resource  management  agencies  across  the  world,  is  to  produce  a  Report  Card.    One  example  in  Australia  is  the  annual  Report  Card  produced  by  the  Healthy  Waterways  Partnership  in  South  East  Queensland32  (Figure  16).      

This  report  card  method  has  proven  to  be  a  very  effective  in  communicating  complex  scientific  knowledge  in  engaging  multiple  stakeholders  (tourism,  business,  local  government,  communities)  in  the  process  and  encouraging  them  to  take  ownership  for  the  actions  arising  from  the  results  of  the  monitoring  program.    

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  17  

South  East  QueenslandHealthy  Waterways  Partnership

Freshwater  Report  Card  2011

Figure  16

 

The  same  accounts  that  describe  the  condition  of  our  environmental  assets  can  then  be  used  to  inform  policy  targets.    For  example,  the  information  in  Figure  17  was  used  to  set  policy  targets  for  prioritising  investments  in  native  vegetation  management.    It  shows  the  current  extent  of  the  77  types  of  native  vegetation  in  the  Namoi  Catchment  Management  Authority  region  of  NSW.    

This  information  informed  their  regional  Catchment  Plan,  which  concluded  that  the  Namoi  valley  would  be  a  more  healthy  and  productive  environment,  if  the  19  most  depleted  native  vegetation  assets  were  restored  to  a  30%  level.    This  has  become  their  policy  target.33  

Namoi  Catchment  Management  Authority,  New  South  Wales

Linking  to  Policy  Outcomes

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

2020  Catchment  P

lan  Targets

Extent  C

onditio

n    Score

Native  Vegetation  Type

Figure  17

 It  is  possible  to  do  this  because  we  have  an  environmental  condition  account  which  connects  asset  condition  (in  this  case  using  an  extent  measure  only)  to  policy  targets  and  policy  targets  to  investment  decisions.      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  18  

By  calculating  the  areas  of  restoration  required  to  restore  the  under-­‐represented  vegetation  types,  it  is  now  possible  to  establish:  

• the  area  of  restoration  required  to  achieve  the  30%  target;    • the  cost  of  restoring  each  of  those  hectares  based  on  previous  project  expenditure,  to  

produce  an  estimate  of  the  a  total  cost  of  achieving  their  target;  and  • an  estimate  of  the  economic  value  of  the  carbon  sequestration  that  would  result  from  

achieving  that  restoration  target.      

A  second  example  of  the  use  of  asset  condition  accounts,  which  can  change  the  way  we  understand  and  manage  our  freshwater  resources  and  inform  policy  and  investment  decisions  to  protect  those  waterways,  is  provided  by  the  South  East  Queensland  Healthy  Waterways  Partnership  (Figure  18).  

South  East  Queensland RegionFigure  18

 

Increased  pollution  caused  by  urban  development  is  placing  significant  pressures  on  the  condition  of  its  waterways  which  flow  into  the  Ramsar  listed  Moreton  Bay  estuary  (Figure  19)34.  

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  19  

South  East  QueenslandMorton  Bay  Ramsar  Site

Trends  in  Ecosystem  Health

High  rainfall  after  a  decade  of  drought  A  decade's  worth  of  sediment,  nutrients  and  other  contaminants  was  flushed  downstream.  

2011

C-

Bay  recovered  slightly,  but  still  lower  than  average

2011  Flood  came  on  top  of  this  recovery

Moreton  Bay  held  on  to  a  ‘Good’ rating  in  spite  of  increase  in  population  –significant  investments   in  sewage  treatment.

2030

B

D/D-

Source: Assoc. Prof. Eva Abal

Figure  19

 

Because  of  its  long-­‐term  asset  condition  monitoring  program,  the  SEQ  Healthy  Waterways  Partnership  can  place  10  years  of  data  into  models  (Figure  20),  which  incorporate  hydrology,  climate,  and  predicted  population  growth,  and  produce  an  estimate  of  the  added  pollution  loads  on  river  and  estuary  assets  into  the  future.35  

South  East  Queensland  Indicators  of  Freshwater  Condition

Source:    SEQ  Healthy  Waterways  Strategy  2007-­‐2012

Figure  20

 

SEQ  Catchments,  the  natural  resources  management  body  for  this  region,  used  these  environmental  accounts  to  produce  an  infrastructure  investment  plan  for  maintaining  the  condition  of  its  freshwater  assets,  as  the  region  grows  by  a  projected  1  million  people.      

