infinera 100g beyond wade

Upload: aarnulfo

Post on 01-Jun-2018

241 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/9/2019 Infinera 100G Beyond Wade

    1/76

    Advanced Modulation For High

    Data Rate Optical Transmission:

    100G and Beyond 

    Leigh Wade, Infinera

  • 8/9/2019 Infinera 100G Beyond Wade

    2/76

    The State of the Market Today

    800G•

    10Gb/s• NRZ

    • C-band

    80 ch. @ 10G = 800G

    Morechannels

    HigherData Rates

    MoreSpectrum

    I will propose that photonic integration is an excellent solution to all three

    capacity challenges

  • 8/9/2019 Infinera 100G Beyond Wade

    3/76

    Why do we needmore than 800G?

    Lower Cost per Bit

    More Capacity

    Higher Speed Services

  • 8/9/2019 Infinera 100G Beyond Wade

    4/76

    Fiber Exhaust & Network Economics

       C   o   s   t   p   e   r   U   s   a    b    l   e   B   i   t

    Time

    10G λ 

    40G λ 

    100G λ 

    You want to move

    to 40G here… 

    …but what if you hit

    fiber exhaust here?

    Excess

    cost

    Fiber exhaust can force uneconomic network decisions

  • 8/9/2019 Infinera 100G Beyond Wade

    5/76

    Double Density Optics Mean Investment Protection

    and “Option Value” 

    Conventional 80-96 λ WDM

    1 λ per 50 GHz

    At 40% bandwidth growth, double-density optics mean

    two more years to select the lowest cost transmission.

    Infinera “Double Density” WDM 

    1 λ per 25 GHz

    800G in the C-band 1.6T in the C-band

  • 8/9/2019 Infinera 100G Beyond Wade

    6/76

    Why doesn’t everybody offer Double Density? 

    Two basic reasons:

    WSS ROADMs

    designed

    around 50GHz

    spacing

    Operational challenge of 160 discrete

    transponders on a single fiber!!

  • 8/9/2019 Infinera 100G Beyond Wade

    7/76

    What are you going to see?

    Adding a single PIC-based line card, with

    10x10Gb/s waves

    100Gb/s of capacity for

    the same effort as one10Gb/s transponder

    Optical

    Spectrum

    Analyzer

    Stopwatch

    Existing 10G waves

    on the fiber

    “Gaps” for

    additional waves

  • 8/9/2019 Infinera 100G Beyond Wade

    8/76

    PICs reduce operational burden by 10x

    But the rest of the optical industry

    does not have access to PICs so… 

    They are under pressure to move to

    40G and 100G as soon as possible

    Not necessarily when it’s economical! 

  • 8/9/2019 Infinera 100G Beyond Wade

    9/76

    Fiber Capacity

    AdvancedModulation

    CoherentDetection

    High Gain FEC

    Table

    Stakes

    Core Switching & Grooming3

    Large Scale PICs2

    Photonic Integration1

    Differentiators

    100G Technology Features

  • 8/9/2019 Infinera 100G Beyond Wade

    10/76

    Complex modulation requirescomplex optical circuits

  • 8/9/2019 Infinera 100G Beyond Wade

    11/76

    Why do I need Complex Modulation?

    Optical transmission is about:• Sending high data rates

    • Over very long distances

    • For very little money

    Our biggest problem is optical fiber:• Loss

    • Dispersion

    • Modal dispersion

    • Chromatic dispersion

    Polarization mode dispersion• Non-linear effects

    • Self phase modulation

    • Cross phase modulation

    • Four wave mixing

    If you stress any one of these variables, the

    others will respond

    For a given modulation type, the

    gross magnitude of these

    impairments scales roughly withthe square of the symbol rate

  • 8/9/2019 Infinera 100G Beyond Wade

    12/76

    Think of a light wave...

    Oscillating wave

    Wavelength• 1550nm

    Frequency• 193.1 THz

    “State of the shelf”

    electronics can process at

    ~10GHz

    Electronics is about 20,000 times

    “too slow” for direct detection of

    “wave properties” 

    h d d d d l

  • 8/9/2019 Infinera 100G Beyond Wade

    13/76

    So how do we encode and detect signals on

    an optical carrier?

