improvements of berezin number inequalities · 2018-10-31 · linear and multilinear algebra issn:...

13
Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=glma20 Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20 Improvements of Berezin number inequalities Monire Hajmohamadi, Rahmatollah Lashkaripour & Mojtaba Bakherad To cite this article: Monire Hajmohamadi, Rahmatollah Lashkaripour & Mojtaba Bakherad (2018): Improvements of Berezin number inequalities, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2018.1538310 To link to this article: https://doi.org/10.1080/03081087.2018.1538310 Published online: 30 Oct 2018. Submit your article to this journal View Crossmark data

Upload: others

Post on 08-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

Full Terms & Conditions of access and use can be found athttp://www.tandfonline.com/action/journalInformation?journalCode=glma20

Linear and Multilinear Algebra

ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20

Improvements of Berezin number inequalities

Monire Hajmohamadi, Rahmatollah Lashkaripour & Mojtaba Bakherad

To cite this article: Monire Hajmohamadi, Rahmatollah Lashkaripour & Mojtaba Bakherad(2018): Improvements of Berezin number inequalities, Linear and Multilinear Algebra, DOI:10.1080/03081087.2018.1538310

To link to this article: https://doi.org/10.1080/03081087.2018.1538310

Published online: 30 Oct 2018.

Submit your article to this journal

View Crossmark data

Page 2: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

LINEAR ANDMULTILINEAR ALGEBRAhttps://doi.org/10.1080/03081087.2018.1538310

Improvements of Berezin number inequalities

Monire Hajmohamadi, Rahmatollah Lashkaripour and Mojtaba Bakherad

Faculty of Mathematics, Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I.R. Iran

ABSTRACTIn this paper, we generalize several Berezin number inequalitiesinvolving product of operators, which acting on a Hilbert spaceH (�). Among other inequalities, it is shown that if A,B are positiveoperators and X is any operator, then

berr(Hα(A, B)) ≤ ‖X‖r2

(ber(Ar + Br) − 2 inf

‖kλ‖=1η(kλ)

)

≤ ‖X‖r2

(ber(αAr + (1 − α)Br)

+ ber((1 − α)Ar + αBr) − 2 inf‖kλ‖=1

η(kλ)),

where η(kλ) = r0(〈Arkλ, kλ〉1/2 − 〈Brkλ, kλ〉1/2)2, r ≥ 2, 0 ≤ α ≤ 1,r0 = min{α, 1 − α} and Hα(A, B) = (AαXB1−α + A1−αXBα)/2.

ARTICLE HISTORYReceived 7 May 2018Accepted 21 September 2018

COMMUNICATED BYTakeaki Yamazaki

KEYWORDSBerezin number; Berezinsymbol; Heinz means;off-diagonal part; operatormatrix; positive operator

2010MATHEMATICSSUBJECTCLASSIFICATIONSPrimary 47A30; Secondary15A60; 30E20; 47A12

1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbertspace H with an inner product 〈 . , . 〉 and the corresponding norm ‖ . ‖. In the case whendimH = n, we identify B(H ) with the matrix algebra Mn of all n × n matrices withentries in the complex field. An operator A ∈ B(H ) is called positive if 〈Ax, x〉 ≥ 0 for allx ∈ H , and then we write A ≥ 0.

A functional Hilbert spaceH = H (�) is a Hilbert space of complex valued functionson a (nonempty) set �, which has the property that point evaluations are continuous i.e.for each λ ∈ � themap f → f (λ) is a continuous linear functional onH . The Riesz repre-sentation theorem ensure that for each λ ∈ � there is a unique element kλ ∈ H such thatf (λ) = 〈f , kλ〉 for all f ∈ H . The collection {kλ : λ ∈ �} is called the reproducing kernelof H . If {en} is an orthonormal basis for a functional Hilbert space H , then the repro-ducing kernel of H is given by kλ(z) = ∑

n en(λ)en(z); (see [1, Problem 37]). For λ ∈ �,let kλ = kλ/‖kλ‖ be the normalized reproducing kernel ofH . For a bounded linear oper-ator A on H , the function A defined on � by A(λ) = 〈Akλ, kλ〉 is the Berezin symbol ofA, which firstly have been introduced by Berezin [2, 3]. The Berezin set and the Berezin

