increasing market credibility through continuous...

24
INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS VULNER- ABILITY REDUCTION

Upload: others

Post on 26-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

                     

INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS VULNER-ABILITY REDUCTION  

Page 2: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 2

SUMMARY  Green  corridor  concept   is  a  European  Commission  initiative  which  is  aimed  at  enhancing  the  competitiveness  and  sustainability   of   logistics   industries.   It   is   anticipated   to   promote   smooth   inter-­‐modal   large-­‐scale   and   long-­‐term  transport   solutions   through  attractive   and  high  performing   infrastructure  with   supportive   regulatory   framework.  Among  the  motivating  reasons  for  developing  green  corridors  are:    

• Facilitating   collaboration   between   countries,   society,   industry,   transport   administrators,   and   logistics  stakeholders,  

• Environmental  concerns,  such  as  emissions,  noise,  etc.,    • Competitiveness  of  the  manufacturing  industry,    • Better  use  of  money  spent  on  infrastructure  management,    • Manage  expected  increasing  freight  traffic  across  Europe  and  globally.    

In  supporting  the  green  corridor  concept,  EU  encourage  through  projects  to  speed  up  the  shift  towards  greener  and  more  efficient  transport  logistic  solutions.  Bothnian  Green  Logistics  Corridor  is  one  of  the  projects  with  the  objective  to  increase  the  integration  between  the  northern  Scandinavia  and  Barents  region,  with  its  vast  natural  resources  and  increasing   industrial   production,   with   the   industrial   chain   and   end  markets   in   the   Baltic   Sea   Region   and   central  Europe.   An   approach   deployed   in   the   project   is   the   implementation   of   green   corridor   concept   through   improved  planning,  use  and  utilization  of  the  infrastructure  in  the  Bothnian  Corridor.    METHODOLOGY The  approach  mentioned  above  includes  increase  of  market  credibility  through  continuous  vulnerability  reduction.  The   study   contained   in   this   report   investigates   the   vulnerability   of   railway   infrastructure   to   failure   and   also  methodology   for   continuous   improvement   of   infrastructure   performance   and   service   quality   through   effective  maintenance  management.  A  link  and  effect  concept  for  measuring  and  managing  physical  asset  against  agreed  and  set   objectives   is   explained   in   the   report.   Furthermore,   an   adapted   risk   assessment   technique  using   risk  matrix   is  demonstrated   in   a   case   study   to   enhance   maintenance   decision   and   actions   towards   increasing   operational  reliability  and  availability  of  railway  network,  and  thereby  supporting  a  credible  market  required  for  a  green  logistic  corridor.  Bottlenecks  regarding  railway  zones  and  systems  have  been  identified  for  root  cause  analysis.    This  report  pertains  to  activity  (A)  3.5,  ”Increasing  market  credibility  through  continuous  vulnerability  reduction”,  which   is   a   part   of   work   package   (WP)   3,   of   ”Green   corridors”.   Involved   partners   in   A3.5   are:   Luleå   Railway  Research  Center   (JVTC)   at   Luleå   University   of   Technology   (LTU)   and   Trafikverket   (the   Swedish   Transport  Administration;  TRV).    FINDINGS A   link   and   effect   model   utilizing   reliability   centermaintenance   (RCM)   has   been   developed   for   a   track   section   of  railway  infrastructure.  A  case  study  has  been  carried  out  to  demonstrate  the  model  for  continuous  improvement  of  railway  infrastructure  to  meet  the  requirements  of  the  anticipated  green  logistic  corridor.  This  approach  has  shown  track  bottlenecks  on  the  line  section  under  consideration.    For   further   analysis   relevant   to   the   interest   of   the   Bothnian   green   logistic   corridor   project,   the   model   and   the  statistics  of  the  delay  indicator  presented  can  be  used  as  input  into  traffic  management  or  capacity  optimisation  tool  (Section   3.2.3).   Similar,   data   collection   and   analysis  with   application   of   the  model   can   be   applied   for   other   track  sections  of  BGLC  and  Railway  sectors.    Railsys  simulation  has  been  carried  out  but  needs  further  adjustments  for  working  satisfactory  in  this  kind  of  set-­‐up,  i.e.  with  regard  to  run-­‐time  delays,  entry  delays  and  dwell  times  (Section  5.3).  However,  according  to  the  collected  data,   2536   trains   were   delayed   in   3257   days.   That   gives   0.78   trains/day,   or   2.4  %   of   the   trains   if   there   are   32  trains/day.  The  median  delay  is  19  min,  but  84  trains  were  delayed  more  than  10  hours  each.  It  must  also  be  taken  into  consideration  that  the  capacity  consumption  has  not  been  very  high.  Moreover,  studies  shows  that  the  railway  

Page 3: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 3

infrastructure   is   responsible   for   20-­‐30  %   of   the   train   delay,   i.e.   the   train   delays   are   larger   than   the   figures   just  given  above.    Performance   measurement   of   operation   and   maintenance   is   important   for   punctual   trains,   but   it   is   equally  important   for   safety  and   cost  of  planning.  For  example,   to   reduce   costs  of  planning,   contracting  and  performance  measurement  is  one  of  the  main  goals  of  Trafikverket.  This  can  be  achieved  with  better  and  automatically  updated  indicators.    FURTHER ACTIONS It   is  well   known   that  maintenance   of   railways   is   a  major   cost   contributor,   but   studies   on   potential   savings   from  preventive  maintenance   are   lacking.   Thus,   it   is   not   possible   to   estimate   saving   in   this   study   at   present.   Study   of  present   preventive   and   corrective  maintenance   in   the  European   railways   for   return   on   investment   is   therefore   a  crucial  part   for  all  research  related  to   investments   in  operation  and  maintenance,   like  performance  measurement,  condition  monitoring  and  reengineering  of  components.    Performance  measurement  and  monitoring  of  railways  is  essential  for  safety,  efficient  and  effective  maintenance  and  costs.  Infrastructure  managers  use  performance  indicators  in  their  strategic,  tactical  and  daily  work,  but  often  in  an  ad  hoc  manner.  Therefore,  performance  indicators  and  need  to  be  mapped,  standardised  and  harmonised.  Similarly,  methods   and   tools,   like   link   &   effect   model   and   RCM   (reliability   center   maintenance)   need   to   be   developed   for  railways.  Specifically,  further  actions  for  increasing  life  cycle  cost,  safety  and  punctuality  of  trains  are:  

• Detailed mapping of performance indicators of railways for standardised, harmonisation, safety management and benchmarking

• Development of composite indicators (indices) to reduce the numerous indicators that make planning of operation and maintenance in railways time and resource consuming

• Development of RAMS and LCC decision support models, for vulnerability reduction in a cost effective way. • Application of RCM methodologies such as three dimensional risk matrix for continuous improvement • Analysis of preventive and corrective maintenance cost balance for return on investment (ROI) and LCC (life

cycle cost) calculations

                       

 

Page 4: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 4

CONTENT CHAPTER  1  INTRODUCTION  ......................................................................................................................................................................................  5  1.1  BACKGROUND  .......................................................................................................................................................................................................  5  

 