They  then  used  the  information  in  these  accounts  to  evaluate  the  most  cost-­‐effective  actions  to  achieve  these  abatement  targets  (Figure  21).36  

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  20  

South  East  QueenslandLong  Term  Annual  Marginal  Abatement  Costs

Figure  21

 This  analysis  concluded  that  the  cost  of  keeping  Moreton  Bay  estuary  at  a  “B”  is  an  annual  cost  of  $25  million.    This  is  less  than  1%  of  the  overall  urban  infrastructure  budget  for  the  region  and  an  annual  cost  to  ratepayers  of  $6.37  

SEQ  Catchments  was  able  to  show  this  because  they  had  built  a  set  of  environmental  accounts,  based  on  scientific  information  that  could  be  used  to  identify  cost-­‐effective  investment  decisions.    

As  part  of  the  same  process  they  found  that  sediment  was  a  primary  contributor  to  the  decreased  condition  in  the  rivers  and  estuaries  of  South  East  Queensland.    With  this  information  they  were  able  to  locate  areas  across  the  landscape  that  are  at  high  risk  of  losing  sediment,  and  then  prioritise  investments  into  those  areas  (marked  in  red  in  Figure  22).  38  

South  East  QueenslandLand  Management  Hot  Spots

Figure  22

 

   

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  21  

6. Conclusion  In  1992,  the  world’s  leaders  convened  the  first  Earth  Summit  in  Rio,  Brazil.    This  summit  produced  the  Rio  Declaration  on  Environment  and  Development,  the  first  principle  of  which  is  that  "human  beings  ...  are  entitled  to  a  healthy  and  productive  life  in  harmony  with  nature."39  

Despite  this  declaration,  we  have  failed  to  address  the  fundamental  problem:      internalising  environmental  degradation  into  everyday  economic  decision  making.      

We  have  suggested  a  place  to  start,  by  measuring  the  condition  of  our  environmental  assets.  

Condition  is  a  scientific  measure  of  the  capacity  of  an  environmental  asset  to  continue  to  deliver  benefits  to  society.  If  such  a  measure  is  to  have  a  meaningful  impact  in  creating  an  economic  system  that  creates  a  healthy  and  productive  society  in  harmony  with  nature,  this  condition  measure  needs  to  incorporate  both  the  quantity  of  an  asset  and  the  quality  of  that  asset.  In  2008,  the  Wentworth  Group  of  Concerned  Scientists  and  other  experts  in  science,  economics,  statistics  and  public  policy  in  Australia,  developed  the  Accounting  for  Nature  model.  40      This  model  placed  scientific  information  about  the  condition  of  the  environment  into  an  accounting  framework  which  allows  policy  makers  and  the  community  to:      

1. Better  understand  complex  scientific  information;  2. Set  and  evaluate  measurable  standards  and  policy  targets;  3. Estimate  the  cost  of  meeting  those  standards  and  targets;  4. Evaluate  the  cost-­‐effectiveness  of  investment  decisions;  and  then  5. Monitor  progress  over  time.  

Asset  condition  accounting  using  the  Accounting  for  Nature  model  to  create  a  common  environmental  currency  has  been  tested  across  ten  of  Australia’s  54  Natural  Resource  Management  regions.      

The  initial  results  from  these  trials  demonstrate  the  potential  for  this  common  currency  (an  Econd)  to  help  policy  makers  set  measurable  policy  standards,  and  then  inform  the  cost-­‐effectiveness  of  investments  aimed  at  meeting  those  policy  standards.    

