inference. estimates stationary p.p. {n(t)}, rate p n, observed for 0

12
Inference. Estimates stationary p.p. {N(t)}, rate p N , observed for 0<t<T First-order. T f d f T p dZ i iT T T N p NN NN N N N / ) 0 ( 2 ~ ) ( ) 2 / 2 / sin ( ˆ var ) ( / ] 1 } [exp{ N(T) tion representa spectral via unbiased / ) ( ˆ 2

Post on 21-Dec-2015

215 views

Category:

Documents


2 download

Tags:

TRANSCRIPT

Page 1: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Inference. Estimates

stationary p.p. {N(t)}, rate pN , observed for 0<t<T

First-order.

Tf

dfT

p

dZiiT

TTNp

NN

NNN

N

N

/)0(2 ~

)()2/

2/sin(ˆvar

)(/]1}[exp{N(T)tion representa spectral via

unbiased /)(ˆ

2

Page 2: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Asymptotically normal.

1)1/|)(|(

/)1(1/|)(|...

11/|)

11(|

...1

)...1

(|)(|...|)11

(T|... .4

)...1

(1)2(

...1

)...1

()()...11

(T... .3

)(2)()( .2

22|)(| .1

)2//()2/}(sin2/exp{/]1}[exp{)(

)()()(

kdkkT

kkk

kdkk

kkTdkkT

kdd

kkkT

kTk

kdd

kkkT

TdTT

TdT

TTTiiTTiTdZTTN

Page 3: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

cumulantshigher Next,

/)0(2 ~

)(2)2/

2/sin( (T)} var{N

NTp E{N(T)} :haveAlready

1)-1/(kp 1),-k/(kp

)1(|)2//()2/(sin||)(| .5

TNN

f

dNN

fT

pTOdpTdpT

Page 4: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Theorem. Suppose cumulant spectra bounded, then N(T) is asymptotically N(TpN , 2Tf2 (0)).

Proof.

)(

|(||.|

...)...,()...()()...(...

{N(T)}k

cum

1)1/(

111111

T

TO

dM

ddf

kkkT

k

kkkkkk

T

The normal is determined by its moments

Page 5: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Nonstationary case. pN(t)

Page 6: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Second-order.

)(/)(ˆ)(

|)|/()(ˆ)(

)(|)|(

)()(

)()()(

histogram a

},2/2/|,{#)(Let

heConsider t

}1)(|1)(Pr{)(

,2/||

,2/||

TNuIuh

uTuIup

upuT

dsdttspuEI

tdNsdNuI

kjuukjuI

tdNutdNuh

T

NN

T

NN

NN

tsutsNN

T

tsuts

T

kj

T

kj

NN

Page 7: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0
Page 8: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0
Page 9: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Bivariate p.p.

)(/)(ˆ)(

|)|/()(ˆ)(

)(|)|(

)()(

)()()(

histogram a

},2/2/|,{#)(Let

heConsider t

}1)(|1)(Pr{)(

2/||

2/||

TMuIuh

uTuIup

upuT

dsdttspuEI

tdNsdMuI

kjuukjuI

tdMutdNuh

T

NMNM

T

NMNM

NM

ustNM

T

NM

ust

T

NM

kj

T

NM

kj

NM

Page 10: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Volkonski and Rozanov (1959); If NT(I), T=1,2,… sequence of point processes with pN

T 0 as T then, under further regularity conditions, sequence with rescaled time, NT(I/pN

T ), T=1,2,…tends to a Poisson process.

Perhaps INMT(u) approximately Poisson, rate TpNM

T(u)

Take: = L/T, L fixed

NT(t) spike if M spike in (t,t+dt] and N spike in (t+u,t+u+L/T]

rate ~ pNM(u) /T 0 as T

NT(IT) approx Poisson

INMT(u) ~ N T(IT) approx Poisson, mean TpNM(u)

Page 11: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

Variance stabilizing transfor for Poisson: square root

Page 12: Inference. Estimates stationary p.p. {N(t)}, rate p N, observed for 0

For large mean the Poisson is approx normal

by separated lags ift independen

normalally asymptotic is )(ˆ then 2

upTIf