inger Åhman -...

23
SLUs plattform växtförädling SLUs fakultetsgemensamma ämnesområde växtförädling Juli 2014 – Juni 2017 Juli 2017 – Juni 2020 Inger Åhman 3 miljoner kr/år

Upload: phamque

Post on 20-Mar-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

SLUs plattform växtförädling

SLUs fakultetsgemensamma ämnesområde växtförädling

Juli 2014 – Juni 2017Juli 2017 – Juni 2020

Inger Åhman

3 miljoner kr/år

Sveriges längstauniversitet med campus på fyra ställen

• Umeå (S-fak, NJ-fak, VH-fak)• Ultuna (NJ-fak, VH-fak, S-fak, LTV-fak)• Skara (VH-fak, NJ-fak)• Alnarp (LTV-fak, S-fak, VH-fak)

FakultetsförkortningarS = SkogsvetenskapNJ = Naturresurser och JordbruksvetenskapVH = Veterinärmedicin och HusdjursvetenskapLTV = Landskapsarkitektur, Trädgårds- och Växtproduktionsvetenskap

Presenter
Presentation Notes
Skoglig resurshushållning, Skoglig mykologi och växtpatologi, Ekologi samt Mark och miljö är gemensamma för NJ- och S-fakulteterna. Biosystem och teknologi är gemensam för VH- och LTV-fakulteterna. Norrländsk jordbruksvetenskap är gemensam för NJ- och VH-fakulteterna. Stad och land är gemensam för NJ- och LTV-fakulteterna.

Tre fakultetsgemensamma ämnesområden

• Växtförädling • Växtskydd• Odlingssystem

Syfte med plattformen

• Stärka ”Ett SLU” genom ökat samarbete inom forskning, grundutbildning och samverkan med intressenter

• Dra nytta av gemensamma resurser och kompletterande kompetens

• Minimera risk för överlappande arbete

• Kraftfullt stärka SLUs profil inom växtförädling

SLUs växtförädlingsrelateradeverksamhet

ÄppleSvarta vinbärHavtorn SortframställningPotatis

Pre-breeding: vissa karaktärer i olika grödor,domesticering för nya grödor

Teknikutveckling: ex. transformation, mutationer, omiker, markörer, bioinformatik

Mekanismstudier: ex. biosyntesCa. 100 forskare Vid 7 institutioner

Presenter
Presentation Notes
Pre-breeding sedan 2009 inom programmet ”Växtförädling av grödor avsedda för framtida odling i Svealand och Norrland” Potatis Kornmarkörer: perennt och vattenmättnad Resistens stråsäd Äpple, svarta vinbär, havtorn Bladmögel potatis

Informationskällorhttps://www.slu.se/plattformvaxtforadling/

Uppdaterad rapportplanerad 2020

Nyhetsbrev

Nya aktiviteter 2017-2020

• 2 x 6 innovativa samarbetsprojekt à 500 000 kr

• Forskarmöte om växtförädling mellan SLU och WageningenUniversity & Research (WUR) 2019

• Bidra till ökat utbyte mellan campusen– finansiera resa och uppehälle, även för teknisk personal

Uppstartsprojekten

• 2 om nytt växtmaterial via CRISPR/Cas9 i potatis

• 1 om ny metod för genomselektion

• 2 om mekanismer i äpple

• 1 genetisk variation för samspel med rotzonsbakterier i raps

Lowered glycoalkaloid levels in starch potatoes for a sustainable use of

starch by-products

Folke Sitbon (Dept. of Plant Biology, NJ-faculty)Mariette Andersson (Dept. of Plant Breeding; LTV-

faculty)

Project outlineBackground:Steroidal glycoalkaloids (SGA) are neurotoxic substances present in many species of the Solanaceae family, including major crops such as potato, tomato and eggplant. For safety reasons, an upper limit of 200 mg SGA/kg f.w. is widely recommended in edible tubers. In addition, high SGA levels in side-products from starch production hamper their sustainable uses as raw materials for protein and fibre production. The project aims at characterizing SGA metabolism in Swedish starch potato cultivars, and to create a SGA-less knockout line.

The project will:• identify key SGA genes in starch potatoes using RNA sequencing• create a SGA-less knockout starch potato line using

CRISPR/Cas9 • evaluate costs for SGA removal during starch and protein

extraction in potatoes with normal, reduced, or no SGA

Development and utilization of CRISPR/Cas9 technologyto modulate autophagy for potato improvement

Collaborators: Per Hofvander & Mariette Andersson, SLU Alnarp; Daniel Hofius & Anders Hafrén, SLU Uppsala

Autophagy: “Self-eating” process from yeast to mammals

Concept: Genetic manipulation of autophagy to improve agricultural traits in plants

Major functions: Cytoprotection Stress resistance Immunity Longevity

Development and utilization of CRISPR/Cas9 technologyto modulate autophagy for potato improvement

Proof-of-concept: Autophagy stimulation in Arabidopsis

Enhanced biomass Increased seed production Improved stress tolerance

Controls Autophagy

Translational project:Autophagy modulation in potato

Evaluation objectives:• Altered growth and tuber yield• Effect on stress tolerance• Effect on pathogen resistance(Bozhkov and Hofius labs, Minina et al., 2018 &

Patent with SweTree Technol.)

