in honor of jean-michel coron henri berestycki · the e ect of di usion on a line on fisher-kpp...

94
The effect of diffusion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University, Paris, ReaDi project - ERC IHP, Paris, 22 June 2016 1/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 1/

Upload: dangcong

Post on 12-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

The effect of diffusion on a line on Fisher-KPPpropagation

In honor of Jean-Michel Coron

Henri Berestycki

EHESS, PSL Research University, Paris, ReaDi project - ERC

IHP, Paris, 22 June 2016

1/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 1 / 56

Page 2: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

Homogeneous reaction-diffusion equations

∂tv − d ∆v = f (v) x ∈ RN , t > 0

2/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 2 / 56

Page 3: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

Fisher – KPP case

∂tv = d∆v + f (v) t > 0, x ∈ RN

v |t=0 = v0 x ∈ RN

with v0 ≥ 0, 6≡ 0

,

.

fit "

>p

3/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 3 / 56

Page 4: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

Homogeneous equation – Spreading properties in KPP case

Invasion: v(x , t)→ 1 as t →∞, locally uniformly in x as soon asv0 6≡ 0.

Asymptotic speed of propagation: ∃w∗ such that for any v0 havingcompact support

∀c > w∗ sup|x |≥ct

v(x , t)→ 0 as t →∞

∀c < w∗ sup|x |≤ct

|v(x , t)− 1| → 0 as t →∞.

Fisher - KPP case: w∗ = cK = 2√

d f ′(0)

4/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 4 / 56

Page 5: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

Homogeneous equation – Spreading properties in KPP case

Invasion: v(x , t)→ 1 as t →∞, locally uniformly in x as soon asv0 6≡ 0.

Asymptotic speed of propagation: ∃w∗ such that for any v0 havingcompact support

∀c > w∗ sup|x |≥ct

v(x , t)→ 0 as t →∞

∀c < w∗ sup|x |≤ct

|v(x , t)− 1| → 0 as t →∞.

Fisher - KPP case: w∗ = cK = 2√

d f ′(0)

4/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 4 / 56

Page 6: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

Homogeneous equation – Spreading properties in KPP case

Invasion: v(x , t)→ 1 as t →∞, locally uniformly in x as soon asv0 6≡ 0.

Asymptotic speed of propagation: ∃w∗ such that for any v0 havingcompact support

∀c > w∗ sup|x |≥ct

v(x , t)→ 0 as t →∞

∀c < w∗ sup|x |≤ct

|v(x , t)− 1| → 0 as t →∞.

Fisher - KPP case: w∗ = cK = 2√

d f ′(0)

4/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 4 / 56

Page 7: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

Asymptotic position of level sets

@÷ w*sc ,

x : ult .x1 .

.a ) ,

ocaci .

Level sets for t >> 1

5/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 5 / 56

Page 8: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Fisher - KPP equation

The effect of a “road” with fast diffusion on Fisher-KPPpropagation

Joint work with Jean-Michel Roquejoffre and Luca Rossi

J. Math. Biology (2013)

Nonlinearity (2013)

Comm. Math. Phys. (2016)

Nonlinear Anal. (2016)

6/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 6 / 56

Page 9: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

motivation

The system (B, Roquejoffre and Rossi)

Ω: upper half-plane R× R+.∂tu − D∂xxu = νv |y=0 − µu, x ∈ R, t ∈ R∂tv − d∆v = f (v), (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 , x ∈ R, t ∈ R.

Note: v |y=0 := limy0

v .

Birth/death rate: Logistic law (KPP type term) f :

f > 0 on (0, 1), f (0) = f (1) = 0, f (v) ≤ f ′(0)v .

7/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 7 / 56

Page 10: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

motivation

Basic properties

Comparison principle

If (u1, v1) and (u2, v2) are solutions of the Cauchy problem with u1 ≤ u2

and v1 ≤ v2 at t = 0, then u1 ≤ u2 and v1 ≤ v2 for all t ≥ 0.

“Monotone system” (kind of)

8/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 8 / 56

Page 11: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

motivation

Liouville-type result for stationary solutions

Steady states −D∆xU = νV |y=0 − µU, x ∈ RN

−d∆V = f (V ), (x , y) ∈ Ω,

−d∂y V |y=0 = µU − νV |y=0 , x ∈ RN .

where Ω = x = (x1, . . . , xN , y); y = xN+1 > 0.

Theorem

The only bounded steady states are (U ≡ 0,V ≡ 0) and(U = ν/µ,V ≡ 1).