CONTACT Mojtaba Bakherad [email protected] [email protected] Faculty ofMathematics, Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I.R. Iran

© 2018 Informa UK Limited, trading as Taylor & Francis Group

Page 3: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

2 M. HAJMOHAMADI ET AL.

number of the operator A are defined by

Ber(A) := {A(λ) : λ ∈ �} and ber(A) := sup{|A(λ)| : λ ∈ �},

respectively,(see [4]).The numerical radius of [A ∈ B(H (�))] is defined by w(A) := sup{|〈Ax, x〉| : x ∈

H , ‖x‖ = 1}. It is clear that

ber(A) ≤ w(A) ≤ ‖A‖ (1.1)

for all A ∈ B(H ). Moreover, the Berezin number of an operator A satisfies the followingproperties:

(i) ber(αA) = |α|ber(A) for all α ∈ C.(ii) ber(A + B) ≤ ber(A) + ber(B).

Let Ti ∈ B(H (�))(1 ≤ i ≤ n). The generalized Euclidean Berezin number ofT1, . . . ,Tn is defined in [5] as follows

berp(T1, . . . ,Tn) := supλ∈�

( n∑i=1

∣∣∣〈Tikλ, kλ〉∣∣∣p)1/p

,

which has the following properties:

(a) berp(αT1, . . . ,αTn) = |α|berp(T1, . . . ,Tn) for all α ∈ C;(b) berp(T1 + S1, . . . ,Tn + Sn) ≤ berp(T1, . . . ,Tn) + berp(S1, . . . , Sn),

where Ti, Si ∈ B(H (�))(1 ≤ i ≤ n).Namely, the Berezin symbol have been investigated in detail for the Toeplitz andHankel

operators on the Hardy and Bergman spaces; it is widely applied in the various questionsof analysis and uniquely determines the operator (i.e. for all λ ∈ �, A(λ) = B(λ) impliesA=B). For further information about Berezin symbol we refer the reader to [5–12] andreferences therein.

In [13], the author showed some Berezin number inequalities as follows:

ber(A∗XB) ≤ 12ber(B

∗|X|B + A∗|X∗|A),

ber(AX ± XA) ≤ ber1/2(A∗A + AA∗)ber1/2(X∗X + XX∗), (1.2)

and

ber(A∗XB + B∗YA) ≤ 2√

‖X‖‖Y‖ber1/2(B∗B)ber1/2(AA∗) (1.3)

for any A,B,X,Y ∈ B(H (�)).In this paper, we would like to state more extensions of the Berezin number inequalities.

Moreover, we obtain several Berezin number inequalities for 2 × 2 operator matrices. Forthis goal we will apply some methods from [14,15].

Page 4: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

LINEAR ANDMULTILINEAR ALGEBRA 3

2. main results

To prove our Berezin number inequalities, we need several well known lemmas.The following lemma is a simple consequence of the classical Jensen and Young

inequalities (see [16]).

Lemma 2.1: Let a, b ≥ 0, 0 ≤ α ≤ 1 and p,q>1 such that 1/p + 1/q = 1. Then

(a) aαb1−α ≤ αa + (1 − α)b ≤ (αar + (1 − α)br)1/r for r ≥ 1;(b) ab ≤ ap/p + bq/q ≤ (apr/p + bqr/q)1/r for r ≥ 1.

A refinement of the Young inequality is presented in [17] as follows:

aαb1−α ≤ αa + (1 − α)b − r0(a1/2 − b1/2)2, (2.1)

where r0 = min{α, 1 − α}.The following lemma is known as generalized mixed schwarz inequality [18].

Lemma 2.2: Let T ∈ B(H ) and x, y ∈ H be any vectors.

(a) If 0 ≤ α ≤ 1, then

| 〈Tx, y〉 |2≤ 〈| T |2α x, x〉〈| T∗ |2(1−α) y, y〉,

where |T| = (T∗T)1/2 is the absolute value of T.(b) If f, g are nonnegative continuous functions on [0,∞) which are satisfying the relation

f (t)g(t) = t(t ∈ [0,∞)), then

| 〈Tx, y〉 |≤‖ f (| T |)x ‖‖ g(| T∗ |)y ‖

for all x, y ∈ H .