    Historically, used amplitude modulation

    Measures the strength of a large number of waves

    On/Off Keying (OOK) may interpret the presence of asignal as a “1”, and the absence of a symbol as a “0” 

  • 8/9/2019 Infinera 100G Beyond Wade

    14/76

    1 bit per symbol: NRZ Modulation

    Laser Modulator

    Detector

    Tx

    Rx

    NRZ

    Simple modulation technique

    Easy to implement

    Low power use

    But very sensitive to fiber impairments

    as bitrate increases• This is what we’re talking about with the “square”

    relationship

    Increasing power will trigger non-lineareffects

  • 8/9/2019 Infinera 100G Beyond Wade

    15/76

    Phase Shift Keying

    Phase is fundamental property of waves• Two waves in-phase when the peaks & troughs line up

    • We say that such waves are coherent

    • If non-coherent waves combine we see:

    • Reinforcement, cancellation, interference

    Interference can be used to extract  a lower frequencymodulation from a high frequency carrier

    In-phase Out of phase Interference

    patterns

  • 8/9/2019 Infinera 100G Beyond Wade

    16/76

    Using Phase to Apply a Signal

    LD

    Laser generates aconstant carrier

    The carrier is

    split into 2

    The carriers travel

    over different paths

    S

    Can apply a data signal,

    S, to vary the delay on

    one of the arms

    When the carriers

    recombine they will

    “contain” the data signal

    encoded as a series of

    phase changesTx

    Rx Q: How do we recover the data signal at the receiver?Hold that thought!

    MZI

  • 8/9/2019 Infinera 100G Beyond Wade

    17/76

    Component Complexity

    Tx Rx

    Part 1

    The Transmitter

  • 8/9/2019 Infinera 100G Beyond Wade

    18/76

    ODB Modulation (Optical Duo-Binary)

    Laser MZ Modulator

    Detector

    Tx

    Rx

    ODB

    First generation 40G modulation scheme Phase & Amplitude based modulation

    • Requires MZ modulator

    • Can use simple, direct detection

    Much more tolerant of dispersion Limited reach

    Widely used by 1st Gen 40G• Stratalight, Mintera

  • 8/9/2019 Infinera 100G Beyond Wade

    19/76

    1 bit per symbol: DPSK

    Most basic phase modulation technique

    Differential technique allows phase slips to be ignored

    Used by OpNext & Mintera, and their OEMs

    AKA: BPSK, where local oscillator coherent detection is used

    Re{Ex}1 0

  • 8/9/2019 Infinera 100G Beyond Wade

    20/76

    2 bits per symbol: Quadrature PSK

    Advanced modulation, 4 phase states = 2 bits More bits per symbol

  • 8/9/2019 Infinera 100G Beyond Wade

    21/76

    2 bits per symbol: Quadrature PSK

    Advanced modulation, 4 phase states = 2 bits More bits per symbol

    0,0

    0,1

    1,1

    1,0

    3 bi b l 8 PSK

  • 8/9/2019 Infinera 100G Beyond Wade

    22/76

    3 bits per symbol: 8-PSK...And higher orders of modulation

    8 phase states = 3 bits Twice as complex, but only 50% more bits

    1,0,0

    0,0,1

    1,1,0

    1,0,10,0,0

    0,1,1

    1,1,1

    0,1,0

    For discrete implementations, 8-PSK seems to be too complex

    Th L f Di i i hi R

  • 8/9/2019 Infinera 100G Beyond Wade

    23/76

    The Law of Diminishing Returns

    Phase States vs Component Complexity

    Let’s set a circuit complexity factor of 1, to be theequivalent of a simple DPSK transponder

    DPSK (D)QPSK 8-PSK 16-QAM 32-QAM 64-QAM

    16x

    Bit/Hz

    9

    8

    7

    6

    5

    4

    32

    1

    9

    8

    7

    6

    5

    4

    32

    1

       C   o

       m   p    l   e   x   i   t   y   F   a   c   t   o   r

    Is there a better way to

    get to more bit/Hz?