Collaborators: Per Hofvander & Mariette Andersson, SLU Alnarp; Daniel Hofius & Anders Hafrén, SLU Uppsala

Development and utilization of CRISPR/Cas9 technologyto modulate autophagy for potato improvement

Autophagy disruption and enhancement via CRISPR/Cas9, a precision breeding tool to generate non-GMOs

Status: Recent kick-off meeting to define primary and secondary targets, i.e. autophagy-related genes ATG3 and ATG8

Protoplasts for transfection using RNP

Mutation by in vitro producedribonucleoprotein (RNP) complex Regeneration of shoots

Technology development (Hofvander lab)Characterization

of plants

Analysis of autophagy-deficient and -enhanced phenotypes (Hofius lab)

ww

w.a

ddge

ne.o

rg

Collaborators: Per Hofvander & Mariette Andersson, SLU Alnarp; Daniel Hofius & Anders Hafrén, SLU Uppsala

Managing co-ancestry and inbreeding in genomic selection using genomic relationship matrix

Genomic selection (GS) outline

Harry Wu (S), Rodomiro Ortiz (LTV), Henrik Hallingbäck (NJ)

• GS may circumvent the need for extensive progeny testing and phenotyping

• GS may therefore save costs, time and enhance selection intensity and genetic gain

• But the buildup of co-ancestry and inbreeding may be faster with GS than for traditional breeding

• For outcrossing species this may have severe consequences due to inbreeding depression and depleted genetic variation.

Pairwise individual genomic relationship matrix

Managing co-ancestry and inbreeding in genomic selection using genomic relationship matrix

Harry Wu, Rodomiro Ortiz, Henrik Hallingbäck

Hallingbäck et al. (2016). GCB Bioenergy 8(3): 670-685

Aim: Explore how a marker-based genomic relationship matrix could be used to optimize short- and long-term genetic gains under control of co-ancestry

Finite locus allele simulations (Metagene) will be used to investigate different scenarios and strategies.

Genome architectures from two contrasting species, Maize and Norway spruce, will be mimicked by simulation.

Progress: Relevant literature is reviewed in order to compare the two species and to set up relevant simulation scenarios.

Larisa Gustavsson (LTV/PB), Kerstin Dalman (NJ/MS), Malin Elfstrand (S/FMP)

Resistance to Neonectria ditissima in apple: coming closer to understanding the specific

mechanisms through micrometabolic profiling

Aim: to establish and validate a protocol for micrometabolicprofiling in apple under N. ditissima attack

C) First microscopy experiments to localize the pathogen and observe the formation of protective barrier with the aim of high precision sampling for micrometabolomics

B) Successful GFP transformation of N. ditissimafungus (in collaboration with H. Vèléz). Verification of pathogenicity in progress

First outcomes:

A) Inoculations with wild type of N. ditissima under controlledconditions and diseaseestablishment

Light microscopy of fresh sections from inoculated twigs 100 days after infection for cultivar Santana (A) and Aroma (B). SEM analysis for cultivar Katja (8 days after inoculation). Arrows are pointing at hyphae.

A B C

Molecular analysis of temperature mediated control of growth cessation in apple

Rishikesh Bhalerao (S) and Li-Hua Zhu (LTV)

The annual growth cycle in hybrid aspen compared to in apple

Bud setGrowth cessation

Dormancy

Active growth

Short daysLow temperature

Chilling

Warmtemperature

Short daysLow temperature

Dormancyrelease

(Reactivation/Bud break)

Key questions to be addressed in the project

What is the molecular basis of low temperature mediated control of growth cessation in apple?

1. Is low temperature-mediated downregulation of FLOWERINGLOCUS T (FT) required for growth cessation in apple?

2. Is ABA signalling a target of low temperature signal in eithergrowth cessation and/or dormancy induction in apple?

To address :1. FT expression will be overexpressed by

transformation2. A dominant negative allele of ABI1 protein

phosphatase will be transformed which will render apple plants insensitive to ABA.

We will then subject wild type controls and FT overexpressors and ABA insensitive plants to low temperature and observe growth cessation response.

Presenter
Presentation Notes
The question is whether in apple low temperature downregulates FT expression to induce growth cessation. Secondly, ABA is a key mediator of low temperature responses in plants So could it be that low temperature mediated growth cessation in apple involves ABA? To address this we will generate apple plants in which FT expression is enhanced and secondly we will generate aba insensitive plants in apple by introducing a dominant negative allele of ABI1 protein phosphatase which will render apple plants insensitive to ABA. We will then subject wild type controls and FT overexpressors and ABA insensitive plants to low temperature and observe growth cessation response.

Identification of root traits that support rhizobacterial mediated growth stimulation and stress tolerance of oil crops

Johan Meijer, Dept Plant Biology (NJ) & Thomas Moritz, Dept Forest Genetics Plant Physiology (S)

AimTo identify factors that favor colonization of PGPR on the root that result in improved growth and

stress management by Brassica oil crops.

Bacillus strains can serve as plant growth promoting rhizobacteria (PGPR) and prime resistance to pathogens or tolerance to abiotic stress. However, requirements for root colonization, growth promotion and improved stress management are largely unknown. Further, knowledge of traits that control root growth is poor. Identification of markers for genotypes with high root development potential would be a powerful tool for prebreeding.

This project screens oilseed rape cultivars to identify variation in root colonization and plant performance by the beneficial bacterium Bacillus amyloliquefaciens UCMB5113. Spring varieties are currently screened and winter varieties will be screened during fall.

Root colonization and root architecture is analyzed. Effects on growth and stress (drought, frost) management are measured and metabolomics analysis of root exudates performed. Multivariate analysis is used to highlight drivers of bacterial colonization and effects on plant growth and stress tolerance. Identification of contrasting genotypes can be used for future analysis of the genetic basis of root plasticity and interaction with beneficial microbes.

The end!

Strategin 2014-2017

• Tyngdpunkt på stöd till yngre forskare vid SLU – via kurser, post doc-projekt och en studieresa till Kina

• Hjälp från seniora forskare/lärare för planering och översikter, med grupprepresentanter från de tre fakulteterna

• Bidra till ökat utbyte mellan campusen– variera plats för kurser, workshops och styrgruppsmöten– finansiera resa och uppehälle