Proof rests on a sliding method (HB - L. Nirenberg)

9/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 9 / 56

Page 12: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

motivation

Liouville-type result for stationary solutions

Steady states −D∆xU = νV |y=0 − µU, x ∈ RN

−d∆V = f (V ), (x , y) ∈ Ω,

−d∂y V |y=0 = µU − νV |y=0 , x ∈ RN .

where Ω = x = (x1, . . . , xN , y); y = xN+1 > 0.

Theorem

The only bounded steady states are (U ≡ 0,V ≡ 0) and(U = ν/µ,V ≡ 1).

Proof rests on a sliding method (HB - L. Nirenberg)

9/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 9 / 56

Page 13: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

motivation

Long time behaviour: invasion

∂tu − D∂xxu = νv |y=0 − µu, x ∈ R, t ∈ R∂tv − d∆v = f (v), (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 , x ∈ R, t ∈ R.

Theorem

Let (u, v) be a solution of the Cauchy problem with initial datum(u0, v0) 6≡ (0, 0) (nonnegative and bounded). Then,

(u(x , t), v(x , y , t))→ (ν/µ, 1), as t →∞,

locally uniformly in (x , y) ∈ Ω.

10/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 10 / 56

Page 14: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

motivation

Long time behaviour: invasion

∂tu − D∂xxu = νv |y=0 − µu, x ∈ R, t ∈ R∂tv − d∆v = f (v), (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 , x ∈ R, t ∈ R.

Theorem

Let (u, v) be a solution of the Cauchy problem with initial datum(u0, v0) 6≡ (0, 0) (nonnegative and bounded). Then,

(u(x , t), v(x , y , t))→ (ν/µ, 1), as t →∞,

locally uniformly in (x , y) ∈ Ω.

10/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 10 / 56

Page 15: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0. That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 16: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0.

That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 17: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0. That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 18: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0. That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 19: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0. That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 20: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0. That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 21: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

The effect of roads on propagation

Theorem

There exists an asymptotic speed of propagation in the direction of thex-axis, w∗ = w∗(µ, d ,D) > 0. That is: let (u0, v0) be a compactlysupported initial datum (nonnegative, nontrivial). Then, locally in y :

∀c > w∗, sup|x |≥ct

|(u(x , t), v(x , y , t))| → 0 as t →∞

∀c < w∗, sup|x |≤ct, 0≤y≤a

|(u(x , t), v(x , y , t))− (ν/µ, 1)| → 0 as

t →∞.

Theorem

Let cK := 2√

d f ′(0) be the (homogenous) KPP speed of propagation.

If D ≤ 2d then w∗(µ, ν, d ,D, f ′(0))=cK .

If D > 2d then w∗(µ, d ,D)>cK .

The limit limD→+∞

w∗(D)/√

D exists and is positive.

11/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 11 / 56

Page 22: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Construction of super and subsolutions

Original system:∂tu − D∂xxu = νv |y=0 − µu x ∈ R, t ∈ R∂tv − d∆v = f (v) (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t ∈ R,

The KPP hypothesis f (v) ≤ f ′(0)v ⇒ solutions of linearized system aresupersolutions of nonlinear one.Look for exponential travelling wave solutions:

(u(t, x), v(t, x , y)) = (e−α(x−ct) , γe−α(x−ct)−βy )

with c , α > 0, γ > 0 and β ∈ R.

12/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 12 / 56

Page 23: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Construction of super and subsolutions

Linearized system about v ≡ 0:∂tu − D∂xxu = νv |y=0 − µu x ∈ R, t ∈ R∂tv − d∆v = f ′(0)v (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t ∈ R,

The KPP hypothesis f (v) ≤ f ′(0)v ⇒ solutions of linearized system aresupersolutions of nonlinear one.Look for exponential travelling wave solutions:

(u(t, x), v(t, x , y)) = (e−α(x−ct) , γe−α(x−ct)−βy )

with c , α > 0, γ > 0 and β ∈ R.

12/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 12 / 56

Page 24: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Construction of super and subsolutions

Linearized system about v ≡ 0:∂tu − D∂xxu = νv |y=0 − µu x ∈ R, t ∈ R∂tv − d∆v = f ′(0)v (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t ∈ R,

The KPP hypothesis f (v) ≤ f ′(0)v ⇒ solutions of linearized system aresupersolutions of nonlinear one.

Look for exponential travelling wave solutions:

(u(t, x), v(t, x , y)) = (e−α(x−ct) , γe−α(x−ct)−βy )

with c , α > 0, γ > 0 and β ∈ R.

12/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 12 / 56

Page 25: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Construction of super and subsolutions

Linearized system about v ≡ 0:∂tu − D∂xxu = νv |y=0 − µu x ∈ R, t ∈ R∂tv − d∆v = f ′(0)v (x , y) ∈ Ω, t ∈ R−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t ∈ R,

The KPP hypothesis f (v) ≤ f ′(0)v ⇒ solutions of linearized system aresupersolutions of nonlinear one.Look for exponential travelling wave solutions:

(u(t, x), v(t, x , y)) = (e−α(x−ct) , γe−α(x−ct)−βy )

with c , α > 0, γ > 0 and β ∈ R.