    32x

  • 8/9/2019 Infinera 100G Beyond Wade

    24/76

    PM-QPSK, 4 bits per “symbol” 

    Im{Ex}

    Re{Ex}

    Im{Ex}

    Re{Ex}

    Im{Ey}

    Re{Ey}

    Two Polarizations

    X-Polarization

    Y-Polarization

    I l ti Ph M d l ti U i Di t

  • 8/9/2019 Infinera 100G Beyond Wade

    25/76

    Implementing Phase Modulation Using Discrete

    Optical Components...

    S

    I l ti Ph M d l ti U i Di t

  • 8/9/2019 Infinera 100G Beyond Wade

    26/76

    S

    Implementing Phase Modulation Using Discrete

    Optical Components...

  • 8/9/2019 Infinera 100G Beyond Wade

    27/76

  • 8/9/2019 Infinera 100G Beyond Wade

    28/76

  • 8/9/2019 Infinera 100G Beyond Wade

    29/76

    This is a PM-QPSK Transmitter

    PBSLD

    X Polarizations

    Y Polarizations

  • 8/9/2019 Infinera 100G Beyond Wade

    30/76

    Component Complexity

    Tx Rx

    Part 2

    The Detector

  • 8/9/2019 Infinera 100G Beyond Wade

    31/76

    Let’s cut to the chase… 

    The only practical, long haul 100G implementations will

    be required to use Coherent Detection

    What is it, and why is it useful?

  • 8/9/2019 Infinera 100G Beyond Wade

    32/76

    What is “coherent detection”? 

    Physics definition• A detection technique that is based on the phase properties 

    of the carrier

    • If you are using a phase-based detector, you could claim to

    be implementing coherent detection

    …however… 

    Practical definition

    • The market has now come to expect  a “coherent detector” to

    make use of sophisticated, digital signal processing (DSP)

    algorithms

  • 8/9/2019 Infinera 100G Beyond Wade

    33/76

    Conventional WDM Detection

    PD

    Mixture of waves on fiber…  …wideband detector 

    How do we select the

    channel we want to detect?

  • 8/9/2019 Infinera 100G Beyond Wade

    34/76

    Conventional WDM Detection

    Wavelength demux

    PD

    Mixture of waves on fiber…  …wideband detector 

  • 8/9/2019 Infinera 100G Beyond Wade

    35/76

    Direct conversion

    of photons into

    electrons that

    “look like” bits 

    …11010110… 

    Conventional WDM Detection

    Wavelength demux

    PD

  • 8/9/2019 Infinera 100G Beyond Wade

    36/76

    Summary of “Conventional WDM Detection” 

    Wideband Photodetector (PD) is used

    To prevent inter-channel interference, a wavelength

    demux is used to spatially separate channels

    Modulation technique allows minimal Rx circuit

    complexity – essentially “direct detection” 

    No additional signal processing normally required

  • 8/9/2019 Infinera 100G Beyond Wade

    37/76

    ADC DSP

    Coherent WDM Detection

    PDLO

    We could take a mixed signal that uses a phase-based  modulation technique

    Use a local oscillator to choose the

    “color” we want to “detect” 

  • 8/9/2019 Infinera 100G Beyond Wade

    38/76

    ADC DSP

    Coherent WDM Detection

    PDLO …11010110… 

    Convert the

    photons to

    electrons

    Convert the“analog electrons”

    into “digital

    electrons” 

    Clean it all up!

    Wh h b d d l ti ?

  • 8/9/2019 Infinera 100G Beyond Wade

    39/76

    If you need to detect 5 from 1…n, then choose alocal oscillator tuned to 5

    Local oscillator does not carry a signal – simply acontinuous beam of light

    But it is non-coherent with the received signal (ie. it isout of phase)

    Use an array of interferometers to “measure” theinterference patterns

    Convert the interference patterns into an electronicsignal, and “process it” 

    Why phase-based modulation?

