inelastic neutron scattering (ins)schnack/molmag/... · 2020. 7. 27. · inelastic neutron data for...

62
Inelastic Neutron Scattering (INS) Philip L.W. Tregenna-Piggott Department of Chemistry University of Bern Switzerland

Upload: others

Post on 27-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Inelastic Neutron Scattering (INS)

    Philip L.W. Tregenna-Piggott

    Department of ChemistryUniversity of Bern

    Switzerland

  • Seminar Overview

    · Introduction to INS

    - Principles and Instrumentation

    - Advantages and Disadvantages Over Other Techniques

    - Selection Rules for Magnetic INS

    · Applications

    - Ground State Zero-Field-Splittings of non-Kramers Ions

    - Exchange Coupling in Molecular Clusters

  • The Technique Provides a Measure ofEnergy and Momentum TransferBetween the Neutron and Sample

    SampleIncoming Neutrons

    Scattered Neutronskr

    k ′r

    Qr

    ( )

    ( )kkQTransferMomentumkk

    mTransferEnergy

    rrh

    rh

    hh

    ′−=

    ′−=

    :

    2: 22

    2

    ω

  • Schematic of a Time-of-Flight (TOF) INS Spectrometer

    One measures the time it takes for neutrons to travel fromthe sample to a position on the detector bank

  • Incoming “white” neutron beam• Incident energy selection• Scattering by the sample• Final energy selection

    From http://www.ill.fr

    Schematic of a Triple Axis Spectrometer

    Allows the measurement of inelastic excitations at a

    given point in reciprocal space

  • Facility Organisation Location TYPE Description of

    Instruments

    ILL Institut Laue-

    Langevin

    Grenoble,

    France

    High-flux

    reactor

    http://www.ill.fr/index_sc.html

    ISIS Rutherford

    Appleton

    Laboratory

    Oxford, UK Pulsed neutron

    facility

    http://www.isis.rl.ac.uk/instruments

    /index.htm

    SINQ Paul Scherrer

    Institute

    Near Villigen,

    Switzerland

    Continous

    spallation

    neutron source.

    http://sinq.web.psi.ch/sinq/instrume

    nts.html

    BENSC Berlin Neutron

    Scattering

    Centre

    Hahn-Meitner-

    Institut, Berlin,

    Germany

    Cold neutron

    guides

    http://www.hmi.de/bensc//instrume

    ntation/instrumentation_en.html

    The list is by no means complete. See also:http://www.neutron-eu.net/en/index.php

    Principal Facilities for INS in Europe

  • Variation of INS Intensity with Q, differs for Magnetic and Phonon Transitions

    Inte

    nsit

    y

    QIn

    tens

    ity

    Q

    Magnetic Transitions Phonon Transitions

  • In general:

    - Ability to detect low energyexcitations limited by the widthof the elastic line

    - Momentum transfer increaseswith increasing energy transfer: favours detection of phonon rather than magnetic transitions

    - Resolution becomes poorer withincreasing energy transfer

    - Practical range of magnetic INS:~0.5 to ~500 cm-1, depending on

    sample, and instrument configuration.

    In which energy range is INS applicable?

  • Advantages of INS Over Other Techniques

    -Direct Determination of Energy Levels in Zero Magnetic Field

    -Change in Intensity and Energy as a Function of Q Carries Useful Information Concerning the Wavefunctions

    Disadvantages of INS Over Other Techniques

    -Several Grams of Sample Must be Used

    -Often Necessary to Use Fully Deuteriated Samples

  • Neutron Scattering Cross-sectionsof Hydrogen and Deuterium

    Coherent Incoherent

    Deuterium

    Hydrogen

    Background due to incoherent scattering from protons often precludes the observation of magnetic transitions

  • Magnetic Scattering Selection RulesPowdered Sample, Unpolarised Neutron Beam

    +++

    +++

    ++

    −∝=

    iyeyffyeyi

    ixexffxexi

    izezffzezi

    iINS

    SgLkSgLk

    SgLkSgLk

    SgLkSgLk

    TkEQI

    ψψψψ

    ψψψψ

    ψψψψ

    ˆˆˆˆ

    ˆˆˆˆ

    ˆˆˆˆ

    exp)0(

    SL MMSL ,,,Basis

    Basler, Tregenna-Piggott, J.A.C.S., 123, 3377 (2001).Carver, Tregenna-Piggott, Inorg. Chem., 42, 5711 (2003).