CHAPTER  2  METHODOLOGY  ......................................................................................................................................................................................  7  2.1  THE  LINK  AND  EFFECT  MODEL  ....................................................................................................................................................................  7  2.2  RELIABILITY  CENTERD  MAINTENANCE  APPROACH  .........................................................................................................................  9  2.2.1  CRITICALITY  ANALYSIS  .........................................................................................................................................................................  10  2.2.2  RISK  ANALYSIS  (OPERATION  CONSEQUENCE)  ..........................................................................................................................  11  

 

CHAPTER  3  CASE  STUDY  ...........................................................................................................................................................................................  12    

CHAPTER  4  RESULTS  AND  DISCUSSION  ...............................................................................................................................................................  14  4.1  RISK  ASSESSMENT  MATRIX  FOR  TRAFFIC  ZONES  ............................................................................................................................  14  4.2  SYSTEM  RISK  ASSESSMENT  .........................................................................................................................................................................  15  4.3  DATA  FOR  RAILSYS  SIMULATION  ..............................................................................................................................................................  16  

 

CHAPTER  5  RAILSYS  SIMULATION  OF  MALMBANAN  –  MODEL  AND  RESULTS  .......................................................................................  18  5.1  BACKGROUND  .....................................................................................................................................................................................................  18  5.1.1  INFRASTRUCTURE  ...................................................................................................................................................................................  18  5.1.2  TIMETABLE  .................................................................................................................................................................................................  18  5.1.3  TRAIN  DELAY  DATA  ................................................................................................................................................................................  19  5.1.4  DELAY  PARAMETERS  .............................................................................................................................................................................  19  

5.2  METHOD  ................................................................................................................................................................................................................  19  5.3  RESULTS  ................................................................................................................................................................................................................  19  

 

CHAPTER  6  CONCLUSIONS  AND  FURTHER  ACTIONS  .......................................................................................................................................  22  6.1  FURTHER  ACTIONS  ..........................................................................................................................................................................................  22  

 

REFERENCES  ..........................................................................................................................................................................................  23      

Page 5: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 5

CHAPTER 1 INTRODUCTION  The  anticipation  of  increasing  integration  between  the  northern  Scandinavia  and  Barents,  with  the  Baltic  Sea  Region  and  central  Europe  is  the  fundamental  objective  of  Bothnian  Green  Logistics  Corridor  (BGLC).  The  approach  in  the  BGLC  project  is  to  contribute  to  an  optimal  use  of  the  current  infrastructure  by  promoting  smooth  inter-­‐modal  large-­‐scale  and  long-­‐term  transport  solutions,  improved  planning,  use  and  utilisation  of  the  infrastructure  in  the  Bothnian  Corridor  and  implementing  other  practices  of  green  corridor  concept.    The  railway   infrastructure  of   the  Bothnian  Corridor   is  of  high   importance   for   transnational  cargo   flows  within  EU  and  to  the  rest  of  the  world.  Thus  continuous  improvement  of  the  infrastructure  maintenance  is  essential  to  support  high   performance   infrastructure   required   on   a   Green   Logistic   corridor.   This   will   contribute   to   the   credibility   of  railway  transportation.  This  presents  benefits  to  the  operators,  transport  buyers,  society  and  other  stakeholders  in  terms  of  safe,  reliable,  green  and  cost  efficient  transportation.    Credibility  of  railway  transport  is  a  function  of  the  performance  of  railway  infrastructure  management.  The  growing  demand  for  capacity,  safety,  cost  effectiveness  and  other  service  quality  of  railway  transport  requires  improvement  of   infrastructure  management  responsibilities.  The  maintenance  process   is  a  responsibility  whose  improvement  is  promising  and  achievable  in  short  term  since  capital  expansion  of  the  infrastructure  is  of  very  long  term  processes.  Investigation   into   the   present   state   of   infrastructure  management   shows   that   the   capacity   and   credibility   of   the  railway  transport  market  is  influenced  by  the  following:  

• The  frequency  of  traffic  interruption  due  to  infrastructure  failure  • Longer  track  possession  time  due  to  poor  planning  • Reduced  functional  performance  due  to  degraded  state  of  infrastructure  

To  achieve  the  objective  of  a  green  logistic  corridor  with  improved  utilization  of  the  transport  system,  maintenance  decisions  and  actions  must  be  adequately  monitored  and  managed.  This  will   improve   infrastructure  performance,  reliability,  degradation  and  availability.    1.1 BACKGROUND Reducing  railway   infrastructure   failures  will   increase  railway  dependability,   credibility  and  capacity.  Performance  measurement  systems  have  shown  to  increase  the  performance  and  competiveness  of  organisations  through  use  of  more  balanced  indicators,  e.g.  see  (Kaplan  et  al.  1992,  Kaplan  et  al.  1993).  However,   there  are  numerous   issues   in  performance  measurement  and  improvement  initiatives,  such  as  (Bourne  et  al.  2002):  

• Poor  integration  of  objectives  at  the  strategic  level  to  the  operational  level  • Overlooking  strategy,  its  components  and  linkage,  and  instead  implementing  a  data  collecting  system  • Too  large  number  of  indicators,  which  are  lacking  in  definition  and  structure  • Hard  to  get  data  and  to  turn  it  into  information  • Striving  for  perfection  can  undermine  success  • A  highly  developed  information  system  is  called  for  instead  of  using  the  existing  data  • Time,  effort  and  expense  • Resistance  to  change  • State  of  the  art  improvement  methods  are  not  always  used  • Not  considering  both  quantitative  and  qualitative  aspects  • Project  overtaken  by  parental  project  • Different  usage  of  terminology  among  stakeholders  

The  purpose  of  this  study  is  to  develop  a  performance  measurement  system,  by  applying  a  link  and  effect  model,  to  meet   the   objective   of   BGLC   and   some   of   the   above  mentioned   issues   for   railway   infrastructure   (Stenström   et   al.  2013).  Besides  describing   the  methodology,   the   report   contains   a   case   study  on   the  Swedish   Iron  Ore  Line,  more  precisely  on   the  northern  part  of   the   line,  between  Kiruna  city  and  Riksgränsen,   the  border  between  Sweden  and  

Page 6: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 6

Norway.  The  aim  of   the   case   study   is   to   investigate  possibilities  of   increasing   railway   infrastructure   capacity   and  credibility  by  analysis  of  railway  infrastructure  failures.    

 

Page 7: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 7

CHAPTER 2 METHODOLOGY  The   link   and   effect  model   is   a   performance  measurement   system   that   combines   performance  measurement   and  engineering  principles  for  proactive  management  of  physical  assets  (Stenström  et  al.  2013).  This  study  combines  the  link  and  effect  model  with  RCM  (reliability  center  maintenance);  see  Chapter  2.2.      2.1 THE LINK AND EFFECT MODEL The   link   and   effect  model   is   a   performance  measurement   system   that   combines   performance  measurement   and  engineering   principles   for   proactive   management   of   physical   assets.   It  follows   a   top-­‐down   and   bottom-­‐up  methodology,  breaking  down  overall  goals  to  specific  objectives,  followed  by  aggregation  of  indicators  to  a  vital  few.  See  Figure  1.    