    The Detector Requires a Complex Optical Circuit

  • 8/9/2019 Infinera 100G Beyond Wade

    40/76

    The Detector Requires a Complex Optical CircuitExample: For PM-QPSK Modulation… 

    PBS

    LO PBS

    PD

    PD

    PD

    PD

    The signals that come

    out of the PD array are

    “analog and dirty” 

    PM-QPSK Signal

    ff f

  • 8/9/2019 Infinera 100G Beyond Wade

    41/76

    Two very different functions in the detector

    Phase state

    extraction

    Signal processing

    • Separate the polarization components

    • Create interference against a

    reference laser (local oscillator)

    • Separate the phase components

    • PD & A/D conversion

    • Compensate for local oscillator

    instability

    • Compensate for static CD

    • Compensate for dynamic PMD

    d l h f ?

  • 8/9/2019 Infinera 100G Beyond Wade

    42/76

    How do we implement these functions?

    • Separate the polarization components

    • Create interference against a

    reference laser (local oscillator)

    • Separate the phase components

    • PD & A/D conversion

    • Compensate for local oscillator

    instability

    • Compensate for static CD

    • Compensate for dynamic PMD

    Sophisticated

    optical circuit

    (PIC)

    Sophisticated digital

    signal processing(DSP)

    A Coherent Detector Schematic

  • 8/9/2019 Infinera 100G Beyond Wade

    43/76

    A Coherent Detector Schematic

    (For one wavelength only)

    Incoming carrier

    (2 polarizations, each

    with 4 phase states)

    ADC A/D Converter

    AMZ Adjustable Mach Zehnder

    DSP Digital Signal Processor

    LO Local Oscillator

    PD Photo Detector

    PS Polarization Splitter

    LO

    PD

    PD

    PD

    PD

    ADC

    ADC

    ADC

    ADC

       D   S   P

    AMZ

    AMZ

    AMZ

    AMZ

    Optical Circuit Electronic Circuit

    PBS

    PBS

    A Coherent Detector Schematic

  • 8/9/2019 Infinera 100G Beyond Wade

    44/76

    Incoming carrier

    (2 polarizations, each

    with 4 phase states)

    LO

    PD

    PD

    PD

    PD

    ADC

    ADC

    ADC

    ADC

       D   S   P

    AMZ

    AMZ

    AMZ

    AMZ

    Optical Circuit Electronic Circuit

    PBS

    PBS

    ADC A/D Converter

    AMZ Adjustable Mach Zehnder

    DSP Digital Signal Processor

    LO Local Oscillator

    PD Photo Detector

    PS Polarization Splitter

    1

    Step 1: Take the two optical sources – signal and local oscillator

    A Coherent Detector Schematic(For one wavelength only)

    A Coherent Detector Schematic

  • 8/9/2019 Infinera 100G Beyond Wade

    45/76

    Incoming carrier

    (2 polarizations, each

    with 4 phase states)

    LO

    PD

    PD

    PD

    PD

    ADC

    ADC

    ADC

    ADC

       D   S   P

    AMZ

    AMZ

    AMZ

    AMZ

    Optical Circuit Electronic Circuit

    PBS

    PBS

    ADC A/D Converter

    AMZ Adjustable Mach Zehnder

    DSP Digital Signal Processor

    LO Local Oscillator

    PD Photo Detector

    PS Polarization Splitter

    2

    Step 2: Separate the X and Y polarizations

    A Coherent Detector Schematic(For one wavelength only)

    A Coherent Detector Schematic

  • 8/9/2019 Infinera 100G Beyond Wade

    46/76

    Incoming carrier

    (2 polarizations, each

    with 4 phase states)

    LO

    PD

    PD

    PD

    PD

    ADC

    ADC

    ADC

    ADC

       D   S   P

    AMZ

    AMZ

    AMZ

    AMZ

    Optical Circuit Electronic Circuit

    PBS

    PBS

    ADC A/D Converter

    AMZ Adjustable Mach Zehnder

    DSP Digital Signal Processor

    LO Local Oscillator

    PD Photo Detector

    PS Polarization Splitter

    3

    Step 3: Generate a set of interference patterns in the SMZ array

    A Coherent Detector Schematic(For one wavelength only)

    A Coherent Detector Schematic

  • 8/9/2019 Infinera 100G Beyond Wade

    47/76

    Incoming carrier

    (2 polarizations, each

    with 4 phase states)