12/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 12 / 56

Page 26: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Asymptotic speed of propagation

The system on (α, β, γ) reads−Dα2 + cα = γ − µ

−d(α2 + β2) + cα = f ′(0)dβγ = µ− γ

−Dα2 + cα =µdβ

1 + dβd(α2 + β2)− cα + f ′(0) = 0

13/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 13 / 56

Page 27: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Asymptotic speed of propagation

The system on (α, β, γ) reads−Dα2 + cα = γ − µ

−d(α2 + β2) + cα = f ′(0)dβγ = µ− γ−Dα2 + cα =µdβ

1 + dβd(α2 + β2)− cα + f ′(0) = 0

13/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 13 / 56

Page 28: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Exponential solutions - equations in (α, β)

Figure: Exponential solutions of linearized system (u, v) = (eα(x+ct), eα(x+ct)−βy ).

14/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 14 / 56

Page 29: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Construction of super-solutions - Algebraic equations

15/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 15 / 56

Page 30: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Case D > 2d

16/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 16 / 56

Page 31: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Case D < 2d : super-solutions

17/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 17 / 56

Page 32: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Case D = 2d : super-solutions

18/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 18 / 56

Page 33: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Case D > 2d , c ∈ (cK , c∗)

19/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 19 / 56

Page 34: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Case D > 2d , c = c∗

20/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 20 / 56

Page 35: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Case D > 2d , c∗ − c > 0 small

21/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 21 / 56

Page 36: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

General strategy

1 Exponential solutions of the linearized system (about v ≡ 0)

2 Real exponential solutions exist for all speed c ≥ c∗ (Algebraicsystem) ⇒ w∗ ≤ c∗

3 Penalize the linearized system → subsolutions

4 Restrict to a strip R× (0, L) with Dirichlet condition at y = L →truncation of the support

5 For c∗− c > 0 small, complex solutions appear (by Rouche’s theorem)

6 Get solutions with support contained in infinite strips

7 Penalize the linearized system → subsolutions

8 Restrict to a strip R× (0, L) with Dirichlet condition at y = L→ truncation of the support

9 For c < c∗, use the real parts of complex solutions to get compactlysupported subsolutions ⇒ w∗ ≥ c∗

22/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 22 / 56

Page 37: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Truncation in y

Horizontal strip ΩL := R× (0, L) with L > 0.−DU ′′ + cU ′ = V (x , 0)− µU x ∈ R−d∆V + c∂xV = f ′(0)V (x , y) ∈ ΩL

−d∂y V (x , 0) = µU(x)− V (x , 0) x ∈ RV (x , L) = 0 x ∈ R.

23/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 23 / 56

Page 38: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic speed of propagation in the direction of the line

Exponential solutions of truncated system

Solutions of the form (1, γ(y))eαx . Existence iff following system has asolution:

−Dα2 + cα +(1 + e−2βL)dβµ

1− e−2βL + (1 + e−2βL)dβ= 0

−d(α2 + β2) + cα = f ′(0)dβ(γ1 − γ2) = µ− (γ1 + γ2)

γ1e−βL + γ2eβL = 0

Unknowns α and β (look for γ under the form γ1e−βy + γ2eβy ).Sub-solution is

(u, v) := Re(1, γ(y))eαx

Delicate perturbative analysis adapting Rouche’s theorem to derivethe case of finite large L from the half plane case.

Not a simple structure...

24/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 24 / 56

Page 39: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Adding transport q and mortality (rate ρ) on the road

∂tu − D∂xxu + q∂xu = −ρu + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,

q ∈ R, ρ > 0.

Theorem

(Liouville-type result). There is a unique positive, bounded, stationarysolution (U,V ). Moreover, U ≡ constant and V ≡ V (y).

(Spreading). There are asymptotic speeds of propagation w∗− towardsleft and w∗+ towards right.

(Spreading velocity). IfD

d≤ 2+

ρ

f ′(0)∓ q√

df ′(0)then w∗± = ±cK ,

else w∗+ > cK (resp. w∗− < −cK ).

25/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 25 / 56

Page 40: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Adding transport q and mortality (rate ρ) on the road

∂tu − D∂xxu + q∂xu = −ρu + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,

q ∈ R, ρ > 0.

Theorem

(Liouville-type result). There is a unique positive, bounded, stationarysolution (U,V ). Moreover, U ≡ constant and V ≡ V (y).

(Spreading). There are asymptotic speeds of propagation w∗− towardsleft and w∗+ towards right.