    SMS ,Basis

    ( )222 ˆˆˆ2exp)0( ififizfiINS sssTkEQI ΨΨΨΨΨΨ −+ ++

    −∝=

    ∆MS = ±1,0 ∆S = ±1,0

  • Seminar Overview

    · Introduction to INS

    - Principles and Instrumentation

    - Advantages and Disadvantages Over Other Techniques

    - Selection Rules for Magnetic INS

    · Applications

    - Ground State Zero-Field-Splittings of non-Kramers Ions

    - Exchange Coupling Parameters in Molecular Clusters

  • Ground State Zero-Field-Splittings of non-Kramers Ions

    Case Studies

    1. [Mn(OD2)6]3+

    2. [V(OD2)6]3+

    3. [Fe(OD2)6]2+

    4. [Fe(imidazole)6]2+

    5. [Cr(OD2)6]2+

    INS is complementary to other spectroscopic techniques, for the characterisation of transition metal complexes. The main advantage of INS is that it affords the direct determination of the low-lying electronic structure in zero magnetic field.

  • Why is the Characterisation of Integer-SpinTransition Metal Complexes Difficult ?

    Kramers Ions are Amenable to Study by Electron Paramagnetic Resonance:

    Ener

    gy

    Magnetic Field

    NS

    NS

    Inte

    nsity

    Magnetic Field

  • Ener

    gy

    Magnetic Field along

    D

    3D2

    2−

    11−

    0

    In Non-Kramers Transition Metal Ions,the Zero-field Splitting is generally large compared to hν:

    zr

    Values of |D| in S = 2 systems are in the range 2 to 6 cm-1

  • 1

    0

    inte

    nsity

    [arb

    . uni

    ts]

    -2 -1 0 1 2energy transfer [meV]

    1.4 K

    15 K

    30 K

    I IIα β γα'β'γ'I'II'

    D = -4.524(1) cm-1

    E = 0.276(1) cm-1

    ~|2±2>

    |2±1>

    ~|2 0>

    I

    α

    II

    β γ

    TOF Inelastic Neutron Scattering Spectra of Cs[MnIII(OD2)6](SO4)2⋅6D2O

    Basler, Tregenna-Piggott, J.A.C.S., 123, 3377 (2001).

    Determination of Ground State Zero-Field-Splittings of non-Kramers Ions using INS

    1 meV ~ 8.06554 cm-1

    1.

  • -1200

    -1000

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    Ene

    rgy

    2000180016001400120010008006004002000Trigonal Field / cm-1

    Energies of states of the 3T1g term as a function of a positive trigonal

    field. λ is set to 100 cm-1.

    Spectroscopic Studies of [V(OH2)6]3+ cation

    Tanabe-Sugano Diagram for thed2 electronic configuration

    Optical Spectroscopy

    Electronic Raman

    SpectroscopyInelastic Neutron

    Scattering

    High-Field EPR

    States of the d2 electronic configuration in octahedral and trigonal fields

    2.

  • High-Field EPR and Inelastic Neutron Scattering Studies of the [V(OH2)6]3+ cation

    Inte

    nsity

    1086420-2-4-6-8Energy Transfer / cm-1

    [C(ND2)3][V(OD2)6][SO4]2T = 5 K

    Inelastic Neutron Scattering Spectrum of [V(OH2)6]3+ in

    Guanidinium Vanadium Sulphate

    Data modelled with an S=1Spin Hamiltonian

    D / cm-1 = 4.8713(1)g||= 1.95188(3)g⊥= 1.8662(4)A|| / cm-1 = 0.00988(4)A⊥ / cm-1 = 0.0080(6)

    High-Field EPR Spectrum of[V(OH2)6]3+ Doped

    Caesium Aluminium Sulphate

    Inte

    nsity

    9.659.609.559.50Field / Tesla

    115 GHz B=BzBx=By=0

    Tregenna-Piggott et al. Inorg. Chem. 38, 5928, (2001)

    2.