 Figure  1:  The  link  and  effect  model  with  a  one  year  cycle  time,  based  on  (a)  a  four  steps  continuous  improvement  process  and  (b)  a  top-­‐down  and  bottom-­‐up  process.  The  numbers  in  (b)  represents  the  steps  in  (a).  Adapted  from  (Stenström et al. 2013).

Terminology  of  Figure  1,  for  a  common  language  of  strategic  planning,  is  described  as  (Stenström  2012):    

Vision statement

A statement of what an organisation hopes to be like and to accomplish in the future (U.S. Dept of Energy 1993).

Mission statement

A statement describing the key functions of an organisation (U.S. Dept of Energy 1993). Note: vision and mission are set on the same hierarchical level, since either can come first, e.g. an authority has a vision, and gives a mission to start a business; the business can develop its own vision later on

Goals A goal is what an individual or organisation is trying to accomplish (Locke et al. 1981). Goals are commonly broad, measurable, aims that support the accomplishment of the mission (Gates 2010).

Objectives Translation of ultimate objectives (goals) to specific measureable objectives (Armstrong 1982), or targets assigned for the activities (CEN 2011), or specific, quantifiable, lower-level targets that indicate accomplishment of a goal (Gates 2010).

Strategy Courses of action that will lead in the direction of achieving objectives (U.S. Dept of Energy 1993).

Act Plan

1. Breakdown of objectives

2. Updating the measurement system

and aligning of indicators to objectives

3. Analysis of data for indicators, performance

killers and drivers

4. Identification of improvements through indicators, ranking and

implementation

DoStudyPIPI

KPI KPI

KPI PI

Mission/Vision

Goals

Objectives

Strategies

KRAs

CSFsPIs PI

KRA = Key result areaCSF = Critical success factor

1.

2. 3.

4.

a) b)

Page 8: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 8

Key result areas (KRAs)

Areas where results are visualised (Boston et al. 1997), e.g. maintenance.

Critical success factors (CSFs)

Are those characteristics, conditions, or variables that when properly managed can have a significant impact on the success of an organisation (Leidecker et al. 1984), e.g. high availability. CSFs can be on several levels, e.g. organisational and departmental.

Performance indicators (PIs)

Parameters (measurable factor) useful for determining the degree to which an organisation has achieved its goals (U.S. Dept of Energy 1993), or numerical or quantitative indicators that show how well each objective is being met (Pritchard et al. 1990).

Key performance indicators (KPIs)

The actual indicators used to quantitatively assess performance against the CSFs (Sinclair et al. 1995). A KPI is a PI of special importance comprising an individual or aggregated measure.

 Data  overload,  failing  in  turning  data  into  information  and  lacking  in  defining  performance  indicators,  are  common  deficiencies  in  organisations  performance  measurement.  It  is  therefore  essential  to  define  and  organize  the  PIs  and  related  databases.  See  high  level  requirements  (HLRs)  for  indicators  and  databases  in  Figure  2:    

 

   

Figure 2: High level requirements (HLRs) of indicators and databases.

Railway   infrastructure   is  a  complex  system  consisting  of  many  electrical  and  mechanical  systems   integrated,   thus,  there   are  hundreds  of   parameters   and  PIs   to  monitor.  Therefore,   aggregation   is   needed  as  management   can  only  monitor  a  limited  number  of  indicators.  Aggregated  PIs,  indices  or  composite  indicators,  can  present  a  complex  asset  or  feature  in  a  single  figure.  Nevertheless,  an  aggregated  PI  can  be  abstract  and  an  object  of  subjective  interpretation.  Therefore   it   is   important   to   present   PIs   with   the   underlying   factors,   i.e.   performance   killers   and   drivers,   for  proactive  management.  Thus,  when  a  threshold  is  reached,  it  is  already  known  why  it  has  been  reached,  or  where  to  look  further.  See  Figure  3,  analogous  to  the  stock  market  presentation  of  underlying  information.  

Documentation of databases

Setting up regulations

• Usage of databases and indicators

• Registration of indicator

• Ownership

• Defining databases• Quality of data• Usability

Documentation of indicators (hard and soft aspects)

• Indicators in use• Defining indicators• Indicators for benchmarking• Defining scorecards

Hard aspect = e.g. failuresSoft aspect = e.g. work environment. Quantifiable through questionnaires

Page 9: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 9

 

   

Figure  3:  Illustration  of  the  importance  of  presenting  indicators  with  its  trend  and  underlying  factors.  (a) Traditional performance measurement system with thresholds. (b) Link and effect model complementing with the underlying factors of the indicator.  

 2.2 RELIABILITY CENTER MAINTENANCE APPROACH Reliability   center  maintenance   (RCM)   is   a  method   for   establishing  preventive  maintenance  programmes  which   is  intended   to   result   in   improved  overall   safety,   availability   and  economy  of   operation  of   equipment   and   structures  (IEC  1999).  It  is  a  logical  way  of  identifying  what  system,  subsystem  or  component  in  a  large  facility  is  required  to  be  maintained  on  a  preventive  maintenance  basis  rather  than  on  a  run-­‐to-­‐failure  basis  (Boom  2005).  The  end  result  of  working  through  its  principle  is  underscoring  the  necessity  of  performing  maintenance  tasks  according  to  the  safety,  operational  and  economic  consequences  of  identifiable  failures,  and  the  degradation  mechanisms.    Prerequisite  to  successful  application  of  RCM  is  a  thorough  understanding  of  the  technical  system  and  the  associated  systems,   subsystems  and  components,   together  with   the  possible   failures,  and   the  consequences  of   those   failures.  The  use  of  RCM   is   therefore  dependent  on   the   type  and  size  of   technical   system.   Its   application   requires  detailed  analyses   of   the   product   and   its   functions,   which   can   be   labour   intensive   and   therefore   comparatively   cost  demanding  (IEC  1999).  For  this  reason,  the  principles  of  RCM  have  been  adapted  in  different  ways  to  identify  critical  systems   and   develop   preventive   maintenance   programme   for   them,   so   as   to   drive   towards   the   achievement   of  maintenance   objectives.     An   adapted   RCM   technique   is   relevant   in   continuous   improvement   of   the   railway  infrastructure  maintenance.  The  report  of  RAIL:  Reliability  center  maintenance  approach  for  the  infrastructure  and  logistics   of   railway   operation   (Applying   RCM   in   large   scale   systems)   gives   the   details   on   the   adaptation   and  implementation  of  RCM  in  railway  networks  (Carretero  et  al.  2003).    In  railway  industries,  functional  performance  can  be  described  on  different  indenture  levels.  It  can  be  high  indenture  level,   such   as   network,   lines   and   systems,   or   low   level,   such   as   sections,   zones,   subsystems   and   components     A  credible  market   for   railway   traffic   on   a   corridor   requires   a  maintenance   function  which   adequately   supports   the  inherent  capacity  and  performance  of   the  corridor,   its  routes,   line  sections,   traffic  zones,  systems  and  so  on.  Since  RCM  recognizes  that  the  consequence  of  failure  ought  to  be  the  main  driver  of  maintenance  decisions,  instead  of  the  failure  itself,  thus,  failures  with  critical  consequence  and  high  risk  are  given  attention.  For  development  of  effective  maintenance   programme   to   support   inherent   performance   of   a   railway   network,   Figure   4   shows   the   system  breakdown  structure  of  a  corridor  and  the  relevant  maintenance  analysis  (RCM  related).    