(Spreading velocity). IfD

d≤ 2+

ρ

f ′(0)∓ q√

df ′(0)then w∗± = ±cK ,

else w∗+ > cK (resp. w∗− < −cK ).

25/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 25 / 56

Page 41: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Effect of transport q and mortality ρ on the road

Case ρ = 0:The condition for enhancement of the invasion speed towards right, i.e.w∗+ > cK reads:

D

d> 2− q√

df ′(0)= 2(1− q

cK).

D > 2d enhancement occurs for all q ≥ 0

A drift q > cK always enhances the invasion speed

An invasion upstream, i.e. when q < 0, is never slowed down by thestream: w∗+ ≥ cK .But even in this case, a large D speeds up the invasion.

26/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 26 / 56

Page 42: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Effect of transport q and mortality ρ on the road

Case ρ = 0:The condition for enhancement of the invasion speed towards right, i.e.w∗+ > cK reads:

D

d> 2− q√

df ′(0)= 2(1− q

cK).

D > 2d enhancement occurs for all q ≥ 0

A drift q > cK always enhances the invasion speed

An invasion upstream, i.e. when q < 0, is never slowed down by thestream: w∗+ ≥ cK .But even in this case, a large D speeds up the invasion.

26/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 26 / 56

Page 43: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Effect of transport q and mortality ρ on the road

Case ρ = 0:The condition for enhancement of the invasion speed towards right, i.e.w∗+ > cK reads:

D

d> 2− q√

df ′(0)= 2(1− q

cK).

D > 2d enhancement occurs for all q ≥ 0

A drift q > cK always enhances the invasion speed

An invasion upstream, i.e. when q < 0, is never slowed down by thestream: w∗+ ≥ cK .But even in this case, a large D speeds up the invasion.

26/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 26 / 56

Page 44: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Effect of transport q and mortality ρ on the road

Case ρ = 0:The condition for enhancement of the invasion speed towards right, i.e.w∗+ > cK reads:

D

d> 2− q√

df ′(0)= 2(1− q

cK).

D > 2d enhancement occurs for all q ≥ 0

A drift q > cK always enhances the invasion speed

An invasion upstream, i.e. when q < 0, is never slowed down by thestream: w∗+ ≥ cK .

But even in this case, a large D speeds up the invasion.

26/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 26 / 56

Page 45: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Effect of transport q and mortality ρ on the road

Case ρ = 0:The condition for enhancement of the invasion speed towards right, i.e.w∗+ > cK reads:

D

d> 2− q√

df ′(0)= 2(1− q

cK).

D > 2d enhancement occurs for all q ≥ 0

A drift q > cK always enhances the invasion speed

An invasion upstream, i.e. when q < 0, is never slowed down by thestream: w∗+ ≥ cK .But even in this case, a large D speeds up the invasion.

26/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 26 / 56

Page 46: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

More general reaction on the road

∂tu − D∂xxu + q∂xu = g(u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0

g(0) = 0 g(u) ≤ g ′(0)u

Theorem

Same results as before. The condition for enhancement of the speed nowreads: (Spreading velocity):

IfD

d> 2− g ′(0)

f ′(0)∓ q√

df ′(0)then w∗± > ±cK , else w∗+ = cK (resp.

w∗− = −cK ).

Actually, Liouville type theorem somewhat more complicated; requiresboth f and g concave.

27/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 27 / 56

Page 47: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

More general reaction on the road

∂tu − D∂xxu + q∂xu = g(u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0

g(0) = 0 g(u) ≤ g ′(0)u

Theorem

Same results as before. The condition for enhancement of the speed nowreads: (Spreading velocity):

IfD

d> 2− g ′(0)

f ′(0)∓ q√

df ′(0)then w∗± > ±cK , else w∗+ = cK (resp.

w∗− = −cK ).

Actually, Liouville type theorem somewhat more complicated; requiresboth f and g concave.

27/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 27 / 56

Page 48: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

More general reaction on the road

∂tu − D∂xxu + q∂xu = g(u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0

g(0) = 0 g(u) ≤ g ′(0)u

Theorem

Same results as before. The condition for enhancement of the speed nowreads: (Spreading velocity):

IfD

d> 2− g ′(0)

f ′(0)∓ q√

df ′(0)then w∗± > ±cK , else w∗+ = cK (resp.

w∗− = −cK ).

Actually, Liouville type theorem somewhat more complicated; requiresboth f and g concave.

27/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 27 / 56

Page 49: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

On the mysterious 2 in the D > 2d condition

In case q = 0 and g = f ,∂tu − D∂xxu = f (u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,Then,

2− g ′(0)

f ′(0)= 1

threshold condition for enhancement:

D > d .