  • Experimental and Theoretical Electronic Raman Profiles of C(NH2)3[VIII(OH2)6](SO4)2

    eg

    ag

    eg

    ag

    Spichiger, Tregenna-Piggott, Chem. Phys. Lett. 337, 391 (2001)

    sMA ,

    3A

    3E

    |0 , 0

    |0 , 1

    | A , 1

    | A , 0

    | A , 1

    sMA ,

    2.

  • Inte

    nsity

    (arb

    . uni

    ts)

    43210-1-2-3-4Velocity (mms-1)

    4.2K

    45K

    50K

    55K

    60K

    70K

    80K

    160K

    200K

    Inte

    nsity

    (arb

    . uni

    ts)-4 -3 -2 -1 0 1 2 3 4

    Velocity (mm s-1)

    T= 4.2K, H= 0T

    T= 4.2K, H= 7T

    T= 4.2K, H= 3T

    Data Collected and Analysed by Eckhard Bill

    Mössbauer Study of Cs[FeII(OH2)6] (PO4)

    Shows phase transition beautifully, but does not readilyyield low temperature electronic structure

    3.

  • Inelastic neutron data of CsFe(D2O)6PO4

    10 K INS Spectrum of a powdered sample ofCsFe(D2O)6PO4

    Simulated spectrum consists of a sum of two spectra, each calculated using an S=2 Spin Hamiltonian with the following parameters:

    Species 1:

    D=11.999 cm-1E=2.1117 cm-1

    Species 2:

    D=12.121 cm-1E=1.346 cm-1

    Inte

    nsity

    -3 -2 -1 0 1 2 3Energy transfer [meV]

    exp.

    sim. 1

    sim. 2

    sim. 1 + sim. 2 (1:1)

    Direct determination of energies of low-lying states by INS

    3.

  • HFMF-EPR data of CsFe(D2O)6PO4

    HFEPR spectrum (5K, 284.9973 GHz) of a powdered sample of CsFe(D2O)6PO4 fitted using two S=2 Spin Hamiltonians:

    Species 1:

    D=11.999 cm-1E=2.1117 cm-1gx=2.22,gy=2.22,gz=2.32

    Species 2:

    D=12.121 cm-1E=1.346 cm-1gx=2.32,gy=2.22,gz=2.32

    Inte

    nsity

    543210Field [Tesla]

    *

    sim. 1

    sim. 2

    sim. 1 + sim. 2 (1:1)

    exp.

    EPR data simulated with zero-field-splitting parametersfrom INS. The EPR experiments then yield the g values

    3.

  • 2500

    2000

    1500

    1000

    500

    0

    Ener

    gy

    2000150010005000Trigonal field [cm-1]

    J=1 ground state perturbed by trigonal field:-Model Data with S=1 spin-Hamiltonian

    5A1g (D3d) ground term perturbed by trigonal field:- Model Data with S=2 spin-Hamiltonian

    4.

    States of the 5T2g (Oh) term as a function of the trigonal

    field, with λ set to 100 cm-1

  • Inelastic neutron data for Fe(II)(Imidazole)6(NO3)2In

    tens

    ity

    806040200-20-40Energy Transfer [cm

    -1]

    1.5K

    15K

    30K

    50K

    II' II

    80

    40

    0

    Ener

    gy [c

    m-1

    ]

    I

    II II'

    I' ae

    e

    Experimental and calculated Q dependence of the 19.4 cm-1 peak at

    various temperatures.

    INS spectra (incident wavelength 2.2 Angstrom)of a powdered sample of deuterated

    Fe(Im)6(NO3)2 at various temperatures.

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Nor

    mal

    ised

    Inte

    nsity

    543210Momentum transfer Q [Angstrom-1]

    1.5K exp. 15K exp. 30K exp. 50K exp. 1.5K calc . 15K calc . 30K calc . 50K calc .

    Ground state energies (5A) fitted usingthe ligand field Hamiltonian:

    operating in the 5D manifold

    π

    π λ

    − −= + −

    −+ ∆ + ⋅

    0 3 34 4 4

    02

    28 10ˆ ( )3 7

    14 ˆ ˆ3 5

    H Dq Y Y Y

    Y L S

    4.

