index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization...

12
503 Metal-Organic Frameworks: Applications in Separations and Catalysis, First Edition. Edited by Hermenegildo García and Sergio Navalón. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. Symbols o‐aminobenzaldehyde 393 1,4‐benzenedicarboxylic acid (BDCA) 67, 103 4,4ʹ‐bipyridine‐hexafluorosilicate‐ copper(II) (Cu‐BPY‐HFS) 225 4‐tert‐butylbenzaldehyde 384 tert‐butylcarbamate‐functionalised 4ʹ‐biphenyldicarboxylate (bpdc‐NHBoc) 4, 32 2‐chloroethyl ethyl sulfide (CEES) 211 2,5 dihydroxytere‐phathalic acid (DOBDC) 125 4‐nitrobenzaldehyde 385 2D‐polymer bidimensional networks 82 bottom‐up methodologies LB method at water/air interface 92 liquid/liquid interfacial synthesis 100 merits 92 on‐surface synthesis 92 catalysis 113 catalytic activity 113 chemical vapor deposition 115 compositional characterization rotation electron diffraction (RED) 92 X‐ray diffraction (XRD) 91 X‐ray photoelectron spectroscopy 88 conductive properties 112 criteria 81 direct colloidal formation 104 for electronic devices 112 for gas separation 111 vs. graphene 115 membrane thickness and pore size 111 morphological characterization AFM 87–88 scanning electron microscope 85 simulated STM 86 transmission electron microscopies 84 UHV‐STM 85 as prototype devices 116 surfactant mediated synthesis 104 top‐down methodologies delamination processes 105 inorganic materials 105 liquid phase exfoliation (LPE) 106 micromechanical exfoliation 110 α‐Pinene oxide isomerisation 391 4‐tertbutylcyclohexanone (TBCH) 367 1,3,5,7‐tetramethyl‐4,4‐difluoro‐8‐ bromomethyl‐4‐bora‐3a,4a‐ diaza‐s‐indacene (BODIPY) 45 4,4,4s‐triazine‐2,4,6‐triyl‐tribenzoate (TATB) 5 [Zn 4 O(BDC) 3 ] 67 a Al‐based MOFs MOF‐519 and MOF‐520 186 soc topology 186 Index

Upload: others

Post on 18-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

503

Metal-Organic Frameworks: Applications in Separations and Catalysis, First Edition. Edited by Hermenegildo García and Sergio Navalón.© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.

Symbolso‐aminobenzaldehyde 3931,4‐benzenedicarboxylic acid

(BDCA) 67, 1034,4ʹ‐bipyridine‐hexafluorosilicate‐

copper(II) (Cu‐BPY‐HFS) 2254‐tert‐butylbenzaldehyde 384tert‐butylcarbamate‐functionalised

4ʹ‐biphenyldicarboxylate (bpdc‐NHBoc) 4, 32

2‐chloroethyl ethyl sulfide (CEES) 2112,5 dihydroxytere‐phathalic acid

(DOBDC) 1254‐nitrobenzaldehyde 3852D‐polymer

bidimensional networks 82bottom‐up methodologies

LB method at water/air interface 92

liquid/liquid interfacial synthesis 100

merits 92on‐surface synthesis 92

catalysis 113catalytic activity 113chemical vapor deposition 115compositional characterization

rotation electron diffraction (RED) 92

X‐ray diffraction (XRD) 91X‐ray photoelectron

spectroscopy 88conductive properties 112

criteria 81direct colloidal formation 104for electronic devices 112for gas separation 111vs. graphene 115membrane thickness and pore size 111morphological characterization

AFM 87–88scanning electron microscope 85simulated STM 86transmission electron

microscopies 84UHV‐STM 85

as prototype devices 116surfactant mediated synthesis 104top‐down methodologies

delamination processes 105inorganic materials 105liquid phase exfoliation (LPE) 106micromechanical exfoliation 110

