index.html hiroshi amano [email protected]/h30/g30/1st.pdftext book. paperback....

54
October 15, 2018 14:45-16:15 IB012 Hiroshi Amano [email protected] Semiconductor Devices 1 st Future automotive systems At urban area On the freeway EV? NIKKEI ELECTRONICS 12-23 2013 202X Autonomous driving Wireless charging Automotive Engineering Graduate Program http://www.echo.nuee.nagoya-u.ac.jp/~amano/H30/G30/index.html 1/54

Upload: others

Post on 30-Mar-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • October 15, 2018 14:45-16:15 IB012

    Hiroshi [email protected]

    Semiconductor Devices 1st

    Future automotive systems

    At urban area

    On the freeway

    EV?

    NIKKEI ELECTRONICS 12-23 2013

    202XAutonomous driving

    Wirelesscharging

    Automotive Engineering Graduate Program

    http://www.echo.nuee.nagoya-u.ac.jp/~amano/H30/G30/index.html

    1/54

  • What do you learn ? Fundamentals of Automotive electronicsAutomotive electronics are any electrically-generated systems used in road vehicles, such as: carputers(Computers in a Car), telematics(=Telecommunication + Informatics), in-car entertainment systems, etc.

    Automotive electronics originated from the need to control engines. The first electronic pieces were used to control engine functions and were referred to as engine control units (ECU). As electronic controls began to be used for more automotive applications, the acronym ECU took on the more general meaning of "electronic control unit", and then specific ECU's were developed. Now, ECU's are modular. Two types include engine control modules (ECM) or transmission control modules (TCM).A modern car may have up to 100 ECU's and a commercial vehicle up to 40.Automotive electronics or automotive embedded systems are distributed systems, and according to different domains in the automotive field, they can be classified into:1.Engine electronics2.Transmission electronics3.Chassis electronics4.Active safety5.Driver assistance6.Passenger comfort7.Entertainment systems2/54

  • Text book

    PaperbackSemiconductor Devices: Physics and Technology, 3rd Edition International Student VersionISBN : 978-0-470-87367-0592 pagesAugust 2012, ©2011$236.95

    Simon Min Sze Ming-Kwei Lee

    3/54

  • Additional Reading Physics of low dimensional semiconductors, J. H. Davis (Springer) The Physics of Semiconductors, Marius Grundmann (Springer) Basic Semiconductor Physics, C. Hamaguchi (Springer)

    ¥11,419 ¥13,767 ¥10,715

    4/54

  • 2018 G30 Automotive Engineering Graduate ProgramNo. Date Lecturer Topic1 Oct. 15 Amano Introduction and fundamental physics2 Oct. 22 Amano Energy bands and carrier concentration3 Oct. 29 Amano Carrier transport phenomena4 Nov. 5 Amano p-n junction5 Nov. 12 Ohno Bipolar transistors6 Nov. 19 Ohno MOS capacitor and MOSFETs I7 Nov. 26 Amano Exam / Laboratory tour- Nov. 29 - -8 Dec. 3 Ohno MOS capacitors and MOSFETs II9 Dec. 10 Ohno Power devices and mircrowave devices10 Dec. 17 Ohno Exam / Laboratory tour- Dec. 26 - -11 Jan. 8 Kondo Light emitting diodes and lasers12 Jan. 21

    It may change to Dec.26Kondo Photodetectors and solar cells

    13 Jan. 28 Kondo Fabrication processes14 Feb. 4 Kondo Exam / Laboratory tour

    Amano Ohno Kondo5/54

  • Grading:

    Reports or Examination(or Paper test) = 100%

    S:100-90 points, A:89-80 points, B:79-70 points, C:69-60 points, F:

  • 7/54

    What will you learn in this lecture? iPhone X

    Copyright © 2018 Apple Inc. All rights reserved.

  • 8/54

    VCSEL in iPhone X

    https://www.eetimes.com/document.asp?doc_id=1332530

    WHAT is VCSEL?

    Facial recognition = Face ID

    VCSEL: Vertical Cavity Surface Emitting Laser

  • 9/54

    テキスト What is VCSEL?

    【EE Times Japan】

    VCSEL array

  • 10/54

    Detailed structure of VCSEL

    25 November 2014, SPIE Newsroom. DOI: 10.1117/2.1201411.005689

    DBR: Distributed Bragg Reflector

    Short cavity

  • 11/54

    Who invented VCSEL?