28/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 28 / 56

Page 50: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

On the mysterious 2 in the D > 2d condition

In case q = 0 and g = f ,∂tu − D∂xxu = f (u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,

Then,

2− g ′(0)

f ′(0)= 1

threshold condition for enhancement:

D > d .

28/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 28 / 56

Page 51: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

On the mysterious 2 in the D > 2d condition

In case q = 0 and g = f ,∂tu − D∂xxu = f (u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,Then,

2− g ′(0)

f ′(0)= 1

threshold condition for enhancement:

D > d .

28/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 28 / 56

Page 52: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

On the mysterious 2 in the D > 2d condition

In case q = 0 and g = f ,∂tu − D∂xxu = f (u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,Then,

2− g ′(0)

f ′(0)= 1

threshold condition for enhancement:

D > d .

28/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 28 / 56

Page 53: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Spreading enhancement along roads by pure growth effect

In case q = 0, D arbitrary, and reactions g , f ,∂tu − D∂xxu = g(u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,

Threshold condition for speed-up:

D

d≥ 2− g ′(0)

f ′(0)

E.g. if D = d : g ′(0) > f ′(0) enhances speed of propagation

29/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 29 / 56

Page 54: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

effect of transport and reaction on the road

Spreading enhancement along roads by pure growth effect

In case q = 0, D arbitrary, and reactions g , f ,∂tu − D∂xxu = g(u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = f (v) (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,

Threshold condition for speed-up:

D

d≥ 2− g ′(0)

f ′(0)

E.g. if D = d : g ′(0) > f ′(0) enhances speed of propagation

29/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 29 / 56

Page 55: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Propagation in other directions

30/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 30 / 56

Page 56: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Is this diffusion “trajectory” optimal?

31/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 31 / 56

Page 57: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Short-cut! – Is the geometric optics trajectory optimal?

32/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 32 / 56

Page 58: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Asymptotic expansion set

Asymptotic expansion set (AES)

W such that for any solution (u, v) starting from a compactly supportedinitial datum (u0, v0) (nonnegative, nontrivial), and for all ε > 0:

supdist( 1

t(x ,y),W)>ε

v(x , y , t)→ 0 as t →∞

supdist( 1

t(x ,y),Ω\W)>ε

|v(x , y , t)− 1| → 0 as t →∞.

33/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 33 / 56

Page 59: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Upper level sets of v(·, t) ' tW for t large

The intersection of W with the line directed by ξ gives theasymptotic speed of propagation in direction ξ

If W exists then W ∩ y = 0 = [−w∗,w∗]× 0Homogeneous case (Fisher-KPP) : W = ball of radius 2

√df ′(0)

34/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 34 / 56

Page 60: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Lower bound for W

The short-cut strategy: first go on the road, then standard KPPpropagation in field when optimal.

W ⊃WS :=

Conv(

([−w∗,w∗]× 0) ∪ BcK

).

35/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 35 / 56

Page 61: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Lower bound for W

The short-cut strategy: first go on the road, then standard KPPpropagation in field when optimal.

W ⊃WS :=

Conv(

([−w∗,w∗]× 0) ∪ BcK

).

35/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 35 / 56

Page 62: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Lower bound for W

The short-cut strategy: first go on the road, then standard KPPpropagation in field when optimal.

W ⊃WS :=

Conv(

([−w∗,w∗]× 0) ∪ BcK

).

35/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 35 / 56

Page 63: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Lower bound for W

The short-cut strategy: first go on the road, then standard KPPpropagation in field when optimal.

W ⊃WS :=

Conv(

([−w∗,w∗]× 0) ∪ BcK

).

35/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 35 / 56

Page 64: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Lower bound for W

The short-cut strategy: first go on the road, then standard KPPpropagation in field when optimal.

W ⊃WS := Conv(([−w∗,w∗]× 0) ∪ BcK

).

35/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 35 / 56

Page 65: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Main result

Theorem

1 (Spreading) There exists an AES W2 (Expansion shape) The set W is convex and can be written as

W := ρ(sinϑ, cosϑ) : −π/2 ≤ ϑ ≤ π/2, 0 ≤ ρ ≤ w∗(ϑ),

with w∗ ∈ C 1([−π/2, π/2]) even and such that

∃ϑ0 ∈ (0, π/2], w∗ = cK in [0, ϑ0], (w∗)′ > 0 in (ϑ0, π/2].

3 (Directions with enhanced speed) If D ≤ 2d then ϑ0 = π/2.Otherwise, ϑ0 < π/2 and ϑ0 is a strictly decreasing function of D.