Action at thresholds

Continuous monitoring through underlying factors

• …• …• …

• …• …• …

• …• …• …

a)

b)

e.g. time

e.g. time

Underlying factors

Page 10: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 10

   

Figure  4:  Maintenance  analysis  for  continuous  improvement  of  a  corridor.  

 2.2.1 CRITICALITY ANALYSIS Criticality   is   the  basis   to   link  the  overall  performance  of   the  network  to   the  performance  of   the  various   indenture  levels.   It   is   a  measure   of   the   importance   of   any   unit   from   a   functional   point   of   view.   It   is   also   a  measure   of   the  contribution  of  the  constituent  route  or  line  section  to  the  credibility  of  the  corridor.  A  railway  network  is  a  linear  and  complex  system  with  a  number  of  lines,  line  sections,  many  systems  and  thousands  of  items,  thus  computation  of  criticality  is  recommended  for  high  level  system  such  as  line  and  line  sections.  Table  1  shows  the  criteria  that  can  be  used  for  criticality  analysis  to  identify  bottlenecks  on  a  corridor  or  route.      

Table 1: Criticality study with criteria and their description

Factor   Description   Grade  1   Grade  2   Grade  3   Grade  4   Grade  5  Technology   Model  and  

complexity  of  technology  

Very  simple   Simple   Average   Complex   Very  complex  

Line  class   Socio-­‐strategic  value  

Very  low  value  

Low  value   Average  value  

High  value  

Very  high  value  

Capacity  Utilisation  

Time  infrastructure  is  occupied  over  a  specific  period  of  time  

<<<40   <40%   60<traffic<80     >80%  

Limitation   Extra  demand  for  train  path  

Very  low   Low   Average   High   Very  high  

Maintainability   Probability  to  restore  

Very  low   Low   Average   High   Very  high  

Corridor  

Routes  or  lines  

Line  sec0on  

Traffic  Zone  

System  

Subsystem  

Maintainable  item  

Credibility  

Cri0cality  analysis  

Cri0cality  analysis  

Risk  analysis  (opera0on  consequence)  

Risk  analysis  (opera0on  consequence)  

RCA  or  FMEA  

Task  analysis  

Page 11: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 11

Cost   Revenues  from  traffic  

Very  low   Low   Average   High   Very  high  

Revenues   Revenues  from  traffic  

Very  low   Low   Average   High   Very  high  

Logistic   Logistic  of  maintenance  

Very  low   Low   Average   High   Very  high  

Safety  risk   Risk  of  damage   Very  low   Low   Average   High   Very  high  

 The  aggregation  of  the  above  mentioned  factors  in  a  criticality  analysis  requires  the  inclusion  of  weight  from  expert  judgement.   Techniques   such   as   analytical   hierarchical   process   (AHP)   or   fuzzy   logic   can   be   adapted   for   the  aggregation  of  the  above  mentioned  criteria  and  hierarchical  listing  of  route  and  lines,  based  on  their  vulnerability  to  failure  or  negative  contribution  to  market  credibility.  However,  this  part  is  within  scope  of  future  work.    2.2.2 RISK ANALYSIS (OPERATION CONSEQUENCE) Furthermore,   analysis   is   done   on   a   low   level   indenture   of   infrastructure   configuration   for   the   development   of   a  preventive  maintenance  program  aimed  at  supporting  a  high  performing  infrastructure  for  a  green  logistics  corridor.  Risk  assessment  matrix  are  proposed  in  the  standard  The  specification  and  demonstration  of  RAMS  (CEN  1999)  and  also  used  in  the  RAIL  project  (Carretero  et  al.  2003)  is  applicable  for  identifying  vulnerable  points  on  the  linear  asset.  Among   several   benefits   of   such   approach   is   the   opportunity   to   identify   critical   areas   that   are   bottlenecks   to   the  fulfilment  of  availability  and  operational  capacity  objective  of  green  corridor  concepts.  Also,  it  helps  to  identify  weak  sections  and  systems  on  a  line  which  are  vulnerable  to  failure  and  contributing  to  a  higher  risk  of  quality  loss  and  capacity  reduction  and  consequently  requires  attention.    Applying   the   risk   analysis   using   the   risk   assessment   matrix   shown   in   Table   2,   two   maintenance   performance  indicators  were  used  as   factors;   the   frequency  of   failure  and  the  consequence  of  the   failure  on  traffic  operation   in  terms  of  punctuality.  Using  this  approach  will  help  to  categorize  the   failure  behaviour  of  each  traffic  zone,  system  or  other  lower  indenture  level.  This  will  be  resourceful  information  for  prioritization  during  maintenance  planning  and  scheduling.    

Table 2: Typical risk evaluation matrices.

Frequency Likely impact or consequence of failure Insignificant Marginal Critical Catastrophic

Frequent Undesirable Intolerable Intolerable Intolerable

Probable Undesirable Intolerable Intolerable Intolerable

Occasional Tolerable Undesirable Undesirable Intolerable

Remote Negligible Tolerable Undesirable Intolerable

Improbable Negligible Tolerable Undesirable Undesirable

Incredible Negligible Negligible Tolerable Undesirable

For  the  case  study,  a  hypothetical  grading  of  the  frequency  of  failure  and  consequential  delay  is  done  to  demonstrate  the  mentioned  methodology.  This   grading  ought   to  be   a   subjective   judgement   of   a   group  of   expert  within   the   IM  organisation,  and  it  should  reflect  both  the  acceptance  limit  and  quality  definition  of  the  organisation.  

 

Page 12: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 12

CHAPTER 3 CASE STUDY  Applying  the  link  and  effect  model  (Figure  1)  and  following  the  vision,  goal  and  objectives  of  European  Commission  (EC)  White  paper  2011,  “Roadmap  to  a  Single  European  Transport  Area”  (EC  2011),  breakdown  and  aggregation  for  railway  infrastructure  failures  can  be  carried  out;  see  Figure  5.    

 Figure 5: Break down and aggregation for railway infrastructure. Vision, goal and objectives are extracted from EC White paper 2011 on transportation (EC 2011).