Lemma 2.3: [5] Let A ∈ B(H1(�)), B ∈ B(H2(�),H1(�)), C ∈ B(H1(�),H2(�))

and D ∈ B(H2(�)). Then the following statements hold:

(a) ber([ A 0

0 D]) ≤ max{ber(A), ber(D)};

(b) ber([ 0 B

C 0]) ≤ 1

2 (‖B‖ + ‖C‖).

The next lemma follows from the spectral theorem for positive operators and the Jenseninequality (see [18]).

Lemma 2.4 (McCarthy inequality): Let T ∈ B(H ),T ≥ 0 and x ∈ H be a unit vector.Then

(a) 〈Tx, x〉r ≤ 〈Trx, x〉 for r ≥ 1;(b) 〈Trx, x〉 ≤ 〈Tx, x〉r for 0 < r ≤ 1.

Page 5: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

4 M. HAJMOHAMADI ET AL.

Now, by applying these lemmas, we extend some Berezin number inequalities.

Theorem 2.5: Let A,B,X ∈ B(H (�)). Then

(i) berr(A∗XB) ≤ ‖X‖rber((1/p)(A∗A)pr/2 + (1/q)(B∗B)qr/2) for r ≥ 0 and p,q>1 with1/p + 1/q = 1 and pr, qr ≥ 2.

(ii) ber(A∗XB) ≤ 12ber(B

∗|X|2αB + A∗|X∗|2(1−α)A) for every 0 ≤ α ≤ 1.

Proof: If kλ is the normalized reproducing kernel of H (�), then

|〈A∗XBkλ, kλ〉|r = |〈XBkλ,Akλ〉|r

≤ ‖X‖r‖Akλ‖r‖Bkλ‖r (by the Cauchy-Schwarz inequality)

≤ ‖X‖r〈Akλ,Akλ〉r/2〈Bkλ,Bkλ〉r/2

≤ ‖X‖r(1p〈A∗Akλ, kλ〉pr/2 + 1

q〈B∗Bkλ, kλ〉qr/2

)(by Lemma 2.1)

≤ ‖X‖r(1p〈(A∗A)pr/2kλ, kλ〉 + 1

q〈(B∗B)qr/2kλ, kλ〉

)(by Lemma 2.4)

= ‖X‖r⟨1p(A∗A)pr/2 + 1

q(B∗B)qr/2kλ, kλ

⟩≤ ‖X‖rber

(1p(A∗A)pr/2 + 1

q(B∗B)qr/2

).

Therefore

berr(A∗XB) ≤ ‖X‖rber(1p(A∗A)pr/2 + 1

q(B∗B)qr/2

),

and so we get the part (i). For the proof of the part (ii) we have

|〈A∗XBkλ, kλ〉| = |〈XBkλ,Akλ〉|≤ 〈|X|2αBkλ,Bkλ〉1/2〈|X∗|2(1−α)Akλ,Akλ〉1/2 (by Lemma 2.2)

≤ 12 (〈B∗|X|2αBkλ, kλ〉 + 〈A∗|X∗|2(1−α)Akλ, kλ〉)

(by the arithmetic-geometric mean inequality)

= 12 (〈B∗|X|2αB + A∗|X∗|2(1−α)Akλ, kλ〉)

≤ 12ber(B

∗|X|2αB + A∗|X∗|2(1−α)A).

Now, the result follows by taking supremum on λ ∈ �. �

Theorem 2.6: Let A,B,X,Y ∈ B(H (�)). Then for every 0 ≤ α ≤ 1

ber(A∗XB + B∗YA) ≤ 12ber(B

∗|X|2αB + A∗|X∗|2(1−α)A + A∗|Y|2αA + B∗|Y∗|2(1−α)B).(2.2)

Page 6: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

LINEAR ANDMULTILINEAR ALGEBRA 5

Proof: Applying Lemma 2.2 and the arithmetic-geometric mean inequality, for any kλ ∈H (�), we have

|〈(A∗XB + B∗YA)kλ, kλ〉| ≤ |〈A∗XBkλ, kλ〉| + |〈B∗YAkλ, kλ〉|= |〈XBkλ,Akλ〉| + |〈YAkλ,Bkλ〉|≤ 〈|X|2αBkλ,Bkλ〉1/2〈|X∗|2(1−α)Akλ,Akλ〉1/2