α‐Pinene oxide isomerisation 3914‐tertbutylcyclohexanone (TBCH) 3671,3,5,7‐tetramethyl‐4,4‐difluoro‐8‐

bromomethyl‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) 45

4,4′,4″‐s‐triazine‐2,4,6‐triyl‐tribenzoate (TATB) 5

[Zn4O(BDC)3] 67

aAl‐based MOFs

MOF‐519 and MOF‐520 186soc topology 186

Index

bindex.indd 503 2/5/2018 2:32:31 PM

Page 2: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index504

academia 58acetaldehyde 393activated carbons (AC)‐MOF

composites 255adsorbed natural gas (ANG) 164advantages of MOF 57atomic force microscopy (AFM) 344,

355atomic layer deposition 401azolate‐based MOF 9

bbenzenecarboxylic acid 43benzenedipyrazolate (BDP) Fe(III)

MOF 11benzene‐1,3,5‐tribenzoate

(BTB) 138bidimensional networks for MOFs 82biocatalysis

esterification and transesterification 463

heterogeneous catalysts 447hydrolysis 464–465immobilization 469immobilization and

applications 460industrial biocatalysts 447oxidation 466–467warfarin synthesis 468

biomimetic catalystsCu‐hemin 449metalloporphyrins 449organic ligand and metal precursors,

and catalytic reaction 450phosphotriesterase (PTE) 452polyvinyl pyrrolidone (PVP) 449post‐synthetic modification

processes 454UiO‐66 methanolyzes 452

biosensors 44bis‐BINOL ligands 387bottle‐around‐shipBAS approach 304breathing effect 18Brønsted acid/base catalysts 39Brunauer‐Emmet‐Teller (BET) 359bulk modulus 18

ccapillary‐force‐driven destruction 17capillary‐force‐inert MOFs 18carbon capture and sequestration

(CCS) 123carbon capture and storage (CCS) 281carbon ink electrode (CIE) 468carbon nanotubes (CNTs)

fabrication 254MOF‐CNTcomposites

applications 252–253functionality 252–253MOFs incorporation on CNT

surface 254synthesis methods 252, 253

structure 252carboxylic acid derivatives 385catalysis with MOF

host matrices 41metal active sites

hydrogenation reactions 39hydroxyl groups to alkoxides

conversion 39node‐based linker 38on organic ligands 37photocatalytic activity 37

pre‐synthetic functionalization 307with reactive, organic functional

groups 39catalysts

esterification reaction 276heterogeneous 276hydrogenation reaction 276oxidation reaction 274photocatalysis 275research studies 277

cetyltrimethylammonium bromide (CTAB) 104

chemical stabilitycation‐ligand interaction 19competing agent 3coordination bond 4effect of water 3inert gas sorption isotherms 3modulators 19under noninert conditions 2

bindex.indd 504 2/5/2018 2:32:31 PM

Page 3: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index 505

pH 3powder X‐ray diffraction (PXRD)

patterns 3preformed inorganic building

units 19sub‐factors 3water stability 2, 4

chemical vapor deposition (CVD) 266, 401

chemical warfare agent (CWA) 201adsorptive property, MOF

to Calgon BPL activated carbon 202

colorimetric sensor properties 203

computational studies 204humidity 203–204MPA adsorption 203pore structure and function 201,

205[Zn2Ca(BTC)2(H2O)2]

(DMF)2 203catalytic property, MOF

hydrolysis, nerve agents and their simulants 206

multiactive catalysts for CWAs degradation 212

oxidation of sulfur mustard and its analogs 211

chlorine gas 199MOF materials

aluminum MOF particulate materials 214

Cu‐BTC particles 214halochromic NU‐100‐CF 215MOF–nanofiber textile

composites 215plug‐flow reactor 216UiO‐66@LiOtBu 214–215UiO‐66‐NH2 coated

electrodes 216nerve agents

acethylcolinesterase activity 199, 201

structure 199–200physico‐chemical parameters 200

toxicity levels 199–200CNT 252COK‐69 18composites

applications 252catalysts

esterification reaction 276heterogeneous catalyst 276hydrogenation reaction 276oxidation reaction 274photocatalysis 275research studies 277

