inhalt 1.atome als quantenmechnische teilchen 1.wiederholung interferenz und doppelspalt,...

Download Inhalt 1.Atome als Quantenmechnische Teilchen 1.Wiederholung Interferenz und Doppelspalt, Paradoxien, Delayed Choice 2.Doppelspaltversuche mit Teilchen:

If you can't read please download the document

Upload: tillo-zeien

Post on 05-Apr-2015

114 views

Category:

Documents


2 download

TRANSCRIPT

  • Folie 1
  • Inhalt 1.Atome als Quantenmechnische Teilchen 1.Wiederholung Interferenz und Doppelspalt, Paradoxien, Delayed Choice 2.Doppelspaltversuche mit Teilchen: 1.Elektronen 2.Atome, Molekle 3.Dekohrenz: Teilchenstreuung, Lichtstreuung, thermische Emission 4.Beispiel H 2 5.Quantenkryptographie 6.Lichtgitter 7.Atomspiegel 2.Wechselwirkung mit Atomen 1.Photon-Atom Wechselwirkung 1.Wiederholung: Photoeffekt, Comptoneffekt, 2.Winkel- und Energieverteilungen 3.Doppelanregung, Interferenzeffekte 4.Mehrfachionisation: Mechanismen, Energie- und Winkelverteilungen 5.Molekulare Photoionisation: Hhere Drehimpulse 2.Atome in starken Laserfeldern 1.Multiphotonenionisation 2.Tunnelionisation 3.Der Rckstreumechanismus: Hhere Harmonische, hochenergetische Elektronen, Doppelionisation 4.Mehrfachionisation: Mechanismen, Impulse und Energien 3.Ion-Atom Ste 1.Elektronentransfer 2.Ionisation
  • Folie 2
  • 1)auch individualisierte Teilchen mit vielen inneren Freiheitgraden zeigen Interferenz 2)Streuung von Licht und Teilchen zerstrt graduell den Kontrast 3)Thermische Emission zerstrt die Interferenz
  • Folie 3
  • Verlust an Interferenz: Streuung: Impulsbertrag Verschrnkung Quanteneraser Dekoherenz (Verschrnkung mit Umwelt)
  • Folie 4
  • Inhalt 1.Atome als Quantenmechnische Teilchen 1.Wiederholung Interferenz und Doppelspalt, Paradoxien, Delayed Choice 2.Doppelspaltversuche mit Teilchen: 1.Elektronen 2.Atome, Molekle 3.Dekohrenz: Teilchenstreuung, Lichtstreuung, thermische Emission 4.Beispiel H 2 5. Quantenkryptographie 6.Lichtgitter 7.Atomspiegel 2.Wechselwirkung mit Atomen 1.Photon-Atom Wechselwirkung 1.Wiederholung: Photoeffekt, Comptoneffekt, 2.Winkel- und Energieverteilungen 3.Doppelanregung, Interferenzeffekte 4.Mehrfachionisation: Mechanismen, Energie- und Winkelverteilungen 5.Molekulare Photoionisation: Hhere Drehimpulse 2.Atome in starken Laserfeldern 1.Multiphotonenionisation 2.Tunnelionisation 3.Der Rckstreumechanismus: Hhere Harmonische, hochenergetische Elektronen, Doppelionisation 4.Mehrfachionisation: Mechanismen, Impulse und Energien 3.Ion-Atom Ste 1.Elektronentransfer 2.Ionisation
  • Folie 5
  • Thomas Young 1801 Atomoptics today Molecular Photoionization circular polararized Cohen & Fano Briggs Diplomarbeit: Katharina Kreidi (2006) Dominique Akoury (2007)
  • Folie 6
  • H 2 as Double Slit
  • Folie 7
  • electron energy: 190 eV wavelength: 1.7 a.u. Slit: 1.4 a.u.
  • Folie 8
  • double slit: cos(k * R/2) RPA S. Semenov, N. Cherepkov Multiple Scattering R. Diez Muino 1. electron wavelength varies circular light 2. Circular light 3. Scattering
  • Folie 9
  • E(e1) = 190 eV E(e2) = 5 eV single ionizaton double ionization with one slow electron double ionization Second e - observer
  • Folie 10
  • E(e1) = 190 eV E(e2) = 5 eV single ionizaton double ionization with one slow electron double ionization Second e - observer E(e1) = 95 eV E(e2) = 14 eV QuantumClassical (interference) No Interference
  • Folie 11
  • What makes the Macroworld classical? How many particles does it need? What is the transition? ~ is small Decoherence by entanglement/ interaction
  • Folie 12
  • r2) What makes the Macroworld classical? ~ is small Decoherence by entanglement/ interaction r 1 ) Coulomb Interaction Gravity Collisions Thermal Radiation Electron-scattering Second electron
  • Folie 13
  • r2) What makes the Macroworld classical? ~ is small Decoherence by entanglement/ interaction r 1 ) Coulomb Interaction Gravity Collisions Thermal Radiation Environment Rest of Universe Complete Decoherence Fully classical
  • Folie 14
  • What makes the Macroworld classical? How many particles does it need? What is the transition? Second electron
  • Folie 15