V Critical angle phenomenon

36/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 36 / 56

Page 66: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Main result

Theorem

1 (Spreading) There exists an AES W2 (Expansion shape) The set W is convex and can be written as

W := ρ(sinϑ, cosϑ) : −π/2 ≤ ϑ ≤ π/2, 0 ≤ ρ ≤ w∗(ϑ),

with w∗ ∈ C 1([−π/2, π/2]) even and such that

∃ϑ0 ∈ (0, π/2], w∗ = cK in [0, ϑ0], (w∗)′ > 0 in (ϑ0, π/2].

3 (Directions with enhanced speed) If D ≤ 2d then ϑ0 = π/2.Otherwise, ϑ0 < π/2 and ϑ0 is a strictly decreasing function of D.

V Critical angle phenomenon

36/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 36 / 56

Page 67: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Main result

Theorem

1 (Spreading) There exists an AES W2 (Expansion shape) The set W is convex and can be written as

W := ρ(sinϑ, cosϑ) : −π/2 ≤ ϑ ≤ π/2, 0 ≤ ρ ≤ w∗(ϑ),

with w∗ ∈ C 1([−π/2, π/2]) even and such that

∃ϑ0 ∈ (0, π/2], w∗ = cK in [0, ϑ0], (w∗)′ > 0 in (ϑ0, π/2].

3 (Directions with enhanced speed) If D ≤ 2d then ϑ0 = π/2.Otherwise, ϑ0 < π/2 and ϑ0 is a strictly decreasing function of D.

V Critical angle phenomenon

36/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 36 / 56

Page 68: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Asymptotic expansion shape

A case where the Huyghens principle fails !

37/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 37 / 56

Page 69: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

asymptotic shape of expansion

Asymptotic expansion shape

A case where the Huyghens principle fails !

37/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 37 / 56

Page 70: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

variants and further results

Variants

• Case when µ and ν are not constant. Consider the periodic case µ(x)and ν(x) as periodic functions of x .

Extension of the results about ASP in direction of the road:Thomas Gilletti, Leonard Monsaigeon, Maolin ZhouSame threshold D = 2d

• Existence of travelling fronts in the direction of the x-axis

38/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 38 / 56

Page 71: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

variants and further results

A variant: strip and 2 roads

Work of L. Rossi, A. Tellini and E. ValdinociThree populations u(x , t), u(x , t), v(x , y , t), with (x , y) ∈ R× (−R,R)

u

u

R

-R

v

vt − d∆v = f (v)ut − Duxx = νv(x ,R, t)− µud vy (x ,R, t) = µu − νv(x ,R, t)ut − Duxx = νv(x ,−R, t)− µu−d vy (x ,−R, t) = µu − νv(x ,−R, t)

(PR)

39/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 39 / 56

Page 72: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

variants and further results

A variant: strip and 2 roads

Work of L. Rossi, A. Tellini and E. ValdinociThree populations u(x , t), u(x , t), v(x , y , t), with (x , y) ∈ R× (−R,R)

u

u

R

-R

v

vt − d∆v = f (v)ut − Duxx = νv(x ,R, t)− µud vy (x ,R, t) = µu − νv(x ,R, t)ut − Duxx = νv(x ,−R, t)− µu−d vy (x ,−R, t) = µu − νv(x ,−R, t)

(PR)

39/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 39 / 56

Page 73: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

variants and further results

A variant: strip and 2 roads

Work of L. Rossi, A. Tellini and E. ValdinociThree populations u(x , t), u(x , t), v(x , y , t), with (x , y) ∈ R× (−R,R)

u

u

R

-R

v

vt − d∆v = f (v)ut − Duxx = νv(x ,R, t)− µud vy (x ,R, t) = µu − νv(x ,R, t)ut − Duxx = νv(x ,−R, t)− µu−d vy (x ,−R, t) = µu − νv(x ,−R, t)

(PR)

39/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 39 / 56

Page 74: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

variants and further results

The model

u

v

vt − d∆v = f (v) in Ω× (0,+∞)ut − D∆∂Ωu = νv − µu in ∂Ω× (0,+∞)

d ∂v∂n = µu − νv in ∂Ω× (0,+∞)

(PR)

with Ω = R× BR(0) ⊂ RN+1

40/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 40 / 56

Page 75: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

Theorem

This problem admits an A.S.P. c∗ = c∗(D, d , µ, ν,R,N) > 0.

The function D 7→ c∗(D) is increasing and satisfies

limD↓0

c∗(D) = c0 > 0, limD→+∞

c∗(D)√D∈ (0,+∞).

The function R 7→ c∗(R) satisfies

limR↓0

c∗(R) = 0, limR→+∞

c∗(R) = c∗∞,

where c∗∞ is the A.S.P. of problem in half plane

c∗∞

= cKPP if D ≤ 2d ,

> cKPP if D > 2d .