for CO2 capture and separation 281

features 286as gas adsorbent 282H2 storage 281for liquid separation

applications 285MOFs‐carbon composites

carbon nanotubes (CNTs) 252MOFs‐activated carbons

composites 255MOFs‐graphite oxides

composites 255MOFs‐metal nanoparticle

composites 262MOFs‐metal oxide

composites 266MOFs‐silica composites 272MOFs‐thin films

ceramic foams support treatment 259–260

MOF‐101@Al2O3 composites preparation 259, 261

supersonic cold spray technique 259

ZIF‐8 crystals 259, 261synthesis 251toxic gases adsorption 285types 251

compressed natural gas (CNG) 164confocal fluorescence microscopy

(CFM) 356contact mode, AFM 87continuous flow process 70

bindex.indd 505 2/5/2018 2:32:31 PM

Page 4: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index506

coordination bondbulky and/or hydrophobic groups,

shielding MOFs with 12cation‐ligand interaction 4high valence cations and carboxylate

based ligands 4high valence cations and highly

complexing ligands 11hydrophobic matrices, coating MOFs

with 13low valence cations and highly

complexing ligands 9coordination networks,

advantages 57coordinatively unsaturated metal

centers (CUSs) 341coordinatively unsaturated metal sites

(CUS’s) 313CO2 adsorbents 34CO2 sorbents

amine graftingalkanolamine compounds 132diamines 1361,5‐dioxido‐2,6‐

naphthalenedicarboxylic acid (dondc) 132, 135

functionalization strategy 132–133

limitation 136MIL‐101 136routes for 132TEPA loadings 136

cordierite monolith supports 144features 150graphene oxides‐MOF

composites 143interaction strength 124ionic liquids‐MOF composites 139open metal sites

affinity toward CO2 125bonding geometry 125drawback 132HKUST‐1 128H4PTCA 131M‐DOBDC 125MIL‐101 130MOFs 126

molecular simulation accuracy 128

as stabilizing agent 125ZIF‐202 131

organic ligands effects 138performance criteria 124pKa value 150solid material composites 144surface area and pore volumes 124water stability

characteristics 144hydrophobic organic ligands 147MOFs with open metal sites 146

working capacity 124covalent attachment

catalytic applications 316separation

carbon dioxide capture 315nitrogen compounds removal 316U(VI) ions removal 316

technique 313covalent organic frameworks (COFs) 116covalent post‐synthetic

modification 31cross‐linked ligands

crystalline MOFs to polymer gels 49enantiopure 48IRMOF‐1 47microcrystalline porous network 47MOF scaffold 48Sada group 49

crystallinity of MOF 82Crystal Violet (CV) 44Cu‐BTC MOF 203

ddefective linkers (DLs) 355defects

aromatic carboxylic acid linker incorporation strategy 348, 350

catalysis, role ofexternal surface linker

vacancy 363inherent linker vacancy 366intentional implanted defects 367

defect dimensions 343definition 342

bindex.indd 506 2/5/2018 2:32:31 PM

Page 5: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index 507

de novo synthesis 347distribution, size and state 343experimental methods

assess presence of defects 352, 354chemical and physical

environment 357imaging defects 355isolated local and correlated

defects 358inherent defects

inherent internal defect 344post‐crystallization cleavage 345

intentionally implanted defects, by defect engineering 346

location 343non‐aromatic carboxylic acid linker

incorporation strategy 351post‐synthetic treatment 351–352theoretical methods 359, 361

delamination processes 105deliverable capacity 165de novo approach 458dicopper paddlewheel‐based MOFs

NbO‐type MOFs 172Rht‐type MOFs 177tbo‐type MOFs 172

Diels‐Alder cycloaddition 384Diethyl zinc (ZnEt2) 380Diffusion 470dimethyl 4‐nitrophenyl phosphate (DMNP,

methyl paraoxon) 207, 209drug delivery materials 44DUT‐49 18dynamic mode, AFM 87

eelectrochemical biosensors 468electrochemical synthesis 69enzyme immobilization

enzymes diffusion 456in‐situ encapsulation/

entrapment 457surface immobilization 455–456

ethoxysuccinato‐cisplatin (ESCP) 45ethylenediaminetetraacetic acid

(EDTA) 492extrusion 74

fFe2(BDP)3 11flexible MOFs 190force modulation microscopy

(FMM) 355Fourier Transform Infra‐Red

(FTIR) 355Friedel–Crafts acylation 383Friedel–Crafts alkylation 369Friedländer reaction 392–394functionalized metal organic