    LO

    PD

    PD

    PD

    PD

    ADC

    ADC

    ADC

    ADC

       D   S   P

    AMZ

    AMZ

    AMZ

    AMZ

    Optical Circuit Electronic Circuit

    PBS

    PBS

    ADC A/D Converter

    AMZ Adjustable Mach Zehnder

    DSP Digital Signal Processor

    LO Local Oscillator

    PD Photo Detector

    PS Polarization Splitter

    4

    Step 4: Convert optical signals to analog electronic signals

    Co e e t etecto Sc e at c(For one wavelength only)

    A Coherent Detector Schematic

  • 8/9/2019 Infinera 100G Beyond Wade

    48/76

    Incoming carrier

    (2 polarizations, each

    with 4 phase states)

    LO

    PD

    PD

    PD

    PD

    ADC

    ADC

    ADC

    ADC

       D   S   P

    AMZ

    AMZ

    AMZ

    AMZ

    Optical Circuit Electronic Circuit

    PBS

    PBS

    ADC A/D Converter

    AMZ Adjustable Mach Zehnder

    DSP Digital Signal Processor

    LO Local Oscillator

    PD Photo Detector

    PS Polarization Splitter

    5

    Step 5: Convert analog to digital and process

    (For one wavelength only)

    C h t D t ti P d C

  • 8/9/2019 Infinera 100G Beyond Wade

    49/76

    Coherent Detection – Pros and Cons

    Pros:• Operates over the existing fiber plant and amp chains

    • Outstanding reach performance

    • Closest thing to achieving 40G and 100G with same reach as 10G NRZ

    • Significant pilot test results indicate it really does work!

    Cons:• Potential non-linear interaction with 10G NRZ in same fiber

    • The “cure” is managing launch power 

    • Probably represents the practical complexity limit for discretes

    • State of the shelf DSP technology draws too much power to allow for largescale implementations (ie. multiple waves in one modules)

    • Solution is to use emerging 40µm DSP technology

    • DSP operation probably eliminates the chance of future line side interop

    So remember

  • 8/9/2019 Infinera 100G Beyond Wade

    50/76

    Complex modulation requirescomplex optical circuits

    So remember… 

    Wh h thi bl b f ?

  • 8/9/2019 Infinera 100G Beyond Wade

    51/76

    Where have we seen this problem before?

    In the 1950s computers were made from individualtransistors, resistors and capacitors...

    …today? 

    http://images.google.com/imgres?imgurl=www.toroid.se/inductor.jpg&imgrefurl=http://www.toroid.se/prod.htm&h=183&w=276&prev=/images?q=inductor&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8http://images.google.com/imgres?imgurl=www.suntan.com.hk/Metallized%20Polycarbonate%20Film%20Capacitor.jpg&imgrefurl=http://www.suntan.com.hk/product.html&h=286&w=413&prev=/images?q=capacitor&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=Nhttp://images.google.com/imgres?imgurl=www.acte.dk/pages_dk/produkter/billeder/capacitor.gif&imgrefurl=http://www.acte.dk/pages_dk/produkter/yageo.asp&h=140&w=180&prev=/images?q=capacitor&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8

  • 8/9/2019 Infinera 100G Beyond Wade

    52/76

    The electronics industry controlled component

    complexity with large scale integration

    We know the same thing works for optical

    components –  we did it 5 years ago!

    Small Scale vs Large Scale Photonic Integration

  • 8/9/2019 Infinera 100G Beyond Wade

    53/76

    Small Scale vs Large Scale Photonic Integration

    Small Scale… • Operates on a single wavelength

    • Primarily used to address manufacturing cost  

    If it works for one wave, why not… 

    CPUs with 2-8 cores GPUs with 200-800 cores!!

    Infinera 100G Transmission Differentiators

  • 8/9/2019 Infinera 100G Beyond Wade

    54/76

    500G, Large Scale, Monolithic PIC Implementation

    500G

    Tx PIC

    500G

    Rx PIC

    Number of channels 5 x 100G

    Monolithic InP Chips 2

    Optical elements > 600

    “Gold Box” Replacements  > 100

    Fiber Replacements > 400

    COSTSIZE

    POWERCAPACITY

    RELIABILITY

    54 © 2011 Infinera Corporation Confidential & Proprietary

  • 8/9/2019 Infinera 100G Beyond Wade

    55/76

    How much capacity can

    actually be used?