41/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 41 / 56

Page 76: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

Theorem

This problem admits an A.S.P. c∗ = c∗(D, d , µ, ν,R,N) > 0.

The function D 7→ c∗(D) is increasing and satisfies

limD↓0

c∗(D) = c0 > 0, limD→+∞

c∗(D)√D∈ (0,+∞).

The function R 7→ c∗(R) satisfies

limR↓0

c∗(R) = 0, limR→+∞

c∗(R) = c∗∞,

where c∗∞ is the A.S.P. of problem in half plane

c∗∞

= cKPP if D ≤ 2d ,

> cKPP if D > 2d .

41/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 41 / 56

Page 77: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

Theorem

This problem admits an A.S.P. c∗ = c∗(D, d , µ, ν,R,N) > 0.

The function D 7→ c∗(D) is increasing and satisfies

limD↓0

c∗(D) = c0 > 0, limD→+∞

c∗(D)√D∈ (0,+∞).

The function R 7→ c∗(R) satisfies

limR↓0

c∗(R) = 0, limR→+∞

c∗(R) = c∗∞,

where c∗∞ is the A.S.P. of problem in half plane

c∗∞

= cKPP if D ≤ 2d ,

> cKPP if D > 2d .

41/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 41 / 56

Page 78: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

Theorem

This problem admits an A.S.P. c∗ = c∗(D, d , µ, ν,R,N) > 0.

The function D 7→ c∗(D) is increasing and satisfies

limD↓0

c∗(D) = c0 > 0, limD→+∞

c∗(D)√D∈ (0,+∞).

The function R 7→ c∗(R) satisfies

limR↓0

c∗(R) = 0, limR→+∞

c∗(R) = c∗∞,

where c∗∞ is the A.S.P. of problem in half plane

c∗∞

= cKPP if D ≤ 2d ,

> cKPP if D > 2d .

41/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 41 / 56

Page 79: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

If D ≤ 2d then R 7→ c∗(R) is increasing

If D > 2d there exists RM s.t. c∗(R) is increasing in (0,RM) anddecreasing in (RM ,+∞)

R

c¥*

c*HRL

42/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 42 / 56

Page 80: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

If D ≤ 2d then R 7→ c∗(R) is increasing

If D > 2d there exists RM s.t. c∗(R) is increasing in (0,RM) anddecreasing in (RM ,+∞)

RMR

c¥*

cM*

c*HRL

42/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 42 / 56

Page 81: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Main result

If D ≤ 2d then R 7→ c∗(R) is increasing

If D > 2d there exists RM s.t. c∗(R) is increasing in (0,RM) anddecreasing in (RM ,+∞)

RMR

c¥*

cM*

c*HRL

42/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 42 / 56

Page 82: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Interpretation

The road acts as a barrier

If D is small (with respect to the diffusion in the field), it is moreconvenient to stay in the field (⇐ if the roads are separated, thespreading velocity increases)If D is large, there is a competitive effect between the reaction in thefield and the fast diffusion on the boundary

43/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 43 / 56

Page 83: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Nonlocal exchange terms – Antoine Pauthier

System with non-local exchanges

∂tu − D∂xxu = −µu +

∫ν(y)v(t, x , y)dy x ∈ R, t > 0

∂tv − d∆v = f (v) + µ(y)u(t, x)− ν(y)v(t, x , y) (x , y) ∈ R2, t > 0

Hypothesis :

f is of KPP-type.

ν, µ ≥ 0, continuous, even, compact support; µ =∫µ, ν =

∫ν.

u

f (u)

The functions ν and µ model exchanges of densities between the road andthe field → exchange functions.

44/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 44 / 56

Page 84: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Initial question

Enhancement of biological invasion by heterogeneities: effect of a line offast diffusion.

Road of fast diffusion : ∂tu − D∂xxu = exchange terms

The Field

The Field Exchanges area (support of µ or ν)nonlocal equation

KPP Reaction-Diffusion∂tv − d∆v = f (v)

x

y

45/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 45 / 56

Page 85: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Robustness of the BRR-result

Proposition

The system admits a unique nonnegative bounded stationary solution(Us ,Vs(y)) 6≡ (0, 0). This solution is x−invariant, and satisfiesVs(±∞) = 1.

Theorem

there exists c∗ = c∗(µ, ν, d ,D, f ′(0)) > 0 such that:

for all c > c∗, limt→∞

sup|x |≥ct

(u(t, x), v(t, x , y)) = (0, 0) ;

for all c < c∗, limt→∞

inf|x |≤ct;|y |<a

(u(t, x), v(t, x , y)) = (Us ,Vs).

Moreover, c∗ satisfies:

if D ≤ 2d, c∗ = cKPP := 2√

df ′(0) ;

if D > 2d, c∗ > cKPP .