 3.1 DATA COLLECTION Railway  infrastructure  failures  and  corresponding  train  delay  data  of  the  northern  part  of  the  Swedish  heavy  haul  iron  ore  route  were  collected  and  analysed.  It  stretches  between  Kiruna  city  and  Riksgränsen,  border  to  Norway;  see  Figure  6.  The  infrastructure  is  divided  according  to  Figure  4,  viz.:    

Corridor  →  Routes/Lines  →  Line  sections  →  Traffic  zones  →  Systems  →  Subsystems  →  Components    Traffic  zones  are  the  points  and  connecting  links  between  the  points,  see  Figure  6.  The  case  study  is  concentrated  at  these  traffic  zones  and  their  systems.    The  data   span   from  2001.01.01   to  2009.12.01.   Failure  data   consist   of   urgent   inspection   remarks   reported  by   the  maintenance  contractor,  as  well  as  failure  events  and  failure  symptoms  identified  outside  the  inspections,  commonly  reported  by   the   train  driver,  but  occasionally  reported  by   the  public.  The  work  orders’   failure  reports   include  the  three  categories  of  RAM  (reliability,  availability  and  maintainability)  failure  as  identified  by  the  European  Standards  EN  50126  (CEN  1999),  see  Figure  7.  Failures  identified  outside  inspections  include  the  following  (Banverket  2010):  

• Accidents with animals • Inspections after wheel impact • Actions after failure in railway safety equipment • Actions after alarms • Actions after report from operators or others • Actions after suspecting failure • Lowering failed pantographs

Immediate  action  is  required  if  the  fault  negatively  influences:  safety,  train  delays,  third  parties  or  the  surrounding  environment  (Trafikverket  2010):    

International  level

National  level

IM  level

Operational  level

Reduce  failures  and  failure  down  time

Goal:  Shift  from  roadto  rail

Objectives:  Quality  of  service  

Increase  availability

Vision:  A  sustainable  transport  system

Gathering  of  data

Analysis  of  data

Information

Knowledge

Decision

Reduce  delays

Page 13: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 13

 Figure 6: Breakdown structure of the railway infrastructure to strategic, tactical and operational levels.

 

   

Figure 7: Failure work order description. The three RAM (reliability, availability, maintainability) categories are: immobilising failure, service failure and minor failure (CEN 1999).

   

Line  section

Iron  ore  line/route

Strategic  level Tactical  level Operational  level

Zones

Corridors

Work  order  

Inspection  remarks   Failure  event  

Immobilising  failure   Service  failure   Minor  failure  

Failure  symptom  

Page 14: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 14

CHAPTER 4 RESULTS AND DISCUSSION 4.1 RISK ASSESSMENT MATRIX FOR TRAFFIC ZONES The  capacity,  quality  of   service  and  other  performance  measures  of  a  green   logistic   corridor  are   function  of  most  restrictive  infrastructure  segment.  It  is  therefore  essential  to  use  a  methodology  such  as  risk  assessment  described  in   previous   section   to   identify   such   segment   and   related   maintenance   activities.   This   will   give   resourceful  information   for   prioritization   during   maintenance   planning   and   scheduling   and   also   capital   investment   during  continuous   improvement.   Using   the   risk   assessment   matrix   and   the   traffic   zone   level   of   the   system   breakdown  structure,   the   vulnerability   of   each   traffic   zone   on   the   case   study   is   categorized.   See   Figure   8.   Data   spans   from  2001.01.01-­‐2009.12.01,  i.e.  3257  days,  due  to  change  in  data  collecting  system  in  2009.  

      Negligible     Tolerable     Undesirable   Intolerable    Weight   0,1   0,25   0,5   1,0  

Figure 8: Risk assessment matrix for traffic zones and corresponding weights according to Table 2.

To  meet   the   operational   requirements   of   the   line   section   under   consideration   and   achieve   a   credible  market   for  railway  transport,  proactive  measures  must  be  developed  and  implemented  based  on  the  vulnerability  category  of  the   traffic   zones.   To   this   end   zones   with   intolerable   impact   should   be   subjected   to   detailed   failure   analysis   to  eliminate   the   bottleneck.   Zones  with   undesirable   risk   contribution   should   be  maintained   to   reduce   their   impact.  Zones   with   tolerable   impact   should   be   controlled   with   necessary   measures   while   those   with   negligible   impact  should   be   observed   and   their   maintenance   should   be   standardised.   This   vulnerability   categories   and   suggested  intervention   measures   will   facilitate   the   development   of   maintenance   programme   that   will   homogenize   the  

       

       

       

       

       

8 10 20 40 60 80 100 200 4000

60

120

180

2

3

4

5 67

8

9

10

11

12

13

14

15

1617

18

19

20 21

22

23

24

25 26

27

28

29

30

32 33

Failu

re fr

eque

ncy

Mean train delay (min)

Improbable

Remote

Occassional

Probable

Frequent

Catastrophic CriticalMarginal

Insignificant

15 120

Page 15: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 15

condition  of   the   infrastructure  along   the   line  section.  Furthermore,   identifying  critical   spots  or  bottlenecks  on   the  line  sections  also  help  to  capture  inherent  locational  problem.  

 4.2 SYSTEM RISK ASSESSMENT Weight  from  the  vulnerability  categories  can  be  cascaded  down  to  respective  lower  level  system  in  order  to  generate  hierarchical  listing  of  maintenance  significant  system  that  can  inform  maintenance  decision.  System  risks  have  been  calculated   by   applying   the   weights   (w)   according   to   the   risk   assessment   matrix   in   Figure   8   and   using  𝑅 = 𝑤 𝐹!!

!!! = 𝑤𝐹!,  where  F1  is  the  train  delay,  see  Figure  9.  The  most  problematic  systems  have  shown  to  be  the  positioning   system,   switches  and  crossings   (S&C)  and   track;   these  have  been  analysed.  For   clarification,   the   track  system  consists  of  the  rail,  rail  joints  and  fastenings.    As  for  the  risk  assessment  matrix,  the  data  spans  from  2001.01.01-­‐2009.12.01.    

 Figure 9: System risk of the zones utilizing the weights obtained in from the risk matrix.

Zone  3  shows  a  high  risk  value,  above  4000.  One  possible  explanation  can  be  that   it  has  six  S&C,  but  on  the  other  hand,  zones  13  and  19  have  six  and  twelve  S&C,  respectively  (Table  3).  Also  zone  11  shows  a  high  risk  on  the  S&C,  which  has  four  S&Cs.  Zones  2,  4,  10,  24  and  26  shows  high  risk  on  the  track.  The  lengths  of  the  zones  are  4.4,  9.0,  8.9,  7.2  and  6.7  km,  respectively.  Zones  11  and  25  show  high  values  on  the  positioning  system.  All  these  systems  should  be  studied  closer  for  their   improvement.  To  facilitate  detailed  root  cause  analysis  of  vulnerable  zones  and  system,  Figure  10  is  suggested.  It  will  help  to  identify  and  address  the  cause  of  the  poor  technical  performance  of  any  system.  This   would   require   a   collaborative   effort   of   a   group   maintenance   expert   from   the   infrastructure   manager,  maintenance  service  provider  and  other  relevant  stakeholders.  Furthermore,  cascading  down  the  weights  have  the  advantage  of  highlighting  problematic  systems,  however,  it  needs  to  be  noted  that  the  drawback  is  that  the  relative  difference  between  the  systems  are  less  visible.  

0  

500  

1000  

1500  

2000  

2500  

3000  

3500  

4000  

4500  

2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  

Risk  

Pos.  sys.   S&C   Track  

Page 16: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 16

Vulnerable System

Human Factor

System Condition

External Factors

OperatingCondition

Maintenance condition

Sensitivity to disturbances

Weather

Geotechnical feature

Geography

Reliability

Maintainability

Subgrade condition

Policy

Procedure

Maintenance Level

Spares & Material

Track Layout

Temperature

MGT

Axle Load

Speed

Traffic Density

Traffic type

Condition ofRolling stock

Human Error

Human Correction Actions

Organisational structure

Human rule violation

Human system monitoring & override

human involvement & intervention in the system

Overstress Wear outManufacturingdeficiencies

InstallationInadequacies

Design Inadequacies

Superelevation Cant

Gradient Curve  radius

Logistics

Material

Humidity

Age

 Figure 10: Root causes of infrastructure vulnerability to failure (Famurewa 2012).