    Fat Pipes Are Not Enough

    Infinera 100G Transmission Differentiators

  • 8/9/2019 Infinera 100G Beyond Wade

    56/76

    100 Gb/s Transmit

    100 Gb/s Receive

    PICs enable

    cost-effective OEO

    100Gb/s to 1Tb/s “WDM

    system on a chip” 

    Affordable access to

    digital domain

    Photonic

    Integration

    56 © 2011 Infinera Corporation Confidential & Proprietary

    PICs Enable Pervasive Digital Switching

    Infinera 100G Transmission Differentiators

  • 8/9/2019 Infinera 100G Beyond Wade

    57/76

    1001

    0101

    0101

    1010

    1101

    0101

    0101

    1010

    1101

    0101

    Enables “digital” functionality 

    Integrated switching at every node

    High functionality Digital ROADM

    Dramatic network simplification

    100101011101010000101011

    100101010101101011010101

    110101000010101110010101

    001010111011010110010101

       I   n   t   e   g   r   a   t   e    d   P    h   o   t   o   n   i   c   s

       I   n   t   e   g   r   a   t   e    d   P    h   o   t   o   n   i   c   s

    Optical (O) Electrical (E) Optical (O)

    Trib

    Integrated

    Switching + WDM

    Photonic

    Integration

    57 © 2011 Infinera Corporation Confidential & Proprietary

    PICs Enable Pervasive Digital Switching

    Infinera 100G Transmission Differentiators

  • 8/9/2019 Infinera 100G Beyond Wade

    58/76

    1001

    0101

    0101

    1010

    1101

    0101

    0101

    1010

    1101

    0101

    100101011101010000101011

    100101010101101011010101

    110101000010101110010101

    001010111011010110010101

       I   n   t   e   g   r   a   t   e    d   P    h   o   t   o   n   i   c   s

       I   n   t   e   g   r   a   t   e    d   P    h   o   t   o   n   i   c   s

    Pervasive Digital

    Switching

    Integrated

    Switching + WDM

    Photonic

    Integration

    10010101110101010000

    10010101010110101011

    10010101110101010000

    10010101010110101011end-end service

    Software-based “Ease-of-Use” 

    Digital OTN switching at every node

    Unconstrained bandwidth everywhere

    Lowest cost per switched Gb/s

    58 © 2011 Infinera Corporation Confidential & Proprietary

    PICs Enable Pervasive Digital Switching

    Solving The 100G Muxponder Tax

  • 8/9/2019 Infinera 100G Beyond Wade

    59/76

    Solving The 100G Muxponder Tax

    The Problem:• Backbone waves move to 100G, but service demands still 10G or lower

    • All-optical ROADMs have no inter-wavelength, or sub-wavelength

    grooming capability → 100G muxponders!

    How big is the

    “Muxponder Tax”

    in a real 100G

    network?

    A BAll services must  go A ↔B 

    10GbE

    10GbE

    10GbE

     M u x  p o n d  e r 

    10GbE

       M   u   x   p   o   n    d   e

       r

    ROADM Network

    A C↔ 

    A D↔ 

    B C↔ 

    B D↔ 

    Require Extra,Partially Filled  

    Muxponder Pairs

    Service Demands:

    © 2011 Infinera Corporation Confidential & Proprietary59

    Infinera National Network Model Summary

  • 8/9/2019 Infinera 100G Beyond Wade

    60/76

    10090

    80

    70

    60

    5040

    30

    20

    10   D   e   p    l   o   y   e    d   C   a   p   a   c   i   t   y    (   %    )

       R   e   v   e   n   u   e   G   e

       n   e   r   a   t   i   n   g    (   %    )100

    90

    80

    70

    60

    5040

    30

    20

    10

    100G

    Muxponder

    50%

    40G

    Muxponder

    66%

    Infinera Digital

    ROADM

    92%

    Infinera National Network Model Summary

    • Large N. Am. Network Model: 33,084 route km, 47 core WDM links

    • About 10 Tb/s of customer service demands (network traffic volume)