+ 〈|Y|2αAkλ,Akλ〉1/2〈|Y∗|2(1−α)Bkλ,Bkλ〉1/2

≤ 12

(〈B∗|X|2αBkλ, kλ〉 + 〈A∗|X∗|2(1−α)Akλ, kλ〉

)+ 1

2

(〈A∗|Y|2αAkλ, kλ〉 + 〈B∗|Y∗|2(1−α)Bkλ, kλ〉

)= 1

2

(〈(B∗|X|2αB + A∗|X∗|2(1−α)A + A∗|Y|2αA

+B∗|Y∗|2(1−α)B)kλ, kλ〉)

≤ 12ber(B

∗|X|2αB + A∗|X∗|2(1−α)A + A∗|Y|2αA+ B∗|Y∗|2(1−α)B).

Now, by taking supremum over λ ∈ �, we get the desired inequality. �

Inequality (2.2) yields several Berezin number inequalities as special cases. A sample ofelementary inequalities are demonstrated in the following remarks.

Remark 2.7: By letting α = 12 in inequality (2.2), we get the following inequalities:

ber(A∗XB + B∗YA) ≤ 12ber(B

∗|X|B + A∗|X∗|A + A∗|Y|A + B∗|Y∗|B)

≤ 12ber(B

∗|X|B + A∗|X∗|A) + 12ber(A

∗|Y|A + B∗|Y∗|B).

Remark 2.8: Putting α = 12 , A= I and X=Y =A, in inequality (2.2) we can obtain the

following inequality:

ber(AB + B∗A) ≤ 12ber(|A| + |A∗|) + 1

2ber(B∗(|A| + |A∗|)B).

In the next result we find an upper bound for power of the Berezin number ofAαXB1−α ,in which 0 ≤ α ≤ 1.

Theorem 2.9: Suppose that A,B,X ∈ B(H (�)) such that A,B are positive. Then

berr(AαXB1−α) ≤ ‖X‖r(ber(αAr + (1 − α)Br) − inf

‖kλ‖=1η(kλ)

), (2.3)

in which η(kλ) = r0(〈Arkλ, kλ〉1/2 − 〈Brkλ, kλ〉1/2)2, r0 = min{α, 1 − α}, r ≥ 2 and 0 ≤α ≤ 1.

Page 7: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

6 M. HAJMOHAMADI ET AL.

Proof: Let kλ be the normalized reproducing kernel of H (�). Then

|〈AαXB1−α kλ, kλ〉|r = |〈XB1−α kλ,Aα kλ〉|r

≤ ‖x‖r‖B1−α kλ‖r‖Aα kλ‖r (by the Cauchy-Schwarz inequality)

= ‖X‖r〈B2(1−α)kλ, kλ〉r/2〈A2α kλ, kλ〉r/2

≤ ‖X‖r〈Arkλ, kλ〉α〈Brkλ, kλ〉1−α (by Lemma 2.4)

≤ ‖X‖r(〈(αAr + (1 − α)Br)kλ, kλ〉 − r0(〈Arkλ, kλ〉1/2

−〈Brkλ, kλ〉1/2)2)

(by (2.1))

= ‖X‖r(〈(αAr + (1 − α)Br)kλ, kλ〉) − ‖X‖rr0(〈Arkλ, kλ〉1/2

− 〈Brkλ, kλ〉1/2)2

≤ ‖X‖r(ber(αAr+(1 − α)Br)−r0(〈Arkλ, kλ〉1/2−〈Brkλ, kλ〉1/2)2

).

Taking the supremum over λ ∈ �, we deduce the desired result. �

Remark 2.10: PuttingA=B= I in inequality (2.3), we get a generalization of the inequal-ity (1.1).

The Heinz mean is defined as Hα(a, b) = (a1−αbα + aαb1−α)/2 for a,b>0 and 0 ≤α ≤ 1. The function Hα is symmetric about the point α = 1/2 and

√ab ≤ Hα(a, b) ≤

(a + b)/2 for all α ∈ [0, 1]. For further information about the Heinz mean we refer thereader to [14, 19, 20] and references therein. In the next theorem we can obtain an upperbound for the Berezin number involving power Heinz mean.