frameworksamine groups 301carbon dioxide capture 300catalysis

design parameters 300categories 298chemical stability 303covalent attachment/type 2 method

catalytic applications 316separations applications 314technique 313

in‐situ reaction/Type‐3 methodcatalytic applications 321separations applications 319technique 318

issues 326ligand replacement/Type‐4 321limitation 302metal addition/Type‐5 method

catalytic applications 325separations applications 325technique 322

pharmaceuticals and pharmaceutical waste 301

physical impregnation/type 1 methodcatalytic applications 312separations applications 310technique 309

post synthetic modification (PSM) 298

pre‐synthetic functionalization 297catalytic applications 307separations applications 304technique 303

separationsdesign parameters 299

bindex.indd 507 2/5/2018 2:32:31 PM

Page 6: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index508

ggas infiltration method 266global warming 123grafting method 314graphene 81graphene oxides (GO)‐MOF composite

characteristics 143Henry’s constant 144merits 143

graphite oxides (GOs) composites 255

Grinard reaction 308G‐type nerve agents 199

hHeck reactions 430Henry’s coefficient (HCs) 205heterogeneous catalysis 37, 299HKUST‐1 32, 46, 67

continuous flow process 72CWA monitoring 206electrochemical synthesis 69HKUST‐1/silica composites 273methane uptake 171with open metal cluster 128scale‐up reaction 69

HKUTS‐1gas separation 225

homogeneous catalysis 37hydrogen storage 35hydroxy esters 387

iImmediately Dangerous to Life or

Health (IDLH) 200impregnation 263impregnation methods

gas phase impregnation 401solid phase impregnation 401

impregnation, physicalcatalytic applications 312separations applications 310technique 309

incipient wetness impregnation 309incipient wetness method 263industrial patents 64inherent defects

inherent surface defect 344inorganic post‐synthetic

modification 32, 34in situ encapsulation 470in‐situ reaction

catalytic applications 321separations applications 319technique 318

internal porosity 18intramolecular carbonyl‐ene

reaction 392ionic liquids‐MOF composite

bmimBF4@HKUST‐1 composite 140

bmimPF6@ZIF‐8 composites 141characterization 140designing factors into

consideration 141features 140preparation 140selectivity 141use of ionic liquids 139

IRMOF‐1 system 47IRMOF‐1 ([Zn4O(bdc)3] bdc = 4‐

benzenedicarboxylate), 1, 203isostructural mixed linkers

(IML) 347isostructural MOFs 125

kketalization reactions 390Knoevenagel condensation 308, 388,

394Kubas‐type interaction 36

llabile ligands 34Langmuir–Blodgett (LB) method

extended films, MOF 92and layer‐by‐layer (LBL)

methodologies 100monolayer, dense coordination

polymer 93π‐conjugated framework with

reversible redox behavior 96THTNi 2DSP 96transmetalation 96

bindex.indd 508 2/5/2018 2:32:31 PM

Page 7: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index 509

lateral dimensions 81Lewis adduct 9Lewis type adsorption 367ligand replacement 321liquefied natural gas (LNG) 164liquid/liquid interfacial synthesis 100liquid phase exfoliation (LPE)

exfoliation 108by sonication 107

mMAF‐38 189Materials of Institute Lavoisier (MIL)

compounds 5chain‐based MIL‐53 5Cr(III) 7linker 5MIL‐100 5MIL‐163 12rare earth trivalent cations 7trivalent cations 5

mechanical stability 17mechanochemical synthesis 72membrane‐aided gas separation

systemsapplications 223characteristics, MOFs 224inorganic membrane materials 223membranes

mixed matrix membranes (MMM) 226

modelling of gas permeation 244thin‐film MOF membranes 232

molecules interaction with membrane material 224

polymeric membranes 223size‐sieving mechanism 224

metal additioncatalytic applications 325separations applications 325technique 322