    © 2011 Infinera Corporation Confidential & Proprietary60

    Summary of Network Efficiency

  • 8/9/2019 Infinera 100G Beyond Wade

    61/76

    Summary of Network Efficiency

    A “Perfect Storm” is emerging in terms of network

    bandwidth efficiency:• Wavelength speeds moving to 100Gbit/s

    • Majority of services demands remaining at 10Gbit/s or less for near-term

    • All-optical ROADMs have no effective way to offer contentionlesswavelength conversion and sub-wavelength grooming in the core

    • Muxponders are simply point-point aggregators and do not do grooming

    The result is that a Service Provider may need topurchase 2X Network Capacity  for 1X Service Revenue

    The solution is an Integrated Digital OTN Network with:• End to End, Any to Any service capability

    • Integrated OTN switching and grooming in the core

    • End to End intelligent optical control plane

    Bandwidth

    Virtualization

    Beyond 8Tb/s?

  • 8/9/2019 Infinera 100G Beyond Wade

    62/76

    8Tb/s

    Morechannels HigherData Rates MoreSpectrum

    Beyond 8Tb/s?

    Gridless Super-Channels

    Even more complex

    modulation!

    L-Band

    S-BandE-Band

    O-Band

    Outside the scope of this discussion

    What’s changed so far

  • 8/9/2019 Infinera 100G Beyond Wade

    63/76

    What s changed so far 

    Since the advent of DWDM… 

    now

    Phase Modulation

    Coherent Detection

    ITU Frequency Grid

    Intensity Modulation

    Direct Detection

    ITU Frequency Grid

    63 © 2011 Infinera Corporation Confidential & Proprietary

    What Comes Next For Terabit Transport?

  • 8/9/2019 Infinera 100G Beyond Wade

    64/76

    What Comes Next For Terabit Transport?

    Since the advent of DWDM… 

    …so what has to change 

    Phase Modulation

    Coherent Detection

    ITU Frequency Grid

    Intensity Modulation

    Direct Detection

    ITU Frequency Grid

    Quadrature AmplitudeModulation (QAM)

    Coherent Wave Combiningand Separation

    Grid-less FlexChannels

    64 © 2011 Infinera Corporation Confidential & Proprietary

    Advanced Modulation Formats

  • 8/9/2019 Infinera 100G Beyond Wade

    65/76

    Advanced Modulation Formats

    Pol-Mux

    QPSK Pol-Mux

    8-QAM

    Pol-Mux

    16-QAM

    IM-DD

    PM-

    BPSK

    1.6 8 12 16 24

    C-Band Capacity (Tb/s)

    0.2 

    0.4 

    0.6 

    0.8 

    1.2 

       C   a   p   a   c   i   t   y

        *

       R   e   a   c    h    P

       r   o    d

       u   c   t

    65 © 2011 Infinera Corporation Confidential & Proprietary

    What Comes Next For Terabit Transport?

  • 8/9/2019 Infinera 100G Beyond Wade

    66/76

    Since the advent of DWDM… 

    …so what has to change 

    Quadrature AmplitudeModulation

    Coherent Wave Separation

    Grid-less FlexChannels

    On-Off Keyed Modulation

    Direct Detection

    ITU Frequency Grid

    What Comes Next For Terabit Transport?

    66 © 2011 Infinera Corporation Confidential & Proprietary

    Single Carrier vs Multi-Carrier

  • 8/9/2019 Infinera 100G Beyond Wade

    67/76

    © 2011 Infinera Corporation Confidential & Proprietary67

    Single Carrier vs Multi Carrier

    Goal: Create a 1Tb/s unit of transmission capacity

    How?