    Professor Kenichi IgaJapanese Journal of Applied PhysicsVol. 47, No. 1, 2008, pp. 1–10©2008 The Japan Society of Applied Physics

  • 12/54

    What will you learn in this lecture?

    We will not discuss details of the process technology of LED, EEL, VCSEL, but will discuss1. Fundamental physics in active area, such as bandgap, pn junction, doping, double

    heterostructure, quantum wells, optical process such as radiative and non radiativerecombination, gain, etc.

    2. Fundamental physics in waveguide structures and mirrors

    Royal Swedish Academy of Sciences25 November 2014, SPIE Newsroom. DOI: 10.1117/2.1201411.005689

    ©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA

    http://bazyd.com/continue-to-the-previous-section-is-iphone-x-hurting-your-eyes/

    beam divergenceEmission spectrum

  • According to CARB(California Air Resources Board) ’s baseline scenario, in 2020, 3 percent of sales will be plug-in hybrids (PHEV) and 1 percent will be battery electric vehicles (BEV). Conventional hybrids (HEV) completely phase out in 2040. Electric cars and fuel cell vehicles (FCV) take over in 2050.

    California’s Green Car Roadmap to 2050

    13/54

  • http://priuschat.com/threads/time-to-come-clean-about-hydrogen-fuel-cell-vehicles.141737/

    California’s Green Car Roadmap to 2050Well (Oil, Natural gas)

    14/54

  • http://www.electronicproducts.com/Digital_ICs/Microprocessors_Microcontrollers_DSPs/Google_s_driverless_car_to_boost_revenue_for_semiconductors.aspx#.U6_ttYmKDb0

    By Luca De Ambroggi and Akhilesh Kona, IHS Technology

    Autonomous Driving

    15/54

  • Automotive semiconductors in today’s vehicle

    Intelligent power device

    16/54

  • http://articles.sae.org/9503/

    MCU : multipoint control unit

    ASIC : application-specific integrated circuit

    MUXING : Multiplexing

    Market revenue

    17/54

  • Automotive sensors in today’s vehicle

    (Copyright 2012 IHS Inc.)

    The number of automotive sensors in a single vehicle has been steadily rising over time. According to the MEMS Journal, each new automobile has 60-100 sensors on-board measuring a very broad range of parameters, including temperature, humidity, light, pressure, fluid levels, positioning, engine combustion/detonation, acceleration, speed, lamp status, oxygen flow and compass direction (geomagnetic).

    http://www.chipestimate.jp/tech-talks/2013/12/03/271-Optimizing-Sensor-Performance-with-1T-OTP-Trimming

    MEMS: Micro Electro Mechanical Systems

    18/54

  • Automotive sensors in today’s vehicle

    19/54

  • Daytime running lamp (Europe and Japan)

    Side turn lamp

    ・Side protection foot lamp

    ・Door mirror foot lamp

    High mount stop lamp

    ・Stop lamp

    ・Tail lamp

    ・Rear turn lamp

    ・Back lamp

    ・Rear fog lamp

    ・Head lamp

    ・Position lamp

    ・Fog lamp

    ・Cornering lamp

    License lamp

    Automotive lightings in today’s vehicle - exterior -

    20/54

  • Automotive lightings in today’s vehicle - interior -

    Map lamp & Seat spot lamp

    Reading lamp & seat spot lamp

    Courtesy lamp

    Luggage lamp

    Vanity lamp

    Foot lamp Front & Rear

    Seat belt buckle lampGlove box lamp

    Inside handle lamp

    Steering lamp

    Instrument panel

    Car navigation

    21/54

  • Tail lamp    0.5    10    9.5 0.33 3Stop lamp    8.6    42   33.4  0.27 9

       2.9    21   18.1  0.27 5   4.3    42   37.7  0.27 10 

    Rear Turnlamp    8.6    42   33.4  0.10 3Backlamp   12.0    42   30.0  0.02 1License lamp    0.4    10    9.6  0.33 3Rear Foglamp   10.1    21   10.9  0.01 0Side Turnlamp    2.9    10    7.1  0.10 1 Fotlamp    1.4    10    8.6  0.01 0Headlamp(Halogen Hi  45.0   120   75.0  0.02 2Headlamp(Halogen Lo   45.0   110   65.0  0.20 13 Headlamp(HID)   80.0    70  -10.0  0.20 -2 Daytime Runninglamp   26.0   100   74.0 0.66 49 Front Foglamp   35.0   110   75.0 0.01 1Positionlamp    0.4    10    9.6 0.33 3Front Turnlamp   28.8    42   13.2 0.10 1Roomlamp    0.7     8    7.3 0.03 0