These  regional  trials  have  now  been  completed,  and  the  accounts  and  accompanying  information  statements  are  now  being  assessed  by  a  Scientific  Standards  and  Accreditation  Committee.    Once  this  is  completed  a  formal  evaluation  of  the  trials  will  be  completed  and  that  evaluation  will  be  internationally  peer  reviewed.  

Whilst  there  are  still  many  questions  to  be  resolved,  what  these  trials  do  demonstrate  is  the  value  of  a  common  environmental  currency  to  enable  us  to  simplify  nature’s  complexity  without  reducing  the  rigour  of  scientific  measurement.      

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  22  

 Appendix  1:    Contributors  to  the  Australian  Regional  Environmental  Accounts  Trials  

(organisation  titles  correct  at  time  of  the  contributor’s  involvement)    

 Andre  Zerger,  Bureau  of  Meteorology  Andrew  Baldwin,  NRM  North  Andrew  Biggs,  QLD  Department  of  Natural  Resources  and  Mines  Andrew  Cadogan-­‐Cowper,  Australian  Bureau  of  Statistics  Andrew  Houley,  Reef  Catchments    Annelise  Wiebkin,  SA  Department  of  Environment,  Water  and  Natural  Resources  Annie  Lane,  Natural  Resources  Eyre  Peninsula  SA  Department  of  Environment,  Water  and  Natural  Resources  Anthony  Greenhalgh,  Central  West  Catchment  Management  Authority  Ayesha  Tulloch,  University  of  Queensland  Belinda  Allison,  Bureau  of  Meteorology  Bill  Allen,  Australian  Bureau  of  Statistics  Brad  Page,  SA  Department  of  Environment,  Water  and  Natural  Resources  Brian  Foster,  Natural  Resources  Eyre  Peninsula  SA  Department  of  Environment,  Water  and  Natural  Resources  Bronwyn  Cameron,  Namoi  Catchment  Management  Authority  Bruce  Brown,  Namoi  Catchment  Management  Authority  Bruce  Thom,  Wentworth  Group  of  Concerned  Scientists  Carley  Bartlett,  Wentworth  Group  of  Concerned  Scientists  Caroline  McFarlane,  Wentworth  Group  of  Concerned  Scientists  Carolyn  Raine,  Central  West  Catchment  Management  Authority  Cecilia  Woolford,  Natural  Resources  Eyre  Peninsula  SA  Department  of  Environment,  Water  and  Natural  Resources  Chris  King,  Northern  Agricultural  Catchments  Council  Claire  Parkes,  Wentworth  Group  of  Concerned  Scientists  Damian  Wells,  North  Central  Catchment  Management  Authority  Danny  O’Neill,  National  NRM  Regions’  Working  Group  Dave  Pongracz,  WA  Department  of  Parks  and  Wildlife  David  Karoly,  Wentworth  Group  of  Concerned  Scientists  David  Manning,  SEQ  Catchments  Denis  Saunders,  Wentworth  Group  of  Concerned  Scientists  Donna  Smithyman,  Corangamite  Catchment  Management  Authority  Emma  Jackson,  Northern  Agricultural  Catchments  Council  Emma  McIntosh,  Wentworth  Group  of  Concerned  Scientists  Eva  Abal,  University  of  Queensland  Evelyn  Poole,  Natural  Resources  Eyre  Peninsula  SA  Department  of  Environment,  Water  and  Natural  Resources  Fiona  McKenzie,  Wentworth  Group  of  Concerned  Scientists  Francesca  Andreoni,  Namoi  Catchment  Management  Authority  Gareth  Smith,  Corangamite  Catchment  Management  Authority  Garry  Cook,  CSIRO  Gary  Stoneham,  Victorian  Department  of  Treasury  and  Finance  Geoff  Penten,  Queensland  Murray  Darling  Committee  George  Truman,  Namoi  Catchment  Management  Authority  Greg  Keighery,  WA  Department  of  Parks  and  Wildlife  Heather  Baldock,  Eyre  Peninsula  NRM  Board  Hugh  Possingham,  Wentworth  Group  of  Concerned  Scientists  James  McKee,  NRM  North  James  Shaddick,  North  Central  Catchment  Management  Authority  