  • Magnetisation data4.

    5.5

    5.0

    4.5

    4.0

    3.5

    3.0

    2.5

    µ-ef

    fect

    ive

    [Boh

    r Mag

    neto

    ns]

    30025020015010050Temperature [K]

    exp. calc.

    Magnetisation data reproduced using the ligand field Hamiltonian:

    operating in the 5D manifold using the parameters obtained from INS.Orbital reduction factor, k = 0.95.

    0 3 34 4 4

    02

    2 8 10ˆ ( )3 7

    14 ˆ ˆ3 5

    ˆ ˆ( 2 )

    H D q Y Y Y

    Y L S

    k L S B

    π

    π λ

    β

    − −= + −

    −+ ∆ + ⋅

    +

  • HFMF-EPR data

    20

    10

    0

    -10

    Ener

    gy [c

    m-1]

    2 4 6 8 10246810B|| [Tesla]B⊥ [Tesla]

    a

    e

    0

    ||

    15

    10

    5

    0

    Ene

    rgy

    [cm-1

    ]

    1086420Resonant field [Tesla]

    || ⊥

    Experimental and calculated resonant field positions for HFMF-EPR.

    Calculated energies of the lower three energy levels as a function of field directed parallel and normal to

    the three-fold axis.

    G. Carver, P.L.W. Tregenna-Piggott, Inorg. Chem. 2003, 42, 5771-5777

    4.

  • Inte

    nsity

    -8 -6 -4 -2 0 2 4 6 8Energy Transfer (cm-1)

    1.5 K

    10 K

    30 K

    75 K

    100 K

    150 K

    200 K

    250 K

    297 K

    αβ βα γγ I IIIII

    Inelastic Neutron Scattering Spectra of(ND4)2[CrII(OD2)6](SO4)2

    I II

    α

    β

    }~|2±2>

    }|2±1>

    ~|2 0>

    γ

    Dobe, Tregenna-Piggott,Chem. Phys. Lett.362, 387, (2002)

    5.

  • High-Field EPR Spectra andSimulations of (ND4)2[CrII(OD2)6](SO4)2

    Inte

    nsity

    (arb

    uni

    ts)

    121086420Field (T)

    285GHz

    95GHz*

    *

    Simulation

    Simulation

    25 K

    5 K

    Five ParametersRequired to Model the

    EPR Data with an S=2 Spin-Hamiltonian. With INS,

    the Zero-Field Transitionsare Obtained Directly

    5.

  • -2.4

    -2.3

    -2.2

    -2.1

    -2.0

    D /

    cm-1

    25020015010050Temperature / K

    0.25

    0.20

    0.15

    0.10

    E / c

    m-1

    25020015010050Temperature / K

    Variation of the zero-field-splitting parametersD and E with temperature, obtained by least-squares

    refinement of the eigenvalues of:

    to the energies of the INS transitions.

    ( ) [ ]222 ˆˆ131ˆˆ

    yxz SSESSSDH −+

    +−=

    5.

  • Inte

    nsit

    y

    16 0 001 2 0 008 0 004 00 00Field (G)

    1 20 K1 50 K

    1 75 K

    2 00 K

    2 25 K

    2 50 K

    2 75 K

    7K

    **

    Sim

    Variable Temperature X-band EPR Spectra andSimulations of (ND4)2[CrII(OD2)6](SO4)2

    5.

  • 2.35

    2.30

    2.25

    2.20

    2.15

    2.10

    2.05

    Bon

    d Le

    ngth

    (Å)

    30025020015010050Temperature (K)

    Cr-O(9)

    Cr-O(8)

    Cr-O(7)

    Variation of Cr-O bond distances with temperature

    Cr

    Cr

    Low Temperature

    High Temperature

    ?

    Unable to account for the data using static model

    5.

  • Jahn-Teller Potential Energy Surface of [Cr(OD2)6]2+ in Cubic Symmetry

    Cr

    CrCr

    6

    4

    2

    0

    -2

    -4

    -6

    6420-2-4-6 2

    000

    100

    0

    100

    0

    500

    500

    0 0

    0

    -500

    -500

    -500

    -500

    -100

    0

    -100

    0

    -1000

    -1000 -1000

    -1500 -1500

    -1500

    -1500 -1500

    -1500

    -200

    0

    -2000

    -2000

    -2000

    1500 1500 1000

    1000 500 500 0

    0

    -500 -500

    -500

    -1000 -1000 -1500

    -2000

    5.