   

Table 3: Length and number of S&C of the zones.

     4.3 DATA FOR RAILSYS SIMULATION For  further  analysis  relevant  to  the  interest  of  the  Bothnian  green  logistic  corridor  project,  the  delay  indicator  has  been  analysed.  This  delay  indicator   is  the  arrival  non  negative  delay  caused  by  infrastructure  failure,  the  statistics  has  been  presented  in  a  such  a  way  that  it  can  be  used  as  input  into  traffic  management  or  capacity  optimisation  tool.  

Zone Zone  no. S&C  no. Length  (m) Zone Zone  no. S&C  no. Length  (m)KMB 1 AK  -­‐  SOA 18 8974KMB  -­‐  KV 2 2 4394 AK 19 12KV 3 6 Ak  -­‐  AKT 20 912KV  -­‐  RUT 4 9039 AKT 21RUT 5 3 AKT  -­‐  BLN 22 6562RUT  -­‐  RSN 6 8869 BLN 23 3RSN 7 3 BLN  -­‐  KÅ 24 7164RSN  -­‐  BFS 8 7778 KÅ 25 4BFS 9 3 KÅ  -­‐  LÅK 26 6742TNK  -­‐  BFS 10 8907 LÅK 27TNK 11 4 VJ  -­‐  LÅK 28 1130TNK  -­‐  SBK 12 8477 VJ 29 4SBK 13 6 VJ  -­‐  KJÅ 30 4088SBK  -­‐  KPE 14 7929 KJÅ 31KPE 15 3 KJÅ  -­‐  RGN 32 1767SOA  -­‐  KPE 16 10612 RGN 33SOA 17 3

Sum 56 103344

Page 17: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 17

This  will  help  in  time  table  planning,  scheduling,  optimization  and  simulation.  The  outcome  of  such  optimisation  is  improved  utilization  of  inherent  capacity  of  a  corridor,  creating  additional  capacity  and  facilitating  credible  market.  Table  4  shows  the  statistics  of  infrastructure  failure  of  the  case  study  in  a  format  usable  for  further  simulation  in  the  interest   of   achieving   the   objectives   of   green   logistic   corridor.   The   data   stretches   from   20010101-­‐20091201,   i.e.  3257  days.    

Table 4: Failure statistics an input for capacity and timetable optimisation. Zone numbers are found at the first row and train delay intervals in the first column. The numbers represents the number of trains experience delay within the intervals. 1949 trains are delayed.

 

   

   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Sum0 0 50 115 40 37 28 38 21 53 76 123 24 61 19 73 28 37 30 76 8 0 20 82 30 29 12 0 11 58 16 0 0 4 119930 0 8 33 18 5 8 5 14 7 13 14 8 10 9 19 11 10 2 17 3 1 2 13 7 11 4 0 3 18 6 0 2 0 28160 0 12 13 4 4 3 2 1 4 5 11 1 6 3 7 10 3 2 1 1 0 0 8 5 2 4 0 1 8 6 0 2 0 12990 0 8 5 1 0 7 0 3 2 7 4 0 0 2 1 4 2 4 2 0 0 3 3 4 0 7 0 2 5 5 0 1 0 82120 0 0 0 2 0 1 0 2 2 1 1 0 0 0 0 1 1 0 1 0 0 1 2 2 2 4 0 0 3 2 0 0 0 28150 0 2 1 2 3 1 0 3 0 0 2 0 3 0 2 2 1 0 1 0 1 1 1 2 0 1 0 0 2 0 0 0 0 31180 0 4 3 0 0 1 0 3 2 3 3 0 1 1 0 3 1 2 0 0 0 1 0 7 1 2 0 0 1 4 0 1 1 45240 0 0 3 2 0 0 1 1 1 1 0 0 0 2 0 1 1 0 0 0 0 0 0 7 1 3 1 1 1 3 0 1 1 32300 0 5 4 4 1 4 0 1 2 6 2 0 1 4 3 1 0 2 1 0 1 1 1 5 1 2 0 3 6 0 0 0 2 63600 0 1 1 5 2 1 1 3 0 3 3 2 0 0 1 1 1 1 1 0 0 1 0 2 2 5 0 0 3 1 0 1 0 421200 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 2 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 111800 0 0 0 0 0 0 0 1 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52400 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 03600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1949

1 KMB  -­‐  KMB 8 Rsn  -­‐  Bfs 15 KPE  -­‐  KPE 22 AKT  -­‐  BLN 29 VJ  -­‐  VJ2 KMB  -­‐  KV 9 BFS  -­‐  BFS 16 SOA  -­‐  KPE 23 BLN  -­‐  BLN 30 VJ  -­‐  KJÅ3 KV  -­‐  KV 10 TNK  -­‐  BFS 17 SOA  -­‐  SOA 24 BLN  -­‐  KÅ 31 KJÅ  -­‐  KJÅ4 KV  -­‐  RUT 11 TNK  -­‐  TNK 18 AK  -­‐  SOA 25 KÅ  -­‐  KÅ 32 Rgn  -­‐  Kjå5 RUT  -­‐  RUT 12 TNK  -­‐  SBK 19 AK  -­‐  AK 26 KÅ  -­‐  LÅK 33 Rgn  -­‐  Rgn6 RUT  -­‐  RSN 13 SBK  -­‐  SBK 20 Ak  -­‐  AKT 27 LÅK  -­‐  LÅK7 RSN  -­‐  RSN 14 SBK  -­‐  KPE 21 AKT  -­‐  AKT 28 VJ  -­‐  LÅK

Page 18: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 18

CHAPTER 5 RAILSYS SIMULATION OF MALMBANAN – MODEL AND RESULTS  Railway   infrastructure   failures   are   further   studied   to   find   out   whether   reduction   of   infrastructure   failures   will  increase   the   punctuality   of   the   trains   by   using   the   simulation   tool   Railsys.   The   same   data   from  Malmbanan   (the  Swedish  Iron  Ore  Line),  on  the  northern  part  of  the  line  between  Kiruna  and  Riksgränsen,  are  used  in  this  study.    5.1 BACKGROUND  5.1.1 INFRASTRUCTURE The  Railsys  infrastructure  model  contains  the  infrastructure  from  Peuravaara  (just  north  of  Kiruna)  to  Björnfjell  in  Norway,   designed   according   to   today’s   infrastructure   (2013);   extracted   from   Trafikverket’s   asset   structure.  That  means,   there  are  still  a   few  short  passing  sidings,  with   the  consequence   that   two   long   iron  ore   trains,  with  a  length  of  746  meters,  cannot  meet  and  pass  each  other  at  those  places.    The  Railsys  model  is  built  with  concurrent  entrance,  which  means  that  two  trains  from  different  directions  can  enter  the  station  at  the  same  time.    No  passing  sidings  on  Malmbanan  have  that  function  but  it  is  a  default  setting  in  the  Railsys  program.  However,  if  you  compare  two  simulations  with  different  delay  distributions  but  based  on  the  same  infrastructure  that  difference  does  not  affect  the  outcome.    5.1.2 TIMETABLE The  timetable  includes  all  trains  between  Peuravaara  to  Narvik  on  Thursday  the  21st  of  February  2013.  The  trains  run  according  to  the  planned  timetable  for  2013.    There  are,  in  each  direction,    21  iron  ore  trains  with  a  length  of  746  meters  from  LKAB,  4  iron  ore  trains  from  Northland  Resources  are  430  meters,  4  freight  trains  with  lengths  between  520  to  600  meters  and  finally  3  passenger  trains  of  which  two  are  regional  trains  and  one  is  a  night  train.    In   Railsys   the   trains   are   divided   into   three   different   patterns;   iron   ore   trains,   other   freight   trains   and   passenger  trains.  In  the  graphical  timetable  the  trains  are  colored  differently  depending  of  type  of  pattern;  the  iron  ore  trains  are  colored  dark  blue,  the  freight  trains  purple  and  the  passenger  trains  green  (see  Figure  11  below).    