Jane  McDonald,  University  of  Queensland  Jen  Shearing,  Central  West  Catchment  Management  Authority  Jessica  Hasker  Bowman,  Victorian  Department  of  Environment  and  Primary  Industries  Jim  McDonald,  Namoi  Catchment  Management  Authority  John  Bethel,  Northern  Gulf  Resource  Management  Group  John  Williams,  Wentworth  Group  of  Concerned  Scientists  Joselito  Chua,  Victorian  Department  of  Environment  and  Primary  Industries  Judy  Henderson,  Northern  Rivers  Catchment  Management  Authority  Kate  Clarke,  Natural  Resources  Eyre  Peninsula  SA  Department  of  Environment,  Water  and  Natural  Resources  Lesley  Hughes,  Wentworth  Group  of  Concerned  Scientists  Marieke  Jansen,  Northern  Agricultural  Catchments  Council  Mark  Eigenraam,  Victorian  Department  of  Environment  and  Primary  Industries  Mark  Lound,  Australian  Bureau  of  Statistics  Mark  Silburn,  QLD  Department  of  Natural  Resources  and  Mines    Max  Kitchell,  NRM  South  Michael  Vardon,  Australian  Bureau  of  Statistics  Mike  Grundy,  CSIRO  Neil  Byron,  Wentworth  Group  of  Concerned  Scientists  Nick  McCristal,  Corangamite  Catchment  Management  Authority  Niilo  Gobius,  Northern  Gulf  Resource  Management  Group  Noel  Ainsworth,  SEQ  Catchments  Pam  Green,  Southern  Rivers  Catchment  Management  Authority  Paua  Steyer,  Wentworth  Group  of  Concerned  Scientists  Peter  Cosier,  Wentworth  Group  of  Concerned  Scientists  Peter  Greig,  Chair  of  Technical  Accounting  Committee  Phil  Tickle,  CRC  for  Spatial  Information  Rebecca  Kelly,  NRM  North  Richard  Davis,  Wentworth  Group  of  Concerned  Scientists  Richard  Thackway,  VAST  Transformations  Rob  Purves,  Wentworth  Group  of  Concerned  Scientists  Rob  Sturgiss,  Department  of  Industry,  Innovation,  Climate  Change,  Science,  Research  and  Tert  Ed  Ronnie  Harding,  Wentworth  Group  of  Concerned  Scientists  Roxane  Blackley,  Queensland  Murray  Darling  Committee  Royce  Bishop,  Reef  Catchments  Shelley  Spriggs,  Northern  Agricultural  Catchments  Council  Simon  Warner,  SEQ  Catchments  Sophie  Keen,  Natural  Resources  Eyre  Peninsula  SA  Department  of  Environment,  Water  and  Natural  Resources  Terry  Hillman,  Wentworth  Group  of  Concerned  Scientists  Tim  Flannery,  Wentworth  Group  of  Concerned  Scientists  Tim  Hoogwerf,  Northern  Gulf  Resource  Management  Group  Tim  Stubbs,  Wentworth  Group  of  Concerned  Scientists  Tony  Smith,  CSIRO  Tracey  Macdonald,  Central  West  Catchment  Management  Authority  Warwick  McDonald,  Bureau  of  Meteorology

   

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  23  

Notes  and  References                                                                                                                            1     Wentworth  Group  of  Concerned  Scientists  (2008).  Accounting  for  Nature:    A  Model  for  Building  the  

National  Environmental  Accounts  of  Australia.    http://www.wentworthgroup.org/blueprints.  2     Cosier  P  and  J  McDonald  (2010).  A  Common  Currency  for  Building  Environmental  (Ecosystem)  Accounts,  

Prepared  for  the  16th  Meeting  of  the  London  Group  on  Environmental  Accounting,  Santiago,  Chile,  25-­‐28  October,  2010.  