  • 6

    4

    2

    0

    -2

    -4

    -6

    -6 -4 -2 0 2 4 6Qε

    250

    0 2

    000

    150

    0

    150

    0

    100

    0

    100

    0

    500

    500

    0

    0

    -500

    -500 -5

    00

    -1000

    -1000

    -1000

    -1500

    -1500

    -1500

    -2000

    -2000

    -2000

    -2500

    -2500

    -3000

    Cr

    CrCr

    Pote

    ntia

    l ene

    rgy

    Angular distortion co-ordinate

    Calculated Potential Energy Surface of [Cr(OD2)6]2+ in (ND4)2[CrII(OD2)6](SO4)2 at 10 K

    Degeneracy of Distorted Configurations Lifted by

    Anisotropic Strain

    5.

  • H = H0 + Hph + HJT + Hst

    =

    1001

    τU

    −=

    1001

    θU

    =

    0110

    εU

    ( ) ( )[ ] ,35.0 3232222 τθεθεθεθω UQQQAQQPPH ph −++++= h

    ( ) ( )( )εεθθθεεεθθ UQQUQQAUQUQAH JT 22221 +−++=

    εεθθ UeUeHst +=

    Qθ ~ 2∆z2 – ∆x2 – ∆y2 and Qε ~ ∆x2 – ∆y2.

    Hamiltonian for the System

    P.L.W. Tregenna-Piggott, Advances in Quantum Chemistry, 144, 461 (2003).

    5.

  • Eigenvalues andEigenvectors

    ψψ θQψψ εQ

    Cr-OBond Lengths

    EPR Spectrum

    2exp ifiINS Tk

    EI ψµψ ⊥

    −∝

    INS Spectrum

    Timescale ~ 10-14 - 10-13

    Timescale < 10-9

    Density Matrix Method

    Input Rate of Inter-state Relaxation

    5.

  • Theoretical INS Spectra. Orthorhombic Strain and 10Dq Diminish with Increasing Temperature

    Inte

    nsity

    1086420Energy Transfer (cm-1)

    1.5 K

    10 K

    30 K

    75 K

    100 K

    200 K

    250 K

    297 K

    150 K

    Inte

    nsity

    -8 -6 -4 -2 0 2 4 6 8Energy Transfer (cm-1)

    1.5 K

    10 K

    30 K

    75 K

    100 K

    150 K

    200 K

    250 K

    297 K

    αβ βα γγ I IIIII

    Experiment Theory

    5.

  • 2.40

    2.35

    2.30

    2.25

    2.20

    2.15

    2.10

    2.05

    Bon

    d Le

    ngth

    (Å)

    300250200150100500Temperature (K)

    Cr-O(7)

    Cr-O(8)

    Cr-O(9)

    Theory Experiment

    Theoretical and Experimental Cr-O bond lengths5.

  • Theoretical EPR Spectra as a Function of Temperature:Fast Inter-State Relaxation

    ν = 285 GHz

    Cr

    CrCr

    Pote

    ntia

    l ene

    rgy

    Angular distortion co-ordinate

    5.

  • Spin-Hamiltonian Parameters of the System Dependon the Experimental Technique Used to Determine Them

    5.

  • Seminar Overview

    · Introduction to INS

    - Instrumentation

    - Advantages and Disadvantages Over Other Techniques

    - Selection Rules for Magnetic INS

    · Applications

    - Ground State Zero-Field-Splittings of non-Kramers Ions

    - Exchange Coupling in Molecular Clusters

  • Exchange Coupling in Molecular Clusters

    Case Studies

    1. [(NH3)5Cr(OH)Cr(NH3)5]Cl5 · 3H2O

    2. [Mn12O12(OAc)16(H2O)4]

    3. MnMoO4

    INS has played a pivotal role in the elucidation of exchange interactions in molecular clusters. The variation of the energies and intensities of the

    transitions with Q, provides a wealth of information that cannot be obtained with other techniques.