  • Angle between electron fast electron E(e1) = 95 eV E(e2) = 15 eV
  • Folie 16
  • between electrons fast e - E(e1) = 95 eV E(e2) = 15 eV fast e -
  • Folie 17
  • decoherence by electron-electron interaction? double ionization E(e1) = 95 eV E(e2) = 15 eV
  • Folie 18
  • entangled 2-body wave function What happens if one measures recoil on slit?
  • Folie 19
  • entangled 2-body wave function (k p1 + k p2 ) Momentum transfer to double slit
  • Folie 20
  • Step 1: Electronic part Momentum conservation nuclear part Momentum conservation nuclear part Step 2: Electronic part
  • Folie 21
  • Verschrnkung EPR Quantenkryptographie
  • Folie 22
  • Reality (if predictibal with 100% certainty its part of reality) Completeness (a complete theory must describe all of reality) Locality -> QM does not allow for all three EPR concluded -> incomplete Today -> non local BUT: Einstein no problem no information Heute: Nichtlokalitt ber viele km demonstriert Was unterscheidet EPR von klassischer Impulserhaltung? Bsp: Wasserstoffatom: Elektron/Kern VS Mondbahn
  • Folie 23
  • Quantenkryptographie Ziel: eine Nachricht absolut abhrsicher zu bertragen Trick: Nutze die Unschrferalation, da jede Messung einen Quantenzustand ndert. A (lice): Sender B (ob): Empfnger E(ve): Eavesdropper (Lauscher)
  • Folie 24
  • Vorbemerkung 1: Ein einmaliger Schlssel
  • Folie 25
  • Quantenkryptographie Alice: Text : 1000101010101001011 Geheimer Schlssel: 0011011101101001100 _____________________________________ Gesendete Nachricht: 1011100111000000111 Bob (Empfnger): Empfangene Nachricht: 1010100111000000111 Geheimer Schlssel: 0011011101101001100 _______________________________________ Entschlsselt: 1000101010101001011 Ziel: eine Nachricht absolut abhrsicher zu bertragen Trick: Nutze die Unschrferalation, da jede Messung einen Quantenzustand ndert.
  • Folie 26
  • Vorbemerkung 2: Polarisiertes Licht
  • Folie 27
  • Zirkulares Licht: Perspektive der Klassischen Physik 1.elektrischer Feldvektor Rotiert 2.kohrente berlagerung aus zwei senkrechten linearen Lichtfeldern mit verschobener Phase Quantenmechansiche Beschreibung: Whle eine beliebige ortonormale vollstndige Basis (2 Zustnde) a) |> | > b) | > | > c) | > | >
  • Folie 28
  • Folie 29
  • Folie 30
  • Folie 31
  • Folie 32
  • BB84 Protokoll 1984 Charles Bennet (IBM) Gilles Brassard (Uni Montreal) Proceeding of IEEE Conference on Computers, Systems, and Signal Processing, Bangalore, India S 175 (1984) 1)Alice schickt Photonen mit ausgewhlter Polarisation an Bob 2)Bob misst 3)Alice und Bob kommunizieren ffentlich welche Polarisation -> Falls jemand die Photonen belauscht wird das bemerkt
  • Folie 33
  • Schritt 1: Alice whlt statistisch Alphabet, (Basis) Polarisation a) |> | > b) | > | > 01 Alice fhrt Liste Ob a) oder b) Schritt 2: Bob whlt zufllig Basis a)oder b) und Misst ob ein Photon Ankommt Fhrt Liste ob a) oder b) Schritt 3: Alice und Bob Tauschen ffentlich Ihre Listen ber die Basis fr jedes Photon Aus Aber nicht die info ob 1 oder 0 Schritt 4: Beide nehmen Nur die submenge Als Schlssel, bei der sie die gleiche Basis hatten
  • Folie 34
  • Alice kann so keine Information (von ihr zu bestimmende Bitfolge) an Bob bermitteln Da sie nicht weiss welches ihrer Photonen ausgewhlt wird Einziger Erfolg: beide haben den Gleichen, aber nicht vorherbestimmbaren Schlssel
  • Folie 35
  • Abhhrsicherheit: Lauscher muss wieder ein Photon losschicken um nicht bemerkt zu werden Er muss eine Basis whlen, 50% Richtige Basis, kennt das Photon, kann korrekt klonen 50% Falsche Basis, 25% Richtige Antwort -> 25% Bobs Messung gendert -> Alice und Bob tauschen viele Ergebnisse offen aus und sehen nach
  • Folie 36
  • Alternative: Schlsselbermittlung mit verschrnkten Photonen Quelle von Verschrnkten Photonenpaaren (z.B. gesamt Drehimpuls 0) Messe in 45 0 Basis 50% 1, 50% 0 Mit der Messung bei Alice wird auch das Ergebnis von Bob festgelegt 1001110011 0110001100 Gleicher, aber zuflliger Schlssel NICHT ABHRSICHER! Aber EPR
  • Folie 37
  • http://www.arcs.ac.at/quanteninfo/docs/QKD-Praesentation2.pdf
  • Folie 38
  • Folie 39