metal centers 297metalloporphyrins 449metal nanoparticles (MNPs) based

MOFs compositesapproaches 262classification 262

drawbacks 262gas infiltration method 266MOF structure 263physiochemical properties 262solid grinding method 266solution infiltration method 263synthesis 262synthesis method 264template assisted synthesis

method 266metal/node replacement 322metal‐organic frameworks (MOFs)

acetals, ethers 389–390alcohols

alcoholysis of epoxides 382aliphatic and cycloaliphatic

epoxides 382chiral unsaturated alcohols 380diethyl zinc (ZnEt2) 380Grignard reagent to

dienophiles 381Henry addition 382vicinal alcohol derivatives 381

biocatalysis 447carbonyl and hydroxy carbonyl

compoundsaldehydes 384aldehydes and ketones 383Diels‐Alder cycloaddition 384Friedel‐Crafts acylation 383hydroxy aldehydes and

ketones 383l‐proline 385thermo labile protecting

groups 385carboxylic acid derivatives 385Friedländer reaction 392–394Knoevenagel condensation 394liquid phase reactions 395nanoparticles 399terpenoids 390, 392

metal‐organic frameworks (MOFs) defects

definition 342experimental methods

isolated local and correlated defects 360

bindex.indd 509 2/5/2018 2:32:31 PM

Page 8: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index510

metal oxides nanoparticles (MONPs)classification 267facile pyrolysis 272hydrothermal method 270–271impregnation/infiltration

methods 267one‐step synthesis method 270solvothermal treatment 271synthesis approach 267synthesis method 267, 268template‐assisted in‐situ synthesis

method 271two steps CVD process 270

methane adsorbentsAl‐based MOFs 186dicopper paddlewheel‐based MOFs

NbO‐type MOFs 172Rht‐type MOFs 177tbo‐type MOFs 172

flexible MOFs 190gas adsorption/binding sites 194hydrostability 194MAF series 189methane adsorption property

adsorption heat 170ligand functionalization 171open metal sites 170pore size 170surface area 169

MOF materials 167, 192–193requirements

adsorbing species 166gas transport rate 167methane deliverable capacity 165production costs 167stability 166, 194thermal management 166, 194working capacity, volumetric

methane 193storage capacity 192storage target 165Zn4O‐cluster based MOFs 180Zr‐based MOFs 182

methyl isobutyl ketone (MIBK) 433methylphosphonic acid (MPA) 203micromechanical exfoliation 110M(II)‐bistrizolate MOF 11

MIL‐53 35MIL‐88B(Fe)‐(CF3)2 12MIL‐91(Ti) 11MIL‐101 34

amine incorporation 136with open metal cluster 130

MIL‐101(Cr) 36, 41drug delivery 44mercury absorbing ability 42nanoparticles 42sulfation 43zwitterionic 40

MIL‐163 12mixed matrix membranes (MMM)

CO2/CH4 selectivity vs. CO2 permeability 227

cross‐section of 226filler loading 231–232fillers 226materials 226modelling the gas permeation 244MOF/polymer 232

mixture selectivity values 234single gas selectivity 233

permeability of O2 H2 and CO2, 230permeance and selectivity 231preparation 226Robeson plots for CO2/CH4 and H2/

N2 229ZIF‐8/6FDA‐durene membrane 228

modulators 4MOF‐808 8, 40

CWAs degradation 211sulfation 43

MOFs, properties 482–483molecular baskets 309molecular sieving 300monolayer 2D‐material 82Monte Carlo simulations 362Mukaiyama aldol reaction 388multilayer N1 100