  • Acid Rhodo ComplexBis-µ-hydroxo-pentamine chromium(III)

    S = 01

    2

    3

    0– 2 Jab

    – 6 Jab

    – 12 Jab

    E

    Hex = – 2 Jab Sa · Sb

    W.E. Hatfield et al. 1973

    1.

  • [(NH3)5Cr(OH)Cr(NH3)5]Cl5 · 3H2OLuminescence at 7 K

    7B2 S = 3

    5A1 S = 2

    3B2 S = 11A1 S = 0

    ABCD

    A

    BC

    D

    4A2 4A2 splitting

    first excited state

    ground state

    5B1 S = 2lowest level of 2E 4A2

    Hans U. Güdel and Jim Ferguson, Australian Journal of Chemistry 26(3), 505-11, (1973),

    1.

  • S = 01

    2

    3

    [(ND3)5Cr(OD)Cr(ND3)5]Cl5 · D2OInelastic Neutron Scattering

    Hans U. Güdel, Albert Furrer, Molecular Physics 33(5), 1335-44, (1977),

    3-ax, λ = 2.34 Å

    0– 2 Jab – 13/2 jab

    – 6 Jab – 27/2 jab

    – 12 Jab – 18/2 jab

    E

    – 2 Jab = 3.84 ± 0.12 meV+ jab = 0.021 ± 0.023 meV

    Hex = – 2 Jab Sa · Sb + jab (Sa · Sb)2

    A

    B

    C

    A

    B

    C

    1.

  • Albert Furrer, Hans U. Güdel Phys. Rev. Lett. 39, 657, (1977),

    Variation of Intensity of INS transition Awith Momentum Transfer

    Oscillatory behaviour due to interference effects, which are adirect product of metal-metal distance in the cluster

    1.

  • Paramagnetism, Superparamagnetism, and Ferromagnetism

    Paramagnet

    H = 0 H → H = 0

    H

    M

    Super-paramagnet

    H = 0 H → H = 0

    H

    M

    Ferromagnet

    H = 0 H → H = 0

    H

    M

    2.

  • Single Molecule Magnets (SMMs)

    ⋅ Slow Relaxation of the Magnetisationat Low Temperatures

    ⋅ Molecular Clusters with Large Spin Ground States and Ising Type Anisotropy

    ⋅ Intermediate Behaviour Between Classical and Quantum Magnets

    2.

  • The Prototype SMM [Mn12O12(OAc)16(H2O)4]

    OAc = acetate

    Mn4+

    Mn3+

    2.

  • {Mn12O12} core

    8 MnIII S = 24 MnIV S = 3/2

    ⇒ S = 10

    The Prototype SMM [Mn12O12(OAc)16(H2O)4]

    R. Sessoli et al, J. Am. Chem. Soc. 1993, 115, 1804.

    2.

  • Energy Barrier to Magnetisation Relaxation

    Barrier height:

    ∆ = S2|D|

    (integer S)

    Mn12: S = 10

    D ~ - 0.5 cm-1

    ∆ = 50 cm-1

    H = 0

    2.

  • Slow Magnetisation Relaxation

    H = 0

    H // easy axis

    H = 0

    At low temperature...

    2.

  • Resonant Quantum Tunnelling

    H = 0

    H ≠ 0

    H = nD/gµB

    magnetisation hysteresis loops

    steps due to quantum tunnellingthrough the energy barrier

    (D. Gatteschi, R. Sessoli Angew. Chem.Int. Ed., 42, 268 (2003))

    2.

  • Magnetic Relaxation

    10 -4

    10 -3

    10 -2

    10 -1

    10 0

    10 1

    10 2

    0 2 4 6 8 10

    DCAC

    1/T (1/K)τ

    (s)

    Thermally Activated RelaxationArrhenius Expression: τ = τ0 exp (∆/kT)

    Quantum Mechanical Tunnelling

    2.

  • Mn12 - Acetate Inelastic Neutron Scattering

    Roland Bircher and Hansueli Güdel, Unpublished ResultsSee also: I. Mirebeau, M. Hennion, H. Casalta, H. Anders, H.U. Gudel, A.V. Ivadova, and A. Caneschi, Phys. Rev. Lett. 83, 628 (1999).