Theorem 2.11: Suppose that A,B,X ∈ B(H (�)) such that A,B are positive. Then

berr(AαXB1−α + A1−αXBα

2) ≤ ‖X‖r

2

(ber(Ar + Br) − 2 inf

‖kλ‖=1η(kλ)

)

≤ ‖X‖r2

(ber(αAr + (1 − α)Br) + ber((1 − α)Ar + αBr)

− 2 inf‖kλ‖=1

η(kλ)),

in which η(kλ) = r0(〈Arkλ, kλ〉1/2 − 〈Brkλ, kλ〉1/2)2, r0 = min{α, 1 − α}, r ≥ 2 and 0 ≤α ≤ 1.

Proof: Using Theorem 2.9 for kλ, which is the normalized reproducing kernel of H (�)

we have∣∣∣∣⟨AαXB1−α + A1−αXBα

2kλ, kλ

⟩∣∣∣∣r≤(

|〈AαXB1−α kλ, kλ〉| + |〈A1−αXBα kλ, kλ〉|2

)r

Page 8: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

LINEAR ANDMULTILINEAR ALGEBRA 7

≤ 12(|〈AαXB1−α kλ, kλ〉|r + |〈A1−αXBα kλ, kλ〉|r) (by the convexity of f (t) = tr)

≤ ‖X‖r2

(〈αAr + (1 − α)Brkλ, kλ〉 + 〈(1 − α)Ar + αBrkλ, kλ〉 − 2r0(〈Arkλ, kλ〉1/2

− 〈Brkλ, kλ〉1/2)2)

= ‖X‖r2

(〈(Ar + Br)kλ, kλ〉 − 2r0(〈Arkλ, kλ〉1/2 − 〈Brkλ, kλ〉1/2)2)

≤ ‖X‖r2

(ber(Ar + Br) − 2r0(〈Arkλ, kλ〉1/2 − 〈Brkλ, kλ〉1/2)2).

Taking supremum over λ ∈ �, we get the first inequality. For the second inequality, wehave

‖X‖r2

ber(Ar + Br) = ‖X‖r2

ber(αAr + (1 − α)Br + (1 − α)Ar + αBr)

≤ ‖X‖r2

(ber(αAr + (1 − α)Br) + ber((1 − α)Ar + αBr)).

3. Berezin number inequalities of off-diagonal matrices

In this section, we obtain some inequalities involving powers of the Berezin number forthe off-diagonal parts of 2 × 2 operator matrices.

Theorem 3.1: Let T = [ 0 BC 0] ∈ B(H (�1) ⊕ H (�2)) and f, g be nonnegative continuous

functions on [0,∞) satisfying the relation f (t)g(t) = t(t ∈ [0,∞)). Then

berr(T) ≤ max{ber

(1pf pr(| C |) + 1

qgqr(| B∗ |)

),

ber(1pf pr(| B |) + 1

qgqr(| C∗ |)

)}, (3.1)

in which r ≥ 1, p ≥ q > 1 such that 1/p + 1/q = 1 and pr ≥ 2.

Proof: For any (λ1, λ2) ∈ �1 × �2, let k(λ1,λ2) =[kλ1kλ2

]be the normalized reproducing

kernel in H (�1) ⊕ H (�2). Then

| 〈Tk(λ1, λ2), k(λ1, λ2)〉 |r

≤‖ f (| T |) k(λ1, λ2) ‖r‖ g(| T∗ |) k(λ1, λ2) ‖r (by Lemma 2.2(b))

= 〈f 2(| T |)k(λ1, λ2), k(λ1, λ2)〉r/2〈g2(| T∗ |)k(λ1, λ2), k(λ1, λ2)〉r/2

≤ 1p

⟨f 2([| C | 0

0 | B |])

k(λ1, λ2), k(λ1, λ2)⟩pr/2

Page 9: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

8 M. HAJMOHAMADI ET AL.

+ 1q

⟨g2([| B∗ | 0

0 | C∗ |])

k(λ1, λ2), k(λ1, λ2)⟩qr/2

(by Lemma 2.1(b))

≤ 1p

⟨[f pr | C | 0

0 f pr | B |]k(λ1, λ2), k(λ1, λ2)

⟩+ 1

q

⟨[gqr | B∗ | 0

0 gqr | C∗ |]k(λ1, λ2), k(λ1, λ2)

⟩(by Lemma 2.4(a))

=⟨⎡⎢⎣

1pf pr(| C |) + 1

qgqr(| B∗ |) 0

01pf pr(| B |) + 1

qgqr(| C∗ |)

⎤⎥⎦ k(λ1, λ2), k(λ1, λ2)

⟩.