3     NRM  Regions  Australia  (2013).  Draft  Regional  Proof  of  Concept  Accounts  and  Information  Statements.  Available  at  http://nrmregionsaustralia.com.au.  

4     Millennium  Ecosystem  Assessment  (2005).  Ecosystems  and  Human  Well-­‐being:  Synthesis,  Island  Press,  Washington,  DC.  

5     United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework  (white  cover  publication,  pre-­‐edited  text  subject  to  official  editing),  Section  2.2,  para  2.23,  p14.  United  Nations  Statistical  Division,  New  York.      

6     United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework  Section  5.1,  para  5.2,  p123.  

7     Wentworth  Group  of  Concerned  Scientists  (2008).  Accounting  for  Nature:    A  Model  for  Building  the  National  Environmental  Accounts  of  Australia.    http://www.wentworthgroup.org/blueprints    

8       United  Nations  Conference  on  Environment  and  Development  (UNCED)  (1992).  Agenda  21.  Chapter  8.  Rio  Earth  Summit.

9       For  a  description  of  degradation  see  United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework  section  5.4.2,  para  5.90,  5.91  and  5.92,  p137.  

10     United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework.  

11    Convention  on  Biological  Diversity  (2010).  Strategic  Plan  2011-­‐2020.  Prepared  in  response  to  decision  X/2,  the  tenth  meeting  of  the  Conference  of  the  Parties,  held  from  18  to  29  October  2010,  in  Nagoya,  Aichi  Prefecture,  Japan.  http://www.cbd.int/sp/.  

12      GHD  (2012).  Review  of  Regional  Natural  Resource  Management  Plans.  Final  Report  prepared  for  the  National  NRM  Working  Group.  

13     Murray–Darling  Basin  Authority  (2011).  Sustainable  Rivers  Audit  2:  The  ecological  health  of  rivers  in  the  Murray–Darling  Basin  at  the  end  of  the  Millennium  Drought  (2008–2010).  www.mdba.gov.au  

14     For  example,  the  Australian  government’s  Natural  Heritage  Trust,  Caring  for  Our  Country  and  National  Landcare  Programs.  

15     Eigenraam,  M.,  Chua,  J.  &  Hasker,  J.  (2013).    Environmental-­‐Economic  Accounting:  Victorian  Experimental  Ecosystem  Accounts,  Version  1.0.    Department  of  Sustainability  and  Environment,  Victoria.  

16     State  of  the  Environment  Committee  (2011).    Australia  State  of  the  Environment  2011.  Independent  report  to  the  Australian  Government  Minister  for  Sustainability,  Environment,  Water,  Population  and  Communities.  Canberra:  DSEWPaC,  2011.  

17     NRM  Regions  Australia  (2011).  Australian  Regional  Environmental  Accounts  Trial  2011:  Draft  Guidelines  for  Constructing  Regional  Environmental  Accounts.  

18     Modified  from  NRM  Regions  Australia  (2011)  Australian  Regional  Environmental  Accounts  Trial  2011:  Draft  Guidelines  for  Constructing  Regional  Environmental  Accounts  for  consistency  with  the  SEEA  Central  Framework.    

Initial  Observations  on  the  Australian  Regional  Environmental  Asset  Condition  Trials,  2013  

NOVEMBER  2013   PAGE  24  

                                                                                                                                                                                                                                                                                                                                                                                 19     United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  

Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework.  Section  2.2,  para  2.17  p13.  

20     European  Commission,  Organisation  for  Economic  Co-­‐operation  and  Development,  United  Nations,  World  Bank  (2013).  System  of  Environmental-­‐Economic  Accounting  Experimental  Ecosystem  Accounting.  Section  5.6.6,  para  5.316,  p172.      

21     CSIRO  (2001).  Natural  assets:  An  Inventory  of  Ecosystem  goods  and  services  in  the  Goulburn  Broken  Catchment.  p5.  