    Instrument IN5 (ILL), l = 5.9 Å

    2.

  • [Mn12O12(OCH3COO)16(H2O)4]· 2CH3COOH · 4H2O

    Hanspeter Andres, Roland Bircher and Hansueli Güdel

    O04 = 35SZ4 – (30S(S+1) – 25)SZ2 + 3S2(S+1)2 – 6S(S+1) O44 = 1/2 (S+4 + S–4)

    D = –0.457(2) cm–1

    B04 = –2.33(4) 10–5 cm–1

    B44 = ±3.0(5) 10–5 cm–1

    HZFS = D (SZ2 – 1/3S(S+1)) + B04 O04 + B44 O44

    2.

  • INS Study of MnMoO4• Edge-sharing Mn(II)O6

    octahedra → tetramers• Tetramers are connected by

    Mo(VI)O4 tetrahedra

    Exchange pathways:• within tetramers:

    Mn-O-Mn • between tetramers:

    Mn-O-Mo-O-Mn

    • Ferromagnetic alignment of the spins within the clusters.

    • Antiferromagnetic ordering of the clusters at 10.7 K.

    3.

  • TOF INS Spectrum of MnMoO4

    • instrument: FOCUS at PSI• incident wavelength: 4.75 Å• temperature: 1.5 K

    → 4 peaks on neutron energy loss side

    S. T. Ochsenbein et al, Phys. Rev. B 68, 092410 (2003)

    3.

  • Isotropic quantum mechanical model for the intracluster interactions

    S. T. Ochsenbein et al, Phys. Rev. B 68, 092410 (2003)

    Exchange Interactions of MnMoO4

    103.0

    3.6

    92

    Å

    3.417 Å

    104.13°

    95.73°

    Mn1

    Mn2

    Mn3Mn4 O1

    J'

    J

    J = 0.4 cm-1, J´= -0.15 cm-1 S = 10 Ground state

    ∑ ⋅−= jiji SSJH 2ˆ

    3.

  • Molecular field model for the intercluster interaction

    Exchange Interactions of MnMoO4

    Molecular Field at Cluster: gµBHmol = -2Jinter〈Scluster〉z, where z = number of neighbours on opposite sublattice ⇒ Jinter =-0.036 cm-1 (average intercluster interaction)

    3.

  • neut

    ron

    coun

    ts

    2.52.01.51.00.50.0-0.5energy transfer (meV)

    h = l = 0.5

    h = l = 0.6

    h = l = 0.7

    h = l = 0.8

    h = l = 0.9

    h = l = 1.0

    h = l = 1.1

    h = l = 1.2

    h = l = 1.3

    h = l = 1.4

    h = l = 1.5k = 0Measured spectra along (h0h):

    Peak positions and intensities vary as a function of the scattering vector Q ⇒

    spin wave dispersion

    Variation in Energies as a Function of Q3.

  • Dispersion curves along (h 0 h)

    S. T. Ochsenbein, H. U. Güdel, P. S. Häfliger, A. Furrer, B. Trusch, J. Hulliger, work in progress

    Dispersion revelations contain detailed informationon the inter-cluster exchange interactions.

    3.

  • AcknowledgementsGround State Zero-Field-Splittings of non-Kramers Ions

    Group of Philip L.W. Tregenna-Piggott,Department of Chemistry, University of Bern

    Graham Carver → Theory of Vibronic Coupling, Spectroscopy of Imidazole Complexes

    Christopher Dobe → Cr(II) Tutton Salt ProjectChristopher Noble → Density Matrix Treatment of

    Relaxation in JT SystemsMarkus Thut → INS and EPR Study of Mn(III) hexa-aqua

    Exchange Coupling in Molecular ClustersGroup of Hansueli Güdel,

    Department of Chemistry, University of Bern

    Roland Bircher → INS Studies of Single Molecule MagnetsStefan Ochsenbein → Spin-Wave Dispersion in MnMoO4

    Reto Basler → INS Study of Mn(III) hexa-aqua

    Funded by the Swiss National Science Foundation