Page 19: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 19

Figure 11: Graphical timetable from Railsys from Peuravaara to Narvik.

 5.1.3 TRAIN DELAY DATA The   train   delay   data   is   collected   from   Trafikverket’s   follow-­‐up   systems.   The   run-­‐time   delays   consist   of   infra-­‐structure  failures.          5.1.4 DELAY PARAMETERS To  make  the  Railsys  model  as  correct  as  possible,  the  delay  parameters  should  be  in  form  of  entry  delays,  dwell  time  delays  and  run  time  delays.  However,  the  used  model  could  not  handle  large  entry  delays  (>10  minutes),  since  the  cycle   turned   into   deadlock   which   means   the   simulation   stops.   Too   many   deadlocks   mean   low   reliability   and  difficulties   to  make   conclusions   of   the   result.   Therefore,  we   choose   to   add   only   run-­‐time   perturbations   and   then  compare  and  evaluate   the  result  of   two  different   types  of   run-­‐time  distributions.  To  minimize   the  deadlocks  even  further,  run-­‐time  delays  are  set  to  a  maximum  of  two  hours.    5.2 METHOD Two  different  simulations  are  done;  one  with  run-­‐time  delays  including  all  infrastructure  failures  and  one  with  run-­‐time  delays  with   infrastructure   failures  except   the  ones  coming   from  S&Cs.    Each  simulation  contain  1000  cycles.  The  results  from  the  two  simulations  are  compared  to  see  whether  decreasing  failures  from  S&Cs  will  improve  the  punctuality.  Punctuality  for  passenger  trains,  iron  ore  trains  and  other  freight  trains  are  evaluated.    5.3 RESULTS Comparison  of  the  departure  values  at  the  end  stations  for  the  two  different  delay  distributions  shows  small  effect  on  punctuality,   as   seen   in  Table   5   below.  When   large   delays   occur   in   practice,   trains   are   often   cancelled   and  not  

Page 20: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 20

included  in  the  punctuality  statistics.    The  effect  of  decreasing  infrastructure  failures  need  to  be  shown  in  some  other  ways,  maybe  in  costs  of  cancelled  trains.      

Table  5:  Punctuality  with  run-­‐time  perturbations  only.  Note:  The  punctuality  in  the  table  can  only  be  used  to  compare  the  different  run-­‐time  perturbations.  

 

   

 

The first column on the left side of Table 5 is the time interval for the train delay. The second one represents the outcome of the simulation with run-time delay including all infrastructure failures, and the third one the simulation excluding failures from S&Cs. For example; in the simulation including all infrastructure failures 98,74% means the amount of trains that arrive to the station Björnfjell in the interval 0-59 seconds.

Railsys simulation shows that >97 % of the trains are less than 360 seconds (6 minutes) delayed, except for freight trains to Krokvik station. Punctuality measures are commonly measured as delay over 5 minutes or 15 minutes depending on the traveling distance. Therefore, the simulation shows that the performance is high, even with the failures that have taken place in the railway infrastructure. However, train delays are known to be a problem at the railway section. 2536 trains were delayed in 3257 days according to the data. That gives 0.78 trains/day, or 2.4 % of the trains if there are 32 trains/day. The median delay is 19 min, but 84 trains were delayed more than 10 hours each. It must also be taken into consideration that the capacity consumption has not been very high. Moreover, studies have shown that the railway infrastructure and train operating companies (TOCs) are responsible for 20-30 % and 30-40 % of the train delay, respectively (Espling et al. 2004, Nyström et al. 2003, Granström et al. 2005). The studies also showed that the rolling stock, vehicle failures, is responsible for 10-20 % of the delay.

Switches and crossings are responsible for a large part of the failures and train delays, but it cannot be seen in Table 5, which in some cases shows more run time delay when the switches and crossing’s failures are discounted. Thus, the model needs further adjustments for working properly, i.e. with regard to run-time delays, entry delays and dwell times.

Page 21: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 21

   

Page 22: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 22

CHAPTER 6 CONCLUSIONS AND FURTHER ACTIONS  A   link   and   effect  model   utilizing   reliability   center  maintenance   (RCM)   has   been   developed   for   a   track   section   of  railway  infrastructure.  A  case  study  has  been  carried  out  to  demonstrate  the  model  for  continuous  improvement  of  railway  infrastructure  to  meet  the  requirements  of  the  anticipated  green  logistic  corridor.  This  approach  has  shown  that   track   zones   3,   11,   24   and  26   are   the   bottlenecks   or  weak   spots   on   the   line   section   under   consideration   and  require  detail  maintenance   analysis   for   appropriate   intervention.   Furthermore,   the   following   lower   level   systems  require  adequate  maintenance  measures;  switches  and  crossings  in  zones  2  and  11,  track  in  zones  2,  4,  10,  24  and  25,  and   also   positioning   system   on   zones   25   and   26.   To  address   this   deficiency   or   failure   vulnerability,   root   cause  analysis  can  be  initiated  using  the  model  provided  in  this  report.    For   further   analysis   relevant   to   the   interest   of   the   Bothnian   green   logistic   corridor   project,   the   model   and   the  statistics  of  the  delay  indicator  presented  can  be  used  as  input  into  traffic  management  or  capacity  optimisation  tool  (Section   3.2.3).   Similar   data   collection   and   analysis  with   application   of   the  model   can   be   applied   for   other   track  sections  of  BGLC  and  Railway  sectors.    Railsys  simulation  has  been  carried  out  but  needs  further  adjustments  for  working  satisfactory  in  this  kind  of  set-­‐up,  i.e.  with  regard  to  run-­‐time  delays,  entry  delays  and  dwell  times  (Section  5.3).  According  to  the  collected  data,  2536  trains  were  delayed  in  3257  days.  That  gives  0.78  trains/day,  or  2.4  %  of  the  trains  if  there  are  32  trains/day.  The  median  delay  is  19  min,  but  84  trains  were  delayed  more  than  10  hours  each.  It  must  also  be   taken   into  consideration   that   the  capacity   consumption  has  not  been  very  high.  Moreover,   studies  have  shown  that  the  railway  infrastructure  and  train  operating  companies  are  responsible  for  20-­‐30  %  and  30-­‐40  %  of  the  train  delay,  respectively  (Espling et al. 2004, Nyström et al. 2003, Granström et al. 2005).    Performance   measurement   of   operation   and   maintenance   is   important   for   punctual   trains,   but   it   is   equally  important   for  safety  and  cost  of  planning.  For  example,  one  of   the  main  goals  of  Trafikverket   is   to  reduce  costs  of  planning  contracting,  and  performance  measurement  .  This  can  be  achieved  with  better  and  automatically  updated  indicators.      6.1 FURTHER ACTIONS Performance  measurement  and  monitoring  of  railways  is  essential  for  safety,  efficient  and  effective  maintenance  and  costs.  Infrastructure  managers  use  performance  indicators  in  their  strategic,  tactical  and  daily  work,  but  often  in  an  ad   hoc   manner.   Therefore,   performance   indicators   need   to   be   mapped,   standardised   and   harmonised.   Similarly,  methods   and   tools,   like   link   &   effect   model   and   RCM   (reliability   center   maintenance)   need   to   be   developed   for  railways.  Specifically,  further  actions  for  increasing  life  cycle  cost,  safety  and  punctuality  of  trains  are:  