The threshold is still D = 2d .46/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 46 / 56

Page 86: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Influence of nonlocal exchanges on the spreading speed

For fixed parameters d ,D, f ′(0), µ, ν, set of admissible exchanges

Λµ = µ ∈ C0(R), µ ≥ 0,

∫µ = µ, µ even.

For µ ∈ Λµ and ν ∈ Λν , there exists a spreading speed c∗(µ, ν). Let c∗0 bethe spreading speed for the local exchange model (i.e. c∗0 = c∗(µδ0, νδ0)).

Questions

infc∗(µ, ν), µ ∈ Λµ, ν ∈ Λν ?

Can we compare c∗(µ, ν) with c∗0 ?

supc∗(µ, ν), µ ∈ Λµ, ν ∈ Λν = c∗0 ?

For two last questions, split the system in two intermediate models. =⇒Dissymmetric results

47/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 47 / 56

Page 87: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Spreading of weeds

Example: scentless chamomile (matricaria perforata) weed in NorthAmericaT. de-Camino-Beck and M. Lewis - with data from Alberta provinceEffects of disturbed habitat: roadsides, farmland. . .

Picture credit: T. de-Camino-Beck

48/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 48 / 56

Page 88: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Propagation due to the road only

∂tu − D∂xxu = f (u) + νv |y=0 − µu x ∈ R, t > 0

∂tv − d∆v = −ρv (x , y) ∈ Ω, t > 0

−d∂y v |y=0 = µu − νv |y=0 x ∈ R, t > 0,

49/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 49 / 56

Page 89: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Propagation due to the road only

Theorem

Under the conditionµ√ρd

ν +√ρd≥ f ′(0),

any solution starting from a bounded initial datum, tends to 0 ast → +∞, uniformly in x ∈ R, y ≥ 0.

=⇒ no nonzero steady state exists in this range of parameters.

50/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 50 / 56

Page 90: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Existence of a non-zero stationary solution

Theorem

Under conditionµ√ρd

ν +√ρd

< f ′(0),

the system has a unique positive, bounded steady state (us , vs).Moreover, us is constant, equal to the only positive root of

µ√ρd

ν +√ρd

us = f (us),

and vs = vs(y) =µus

ν +√ρd

e−√ρ/d y .

−D∂xxU = f (U) + νV |y=0 − µU x ∈ R, t > 0

−d∆V = −ρV (x , y) ∈ Ω, t > 0

−d∂y V |y=0 = µU − νV |y=0 x ∈ R, t > 0,51/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 51 / 56

Page 91: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Asymptotic speed of propagation

Theorem

Under the same condition, there is a positive spreading speed w∗. In otherwords, let (u, v) be a solution with a nonnegative, compactly supportedinitial datum (u0, v0) 6≡ (0, 0). Then,

For all c > w∗, we have

limt→+∞

sup|x |≥ct

(u(x , t), v(x , y , t)) = (0, 0),

for all c ∈ [0,w∗), for all a > 0, we have

limt→+∞

sup|x |≤ct, 0≤y≤a

|u(x , t), v(x , y , t))− (us , vs(y))| = 0.

52/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 52 / 56

Page 92: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

Results and interpretation

Biological interpretation

All else equal, Critical rate of loss from the road for extinction :

µ0 := f ′(0)[ν√ρd

+ 1]

such that there is extinction ⇐⇒ µ ≥ µ0.

If µ < f ′(0) (loss rate is below intrinsic growth rate), there is alwayspersistence.

Case µ > f ′(0) : explicit threshold value ν0 for ν so that there ispersistence if and only if ν > ν0.

Case µ > f ′(0) and ν is fixed. Critical threshold γ so that there ispersistence of the species if and only if ρd < γ.

Condition only involves ρd

53/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 53 / 56

Page 93: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

conclusion

Conclusion

A model for the interaction of propagation on lines and in the plane(or surfaces and in the space)

Precise formula for the asyptotic speed of progagation along the road

Precise thresholds for propagation enhancement

Asymptotic shape of expansion (and ASP in every direction)

Critical angle phenomenon

Role of other factors

Existence of travelling fronts (B, Roquejoffre and Rossi)

Propagation along a favourable road in an unfavourable environment,discussion of parameters

Many variants and many open problems - and conjectures

54/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 54 / 56

Page 94: In honor of Jean-Michel Coron Henri Berestycki · The e ect of di usion on a line on Fisher-KPP propagation In honor of Jean-Michel Coron Henri Berestycki EHESS, PSL Research University,

conclusion

HAPPY BIRTHDAY JEAN-MICHEL !

55/56 Henri Berestycki (Paris) Effect of a line on F-KPP propagation IHP, Paris, 22 June 2016 55 / 56