       0.5     8    7.5 0.01 0   0.2     5    7.8 0.01 0

    Vanitylamp    0.2     8    7.8 0.03 0Assumption Red LED 29lm/W

    Amber LED 25lm/WWhite LED 70lm/WDC-DC Converter Efficiency 80% in White LED

    Position Lamp

    RearHighmount Stoplamp

    Side

    Front

    Interior Maplamp

    ReductionIndex

    LED(W) Bulb(W)Power

    Reduction(W)Frequency

    Automotive lightings in today’s vehicle - advantage of using LED -

    22/54

  • Laser headlight

    https://clubmini.jp/15478

    BMW i8

    23/54

    https://clubmini.jp/15478

  • http://www.gistrategies.com/what-can-smart-cars-learn-from-smart-phones/

    Automotive electronics cost

    24/54

  • What should you learn ?

    1. What is semiconductor?2. How to make semiconductor devices?3. How to use semiconductor devices?

    25/54

  • 26/54 http://www.sciencegeek.net/tables/tables.shtml

    What is semiconductors?

  • 27/54

    What is semiconductors?

  • 28/54

    http://www.sei.co.jp/newsletter/2009/07/3a.htmlM. Kasuu、NTT Technical Journal 2004.1、p.66

    Diamond crystal

    Even diamond is semiconductor

  • What is semiconductors?

    http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/eleorb.htmlhttp://surf.ml.seikei.ac.jp/~nakano/diary/?0401

    http://hyperphysics.phy-astr.gsu.edu/hbase/solids/sili.html

    Outermost shell is fully filled.Inert gas

    Outermost shell is half filled.Si crystal structure

    Periodic table of the elements

    Si

    What is covalent bond?

    29/54

  • 30/54

    Concept : Total valence electrons are eight.

    Compound semiconductors

  • 31/54

    CIGS is also semiconductor with eight valence electrons

    CuInGaSe2

    http://www.honda.co.jp/soltec/module/?from=rcount

    Cu 2=-2In 3=-1Ga 3=-1Se 6=+2 (×2)

  • 32/54

    Crystal Structure

    Zinc Blende Wurtzite Diamond

    Si GaAs InP GaN CuInGaS Ge

    Charcopyrite

  • Introduction to quantum mechanics -electron as a wave-Hydrogen atom

    a

    Proton

    Electron

    Niels Bohr de Broglie

    deBrogliehp

    )Bohrnnhpdq

    λ=

    ⋅⋅⋅⋅==∫ ,3,2,1(   

    p:momentumq:integral pathh:Planck’s constantλ: wavelength of electron wave

    Q: Confirm that the Bohr’s condition andde Broglie’s assumption mean theformation of standing wave of electron.

    na

    nhhaappdq

    πλ

    λππ

    2

    22

    =

    ===∫    

    Define wavenumber k and angularfrequency ω

    πνωλπ

    2

    2

    =

    =k

    ν: frequency of electron wave33/54

  • Introduction to quantum mechanics -light as a particle (photon)-

    Photoelectric effecthttp://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pho

    to_effect.html

    http://swcphysics30.wordpress.com/2013/01/16/generating-electricity-by-photoelectric-effect/

    h:6.626E-34 J・se:1.602E-19 Cm0:9.108E-31 kg

    Q: Confirm the maximum velocity of electrons run out from K(potassium) by irradiating green and violet light.

    W.F. of K 2.0 eV

    ]/[522.631108.9

    19602.1)0.21.3(2)..(221..

    0

    20

    smEE

    Em

    FWhv

    vmFWh

    K

    K

    =−

    −⋅−⋅=

    −=

    =−

    ν

    ν

    Violet case

    34/54

  • Introduction to quantum mechanics

    Describe electron using wavefunction )}(exp{),( trkiAtr ωψ −⋅=

    Define momentum operator and energy operator

    Let us assume one dimensional case )}(exp{),( txkiAtx ωψ −⋅=

    ∇−= ip

    ),,(zyx ∂∂

    ∂∂

    ∂∂

    =∇ xip∂∂

    −= One dimensional Q: Operate momentum operator

    to wavefunction.