nnanolayers, MOF 103–104nanoMOFs 46nanoparticles (NPs) 41

assembly methods

bindex.indd 510 2/5/2018 2:32:31 PM

Page 9: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index 511

bottle‐around‐the‐ship approach 404

“ship‐in‐a‐bottle” assembly method 402

C–C cross coupling reactions 430dehydrogenation reactions

H2‐release reactions 425metal organic chemical vapour

deposition method (MOCVD) 425

rhodium(I) precatalysts 425trimetallic synergistic effect 425

gas and liquid phase oxidation catalysis

alcohols 407Au‐Pd/C catalyst 411catalytic cycle and poisoning

mechanism 407CO oxidation activities 405synthetic conditions and catalytic

activities 406, 408hydrogenation reactions

acetophenone 4161,4‐butynediol to 4‐butenediol 1,

421cinnamaldehyde, 4‐butynediol and

phenol 1, 422cyclohexene 420cyclohexene and benzene 420electron‐donating groups 424industrial applications 411nitrobenzene 412nitrobenzene and carbonyl

compounds 416olefins 417phenol 424synthetic conditions and catalytic

activities 413impregnation methods

gas phase impregnation 401solid phase impregnation 401

tandem reactions 433nanosheets, CP 104natural gas

advantages 163ANG 164challenge 163

CNG 164LNG 164

NENU‐11 206nickel oxo‐pyrazolate (Ni(DP)) bis‐

pyrazolate MOF 9N‐rich azole derivatives 9

oone‐pot reaction methodology 67on‐surface synthesis 92open‐close double door system 316Organisation for theProhibition of

Chemical Weapons (OPCW) 199

ppatents 58PCN‐222/MOF‐545 211–214PCN‐601 10phosgene 203phosphonate monoester based

MOF 13phosphotriesterase (PTE) 452phosphotriesterase enzymes

(PTE) 206photocatalysis 313

inorganic semiconductors 477molecular photocatalysts and

inorganic semiconducting materials 478

oxidation and Au NPs 480photocatalytic CO2 reduction 493photocatalytic H2 evolution

ethylenediaminetetraacetic acid (EDTA) 492

porphyrins 492renewable transportation

fuels 490role of platinum 490UiO‐66 491UiO‐66 structure 491

photooxidation reactions 496photophysical pathways

chemical energy 489d0 and d10 transition metal

ions 485electron delocalization 487

bindex.indd 511 2/5/2018 2:32:31 PM

Page 10: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index512

photocatalysis (Contd.)ligand centered absorption

bands 483MV·+ radical cation 489n‐type semiconductors 487optical absorption spectrum 483π–π* electronic transitions 485quenching experiments 487terephtalate 485terephtalate‐Zn2+ pairs 485UiO‐66(Zr) 488Wurster’s NTP·+ radical

cation 489Zr6O6(OH)6 clusters 488

plasmon absorption band 480pollutant degradation 496TiO2 photoelectrodes 477zeolites and crystalline porous

solids 481photocatalytic reductions 37photolytic cleavage 32physical impregnation 309pollutant degradation 496polymeric binders, embedding particles

in 19polyoxometalates (POMs) 311polyvinyl pyrrolidone (PVP) 449porous coordination polymers

(PCPs) 1, 164, 448porous MOFs 165

CWA 201post‐crystallization cleavage 345post‐synthetic deprotection (PSD)

reactions 32post‐synthetic exchange (PSE) 32post‐synthetic modification

(PSM) 29anion sequestration 43carbon dioxide capture and

separation 34catalysis

host matrices 41metal active sites 37with reactive, organic functional

groups 39covalent attachment 313cross‐linked ligands

modified nature of cross‐linked MOFs 49

post‐synthetic 47pre‐synthetic 47

crystallinity of MOF 29frameworks, MOF 29hydrogen storage capacity 35in‐situ reaction 318ligand replacement 321metal addition 322metal ion sequestration 42nanoMOFs 46organic molecules removal from

solution 43physical impregnation 309reactions

classes 30covalent modification 31extent of 33linker ligands, substitution of 32metal centres, exchange of 33secondary building unit (SBU) 32

therapeutic MOFs and biosensors 44

powder X‐ray diffraction (PXRD) 3powder XRD (PXRD) patterns 354pre‐synthetic functionalization 298

catalysisGrinard reaction 308Knoevenagel condensation 308mercury removal from flue gas 308solid base catalysts 307UiO‐66 307