22 United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework.  Reference  to  the  extent  and  quality  of  the  soil  asset  para  5.160  p147,  and  paras  5.332  and  5.341  (Table  5.7.1),  p174.

23     Cosier  P  and  J  McDonald  (2010).  A  Common  Currency  for  Building  Environmental  (Ecosystem)  Accounts.  24     Cosier  P  and  J  McDonald  (2010).  A  Common  Currency  for  Building  Environmental  (Ecosystem)  Accounts.    25     NRM  Regions  Australia  (2011).  Australian  Regional  Environmental  Accounts  Trial  2011:  Draft  Guidelines  

for  Constructing  Regional  Environmental  Accounts.  26     European  Commission,  Organisation  for  Economic  Co-­‐operation  and  Development,  United  Nations,  

World  Bank  (2013).  System  of  Environmental-­‐Economic  Accounting  Experimental  Ecosystem  Accounting.  section  4.2.1,  Para  4.11,  p76.  

27     NRM  Regions  Australia  (2011).  Australian  Regional  Environmental  Accounts  Trial  2011:  Draft  Guidelines  for  Constructing  Regional  Environmental  Accounts.  

28     United  Nations,  European  Commission,  Food  and  Agriculture  Organisation,  International  Monetary  Fund,  Organisation  of  Economic  Co-­‐operation  and  Development,  World  Bank  (2012).  System  of  Environmental-­‐Economic  Accounting:  Central  Framework  Section  5.4.2,  para  5.92,  p138.    

29     Eigenraam,  M.,  Chua,  J.,  Hasker,  J.,  (2012)  Land  based  ecosystem  services:  measurement  and  accounting  in  practice.    United  National  Expert  Meeting  on  Ecosystem  Accounts,  Melbourne,  Australia.  

30     McIntosh  E,  et  al  (2013).  Constructing  a  Native  Vegetation  Condition  Account.  Technical  Paper  #1:  Australian  Regional  Environmental  Accounts  Trials.    In  preparation.  

31      Thackway,  R  (2012)  Transformation  of  Australia's  vegetated  Landscapes,  Wooroonooran  Nature  Refuge,  QLD.  ACEAS.  doi:10.4227/05/5088E97873585.http://dx.doi.org/10.4227/05/5088E97873585  

32     Healthy  Waterways  (2012).  Report  Card  for  the  waterways  and  catchments  of  South  East  Queensland.        33     Namoi  CMA  (2012).  Namoi  Catchment  Action  Plan  2010-­‐2020.  http://www.nrc.nsw.gov.au    34     Marsden  Jacob  Associates  (2011).  Future  of  our  Bay:  The  business  case  for  managing  and  enhancing  

South  East  Queensland’s  waterways  (2012  -­‐  2015).  Prepared  for  the  QLD  Department  of  Environment  and  Resource  Management.  

35     BMT  WMB  (2011)  in  Marsden  Jacob  Associates  (2011).  Future  of  our  Bay:  The  business  case  for  managing  and  enhancing  South  East  Queensland’s  waterways  (2012  -­‐  2015).    

36     Marsden  Jacob  Associates  (2011).  Future  of  our  Bay:  The  business  case  for  managing  and  enhancing  South  East  Queensland’s  waterways  (2012  -­‐  2015).  

37     MainStream  Economics  and  Policy  (2011).  Sharing  the  load:  A  collaborative  approach  to  investing  in  South  East  Queensland’s  waterways.  Table  9,  p35.  

38     MainStream  Economics  and  Policy  (2011).  Sharing  the  load:  A  collaborative  approach  to  investing  in  South  East  Queensland’s  waterways.  

39     United  Nations  (1992)  Rio  Declaration  on  Environment  and  Development,  Annex  1.    Rio  de  Janeiro,  Brazil.    3-­‐14  June  1992.    A/CONF.151/26  (Vol.  1).    

40     Wentworth  Group  of  Concerned  Scientists  (2008)  Accounting  for  Nature:    A  Model  for  Building  the  National  Environmental  Accounts  of  Australia.    http://www.wentworthgroup.org/blueprints