    ψψψ kx

    ip =∂∂

    −=π2h

    =

     t

    iE∂∂

    =

    Q: Operate energy operator to wavefunction.

    ωψψψ =∂∂

    =t

    iÊ

    35/54

  • Introduction to quantum mechanics

    ψψ kp = ωψψ =ÊMeaning of following equation

    phhk ==⋅=λλ

    ππ

    22

    νπνπ

    ω ⋅=⋅= hh 22

    Momentum Energy

    Total energy of particle with a mass m moving with a constant speed of v in a potential field V(x).

    )(2

    )(2

    )(

    )(21

    2

    2

    2

    rVm

    p

    rVmvm

    rVmvE

    +=

    +⋅

    =

    +=

    Newtonian mechanics Quantum mechanics

    )(2

    )(2

    )(

    22

    2

    rVm

    rVm

    iE

    +∇−=

    +∇−

    =

    36/54

  • Introduction to quantum mechanics

    tjE

    Vm

    H

    EH

    ∂∂

    =

    +∇−=

    =

    22

    2

    ψψSchrödinger equation

    )()()](exp[),( tTxtxkjAtx ⋅=−⋅⋅= ϕωψSeparation of variables

    )tan()()()2

    ()

    )()()()2

    )((

    )()()()()2

    (

    22

    22

    22

    tconsEttTj

    T(t)1xV

    mx(

    (x)T(t)ttTjxxV

    mtT

    ttTxjtTxV

    m

    =∂

    ∂=+∇−

    ÷∂

    ∂=+∇−

    ∂∂

    =+∇−

    ϕϕ

    ϕ

    ϕϕ

    ϕϕ

    Only position dependent Only time dependent

    )exp()(

    ))()2

    ( 22

    tEiAtT

    x(ExVm

    −⋅′=

    =+∇−

    * ϕϕ

    Hamiltonian

    37/54

  • Introduction to quantum mechanics

    x

    θ

    φ

    Proton

    Electron

    +e

    -e

    Hydrogen atom

    )()()42

    ( 20

    22

    0

    2

    rErr

    em

    ϕϕπε

    =−∇−

    Polar coordinates

    Time independent Schrödinger equation for hydrogen atom

    ][16.13

    ),,,3,2,1(132

    2

    2220

    2

    40

    eVn

    nn

    emEn

    −≅

    =−=επ

    38/54

  • Introduction to quantum mechanics

    abbbaa rq

    rq

    rq

    rq

    rq

    rq

    mmH

    0

    2

    120

    2

    20

    2

    10

    2

    20

    2

    10

    22

    2

    22

    1

    2

    44444422ˆ

    πεπεπεπεπεπε++−−−−∇−∇−=

    a b

    2Electron

    Electron

    Proton Proton

    Q: Derive the Hamiltonian of hydrogen molecule. You can neglect kinetic energy of proton because mass of proton is more than 1600 times larger than that of electrons and thus you can assume that protons do not move.

    39/54

  • Introduction to quantum mechanics

    rab(proton-proton distance)E-

    E+

    Pote

    ntia

    l ene

    rgy

    E

    Wavefunction for E-

    rab

    Wavefunction for E+rab

    Covalent bond

    Anti bonding state

    Bonding state

    -4.5eV

    0.74Å

    Opposite spin

    Mor

    e st

    able

    40/54

  • Introduction to quantum mechanicsElectron energy in Si crystal

    Electron occupation in Si atom Si:(1s)2(2s)2(2P)6(3s)2(3p)2

    1s

    2s

    3s

    2p

    3p

    Ener

    gy E

    1s

    2s

    (3sp3)

    2p

    Ener

    ygE

    3sp3 mixed orbital

    http://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Sp3-Orbital.svg/200px-Sp3-Orbital.svg.png

    Outermost orbital Outermost orbital

    41/54

  • Introduction to quantum mechanics4 (3sp3) electrons at each Si

    Pote

    ntia

    l ene

    rgy

    E

    4 bonding states

    4 antibonding state

    rsi-si

    42/54

  • Why valence electrons in a solid form band structure ?