• Detailed mapping of performance indicators of railways for standardisation, harmonisation, safety management and benchmarking

• Development of composite indicators (indices) to reduce the numerous indicators that make planning of operation and maintenance in railways time and resource consuming.

• Development of RAMS and LCC models, for vulnerability reduction in a cost effective way. • Application of RCM methodologies such as three dimensional risk matrix for continuous improvement • Analysis of preventive and corrective maintenance cost balance for return on investment (ROI) and LCC (life

cycle cost) calculations

It   is  well   known   that  maintenance   of   railways   is   a  major   cost   contributor,   but   studies   on   potential   savings   from  preventive  maintenance   are   lacking.   Thus,   it   is   not   possible   to   estimate   saving   in   this   study   at   present.   Study   of  present   preventive   and   corrective  maintenance   in   the  European   railways   for   return   on   investment   is   therefore   a  crucial  part   for  all  research  related  to   investments   in  operation  and  maintenance,   like  performance  measurement,  condition  monitoring  and  reengineering  of  components.  

Page 23: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 23

   REFERENCES  

Armstrong, J.S. (1982), "The value of formal planning for strategic decisions: Review of empirical research", Strategic Management Journal, Vol. 3 No. 3, pp. 197-211.

BANVERKET, 2010. Handling 6.4.1: Entreprenadbeskrivning (EB) avseende drift och underhåll av järnvägsanläggning. Borlänge: Banverket.

Boom, N. (2005), Reliability Centered Maintenance (RCM): Implementation Made Simple, McGraw-Hill Professional, New York, NY.

Boston, J. and Pallot, J. (1997), "Linking strategy and performance: Developments in the New Zealand public sector", Journal of Policy Analysis and Management, Vol. 16 No. 3, pp. 382-404.

Bourne, M., Neely, A., Platts, K. and Mills, J. (2002), "The success and failure of performance measurement initiatives: Perceptions of participating managers", International Journal of Operations & Production Management, Vol. 22 No. 11, pp. 1288-1310.

Carretero, J., Pérez, J.M., Garcıa-Carballeira, F., Calderón, A., Fernández, J., Garcıa, J.D., Lozano, A., Cardona, L., Cotaina, N. and Prete, P. (2003), "Applying RCM in large scale systems: a case study with railway networks", Reliability Engineering & System Safety, Vol. 82 No. 3, pp. 257-273.

CEN (2011), EN 13306: Maintenance Terminology, European Committee for Standardization, Brussels.

CEN, 1999. EN 50126: Railway Specifications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS). Brussels: European Committee for Standardization.

EC (2011), White Paper: Roadmap to a Single European Transport Area – Towards a Competitive and Resource Efficient Transport System, European Commission (EC), Brussels.

Espling, U. and Kumar, U. (2004), "Development of a Proactive Maintenance Strategy for Railway Infrastructure; A Case Study" in Workshop Proceedings of the International Maintenance Congress Euromaintenance, pp. 31-38.

Famurewa, S.M. (2012), Increased railway infrastructure capacity through improved maintenance practices. Licentiate thesis, Luleå University of Technology, .

Gates, L.P. (2010), Strategic Planning with Critical Success Factors and Future Scenarios: An Integrated Strategic Planning Framework, Software Engineering Institute, Carnegie Mellon.

Granström, R. and Söderholm, P. (2005), "Punctuality measurements effect on the maintenance process: a study of train delay statistics for the Swedish railway" in Proceedings of the 8th international conference and exhibition of Railway Engineering, London, UK, .

IEC (1999), IEC 60300-3-13: Dependability Management - Part 3-13: Application Guide - Project Risk Management, International Electrotechnical Commission (IEC), Geneva.

Kaplan, R.S. and Norton, D.P. (1993), "Putting the balanced scorecard to work", Harvard Business Review, Vol. Sep./Oct. , pp. 134-147.

Page 24: INCREASING MARKET CREDIBILITY THROUGH CONTINUOUS …ltu.diva-portal.org/smash/get/diva2:996057/FULLTEXT01.pdf · 2016. 9. 29. · INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY

INCREASING MARKET CREDIBILITY THROUGH CONTINOUS VULNERABILITY REDUCTION

Contact::

E-mail:

Phone: 24

Kaplan, R.S. and Norton, D.P. (1992), "The Balanced Scorecard - Measures that Drive Performance", Harvard Business Review, Vol. 70 No. 1, pp. 71-79.

Leidecker, J.K. and Bruno, A.V. (1984), "Identifying and using critical success factors", Long range planning, Vol. 17 No. 1, pp. 23-32.

Locke, E.A., Shaw, K.N., Saari, L.M. and Latham, G.P. (1981), "Goal setting and task performance: 1969-1980", Psychological bulletin, Vol. 90 No. 1, pp. 125-152.

Nyström, B. and Kumar, U. (2003), "Analysis of Train Delay Information" in Proceedings of the World Congress on Railway Research (WCRR), pp. 253-261.

Pritchard, R.D., Roth, P.L., Jones, S.D. and Roth, P.G. (1990), "Implementing feedback systems to enhance productivity: A practical guide", National Productivity Review, Vol. 10 No. 1, pp. 57-67.

Sinclair, D. and Zairi, M. (1995), "Effective process management through performance measurement: Part III-an integrated model of total quality-based performance measurement", Business Process Re-engineering & Management Journal, Vol. 1 No. 3, pp. 50-65.

Stenström, C., Parida, A., Galar, D. and Kumar, U. (2013), "Link and effect model for performance improvement of railway infrastructure", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 227 No. 4, pp. 392-402.

Stenström, C. (2012), Link and effect model for performance improvement of railway infrastructure. Licentiate thesis, Luleå University of Technology, Sweden.

TRAFIKVERKET, 2010. BVF 808.20: Felrapportering inom järnvägsinfrastruktur. Borlänge: Trafikverket.

U.S. Dept of Energy (1993), Total Quality Management Implementation Guidelines, United States Department of Energy, Washington, DC,.