separationbiphenyl benzene dicarboxylic acid

ligands 306C3 functional groups, use of 305photoresponsive SURMOF 307UiO‐66 304

technique 303pyrene‐1,3,6,8‐tetracarboxylic acid

(H4PTCA) 131

rrobustness 1room temperature ionic liquids

(RTILs) 139

bindex.indd 512 2/5/2018 2:32:31 PM

Page 11: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index 513

sSada group 49Safranin T (ST) 43SALEM 321scale‐up MOF 64Schottky or Frenkel defects 343Scotch tape method 105secondary building unit (SBU) 32self‐limited deposition technique 402sequestration

anion 43metal ion 42organic molecules removal 43

shear modulus 18ship‐in‐bottle method 304, 310, 318silica composites 272solid acid catalysts 307solid grinding method 266solution infiltration method 263solvent‐assisted ligand incorporation

(SALI). 13, 32solvent‐assisted linker exchange

(SALE) 32solvent‐free method 401Sonogashira coupling reactions 430space‐time yield (STY) 65, 73stability

applications 2chemical stability 2definition 1mechanical stability 17thermal stability 14thermal vs. chemical stability 2

sulfur mustard (HD) 211supercritical CO2 activation 17surface immobilization 455–456, 470Suzuki–Miyaura reaction 430synthesis of MOF/CP

continuous flow process 70drying process 66efficiency 74electrochemical synthesis 69extrusion 74HKUST‐1 67limitation 64mechanochemical synthesis 72microwave‐assisted synthesis 67

one‐pot reaction methodology 67organic linker 65pre‐requisites 65reaction parameters 64scale‐up reactions 68schematic representation 66solvents 66space‐time yield (STY) 65, 73scale‐up reactions 69starting reagents 65[Zn4O(BDC)3] 67

ttag 31template assisted synthesis

method 266terpenoids 390, 392therapeutic MOF 44thermal stability

definition 14factors 15industrial procedures 14metal ion, nature of , 15MOF structure 17organic linker, nature of 16–17techniques for 14during thermal treatment

process 14thermogravimetric analysis (TGA) 352thin‐film MOF membranes

for CO2 separation 241for hydrogen separation 237preparation 232for propylene separation 240–242requirement 235Robeson plot for CO2/CH4 and H2/N2

gas couples 243stability 242

thin films‐MOFs compositesceramic foams support

treatment 259–260MOF‐101@Al2O3 composites

preparation 259, 261supersonic cold spray technique 261ZIF‐8 crystals 259, 261

thiol‐modified MOF 43THTNi 2DSP 100

bindex.indd 513 2/5/2018 2:32:31 PM

Page 12: Index [application.wiley-vch.de] · heterogeneous catalysts 447 hydrolysis 464–465 immobilization 469 immobilization and applications 460 industrial biocatalysts 447 oxidation 466–467

Index514

transmetalation 96, 322, 324triethanolamine (TEOA) 37truncated mixed linker (TML)

approach 348

uUHV‐STM 85UiO‐66 7–8, 18, 34–35

CEES degradation 212DMNP hydrolysis 207pre‐synthetic functionalization 307

UiO‐66‐(CF3)2 12UiO‐67 207Ullman and Suzuki–Miyaura

couplings 38ultrahigh vacuum [UHV] infrared

spectroscopy (UHV‐FTIR) 358

vvariable temperature PXRD (VT‐PXRD)

experiments 14V‐type nerve agents 199

wwater stability

characteristics of MOF 144functionalization of MOFs

structures 149hydrophobic organic ligand 147MOFs with open metal sites

metals clusters 146solvent removal 147UiO series using Zr‐based metal

clusters 147valence state 146

working capacity 124

xX‐ray diffraction (PXRD)

patterns 354

yYoung’s modulus and Poisson’s

ratio 18

zzeolitic imidazolate frameworks (ZIFs)

gas separation 225ZIF‐8 9

CO2 capacity 149drug delivery material 46ZIF‐8/silica composites 273

Zn4O‐cluster based MOFs 180Zr‐based MOFs

advantages 182CWAs degradation 209–211fcu, ftw, scu and csq topology based

MOFs 183ftw topology based MOFs 183pbz‐MOF‐1 183, 185

bindex.indd 514 2/5/2018 2:32:32 PM