    Option 1:

    Build a single-

    carrier 1Tb/s

    channel

    Option 2:

    Build a multi-

    carrier 1Tb/s

    “super-channel” 

    1Tb/s Single Carrier: The A/D Converter Problem

  • 8/9/2019 Infinera 100G Beyond Wade

    68/76

    © 2011 Infinera Corporation Confidential & Proprietary68

    1Tb/s Single Carrier: The A/D Converter Problem

    1 2 4 6 8 10 12

    1

    2

    3

    4

    5

    6

    7

    8

    910

       O   S   N   R   P   e   n   a    l   t   y    (    d   B    )

    Number of bits per symbol

    PM-BPSK640GBaud

    PM-QPSK320GBaud

    PM-8QAM210GBaud

    PM-16QAM160GBaud

    PM-32QAM

    128GBaud

    PM-64QAM105GBaud

    By 2014 commercial ADCs are

    expected to operate at ~64GBaud

    DWDM Direct Detection

  • 8/9/2019 Infinera 100G Beyond Wade

    69/76

    wavelengthdemux

    DWDM Direct Detection

    PD

    Spacing on the fiberneeded between waves:

    “Guard Bands” 

    Spatially separate the

    channels using awavelength demux

    69 © 2011 Infinera Corporation Confidential & Proprietary

    DWDM Coherent Detection

  • 8/9/2019 Infinera 100G Beyond Wade

    70/76

    wavelengthdemux

    Spatially separate the

    channels using awavelength demux

    DWDM Coherent Detection

    Spacing on the fiberneeded between waves:

    “Guard Bands” 

    ADC DSPPDLO

    Use a local oscillator tochoose the “color” we want

    to “detect” to match thedemux port color

    70 © 2011 Infinera Corporation Confidential & Proprietary

    How 1Tb/s Might Look… C i l WDM Fl Ch l

  • 8/9/2019 Infinera 100G Beyond Wade

    71/76

    Conventional WDM vs FlexChannels

    Guard bands to allow for

    individual wavelength demux

    Fewer guard-bands

    25% increase in useable

    amplifier spectrum

    Conventional Per-Channel

    WDM Filtering

    1Tb/s

    Multi-Carrier FlexChannel

    1Tb/s

    71 © 2011 Infinera Corporation Confidential & Proprietary

    What Comes Next For Terabit Transport?

  • 8/9/2019 Infinera 100G Beyond Wade

    72/76

    What Comes Next For Terabit Transport?

    Since the advent of DWDM… 

    …so what has to change 

    Quadrature AmplitudeModulation

    Coherent Wave Separation

    Grid-less FlexChannels

    On-Off Keyed Modulation

    Direct Detection

    ITU Frequency Grid

    72 © 2011 Infinera Corporation Confidential & Proprietary

    FlexChannels Increase Total Fiber CapacityM l d l ti → it fib

  • 8/9/2019 Infinera 100G Beyond Wade

    73/76

    More complex modulation → more capacity per fiber  

    PM-QPSK

    8-QAM

    16-QAM

    1Tb/s

    12 Tb/s

    18 Tb/s

    25 Tb/s

    73 © 2011 Infinera Corporation Confidential & Proprietary

    Reach, Spectral Efficiency, and Co-Existence

  • 8/9/2019 Infinera 100G Beyond Wade

    74/76

    Reach, Spectral Efficiency, and Co Existence

    1Tb/s PM-8QAM

    FlexChannel

    1Tb/s PM-16QAM

    FlexChannel10x100G PM-QPSK

    1Tb/s PM-QPSK

    FlexChannel

    or

    A

    E

    B C

    D

    74 © 2011 Infinera Corporation Confidential & Proprietary

    Summary:Th K T h l i F 1Tb/ A W ll U d t d

  • 8/9/2019 Infinera 100G Beyond Wade

    75/76

    The Key Technologies For 1Tb/s Are Well Understood

    But the implementation of those technologies will be

    critical to allowing service providers to differentiate theirproducts and services

    Advanced

    Modulation

    Coherent

    Processing

    Advanced

    FEC

    Foundation

    Features

    Large Scale PICs1

    FlexCoherent™ Modulation 2

    Pervasive, Switched DWDM3

    Differentiators

    75 © 2011 Infinera Corporation Confidential & Proprietary

  • 8/9/2019 Infinera 100G Beyond Wade

    76/76

    Thank [email protected]