    Energy band structure

    k

    E

    0aπ

    −aπ2

    aπ2

    Valence band

    Conduction band

    Bandgap

    Si

    Detailed calculation

    Horizontal axis : crystal momentumVertical axis : energy

    Electrons in a solid

    43/54

  • How to make semiconductor devices by doping impurities ?In an intrinsic semiconductors,

    conduction band electron density=valence band hole density.

    How to realize n-type and p-type semiconductors ?

    (3s)2(3p)3

    SiSi

    SiSiP+

    One electronrest

    Outermost electrons in P

    44/54

  • How to make semiconductor devices?

    ][156.1318 22220

    4

    eVnnh

    meEn −≅−= εn : principal quantum number

    Energy eigen value of hydrogen

    P+Si -

    DielectricConstant ε=εrε0

    This electron acts as a conduction band electron.→

    Effective mass m=me=mrm0

    ][156.132

    eVmEr

    rD

    −≅

    ε

    In case of Si,me=0.25m0,εr=12

    ED=-13.56×0.25×(1/12)2= -0.024[eV]

    Please check what is dielectric constant !45/54

  • How to make semiconductor devices?

    Wavenumber k

    Energy E

    Valenceband

    Conductionband

    Band gapEg

    Eg=1.11eV∆ED=0.024eV

    ∆ED

    Energy E

    ∆EA

    ][156.132

    0

    eVmmE

    r

    hA

    ε

    Donor for n-type Acceptor for p-type46/54

  • How to make semiconductor devices?

    TkEE

    cB

    fC

    eNn−

    ⋅=

    TkEE

    vB

    Vf

    eNp−

    ⋅=

    −=

    h

    eB

    gf m

    mTkE

    E ln43

    2

    Electron conc.In conduction band

    Hole conc. invalence band

    Fermi energy~ center of the bandgap

    −−⋅=

    TkEE

    NnB

    fCC

    nexp

    −−⋅=

    TkEE

    NpB

    VfV

    pexp

    Efn

    Efp

    EC

    EV

    n-type p-type

    After p-n junction formation, Fermi energy levels of both type become the same.

    47/54

  • How to make semiconductor devices?p-type

    -- ---

    --

    --

    n-type

    + +

    + +

    + + +

    ++

    Electron

    Hole

    Negative fixed charge layer Positive fixed charge layer

    48/54

  • Fermi energy EfDonor level ED

    n-type p-type

    Vacuum level

    Depletion region

    Diffusion potential qVD(Diffusion voltage VD)

    ECp

    EVp

    Acceptor level EA

    Negatively charged acceptor

    Electron affinity χ

    -- ----

    ++++++

    Positively charged donor

    ーー

    ++

    EVn

    ECn

    How to make semiconductor devices?

    49/54

  • pn junction diode

    Diode

    I-V characteristic

    Q: Which terminal is which ?

    50/54

  • How to use semiconductor devices?

    http://www.electronics-tutorials.ws/diode/diode_6.html

    Full wave rectifier circuit.

    AC ⇒ DCRole of pn junction diode

    Load

    51/54

  • How to use semiconductor devices?

    http://www.radartutorial.eu/21.semiconductors/hl19.en.html

    How to amplify signal ?⇒Use transistor.

    52/54

  • How to use semiconductor devices?How to make logic circuit ?⇒Use CMOS. Complimentary Metal-Oxide-SemiconductorField Effect Transistor

    http://www.piclist.com/images/www/hobby_elec/e_ckt30_6.htm53/54

  • Questions? Comments? Requests?

    Next class : October 22, 2018

    54/54

    スライド番号 1スライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14スライド番号 15スライド番号 16スライド番号 17スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22スライド番号 23スライド番号 24スライド番号 25スライド番号 26スライド番号 27スライド番号 28スライド番号 29スライド番号 30スライド番号 31スライド番号 32スライド番号 33スライド番号 34スライド番号 35スライド番号 36スライド番号 37スライド番号 38スライド番号 39スライド番号 40スライド番号 41スライド番号 42スライド番号 43スライド番号 44スライド番号 45スライド番号 46スライド番号 47スライド番号 48スライド番号 49スライド番号 50スライド番号 51スライド番号 52スライド番号 53スライド番号 54