Hence

| 〈Tk(λ1, λ2), k(λ1, λ2)〉 |r

≤ ber

⎛⎜⎝⟨⎡⎢⎣1pf pr(| C |)+ 1

qgqr(| B∗ |) 0

01pf pr(| B |)+ 1

qgqr(|C∗ |)

⎤⎥⎦ k(λ1, λ2), k(λ1, λ2)

⟩⎞⎟⎠ .

Now, applying the definition of Berezin number and Lemma 2.3(a), we have

berr(T) ≤ max{ber

(1pf pr(| C |) + 1

qgqr(| B∗ |)

), ber

(1pf pr(| B |) + 1

qgqr(| C∗ |)

)}.

Inequality (3.1) induces the following inequality.

Corollary 3.2: Let T = [ 0 BC 0] ∈ B(H (�1) ⊕ H (�2)). Then

berr(T) ≤ 12 max{ber(| C |2rα + | B∗ |2r(1−α)), ber(| B |2rα + | C∗ |2r(1−α))}

for any r ≥ 1 and 0 ≤ α ≤ 1.

Proof: Letting f (t) = tα , g(t) = t1−α and p=q=2 in inequality (3.1), we get the desiredinequality. �

Theorem 3.3: Let Ti = [ 0 BiCi 0 ] ∈ B(H2(�) ⊕ H1(�)) for any i = 1, 2, . . . , n. Then

berpp(T1,T2, . . . ,Tn) ≤ max

{ber

( n∑i=1

α | Ci |p +(1 − α) | B∗i |p),

ber

( n∑i=1

α | Bi |p +(1 − α) | C∗i |p)}

(3.2)

for 0 ≤ α ≤ 1 and p ≥ 2.

Page 10: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

LINEAR ANDMULTILINEAR ALGEBRA 9

Proof: For any (λ1, λ2) ∈ �1 × �2, let k(λ1,λ2) = [ kλ1kλ2

] be the normalized reproducingkernel in H (�1) ⊕ H (�2). Then

n∑i=1

| 〈Tik(λ1,λ2), k(λ1,λ2)〉 |p

=n∑i=1

(| 〈Tik(λ1,λ2), k(λ1,λ2)〉 |2)p/2

≤n∑

i=1(〈| Ti |2α k(λ1,λ2), k(λ1,λ2)〉〈| T∗

i |2(1−α) k(λ1,λ2), k(λ1,λ2)〉)p/2

(by Lemma 2.2(a))

≤n∑

i=1〈| Ti |pα k(λ1,λ2), k(λ1,λ2)〉〈| T∗

i |p(1−α) k(λ1,λ2), k(λ1,λ2)〉 (by Lemma 2.4(a))

≤n∑

i=1〈| Ti |p k(λ1,λ2), k(λ1,λ2)〉α〈| T∗

i |p k(λ1,λ2), k(λ1,λ2)〉1−α (by Lemma 2.4(b))

≤n∑

i=1(α〈| Ti |p k(λ1,λ2), k(λ1,λ2)〉 + (1 − α)〈| T∗

i |p k(λ1,λ2), k(λ1,λ2)〉)

(by Lemma 2.1(a))

=n∑i=1

⟨[| Ci |p 00 | Bi |p

]k(λ1,λ2), k(λ1,λ2)

+(1 − α)

⟨[| B∗i |p 00 | C∗

i |p]k(λ1,λ2), k(λ1,λ2)

⟩)

=n∑i=1

⟨[α | Ci |p +(1 − α) | B∗

i |p 00 α | Bi |p +(1 − α) | C∗

i |p]k(λ1,λ2), k(λ1,λ2)

=⟨⎡⎢⎢⎢⎢⎣

n∑i=1

α | Ci |p+(1 − α) | B∗i |p 0

0n∑

i=1α | Bi |p+(1 − α) | C∗

i |p

⎤⎥⎥⎥⎥⎦ k(λ1,λ2), k(λ1,λ2)

⟩.

Therefore

n∑i=1

| 〈Tik(λ1,λ2), k(λ1,λ2)〉 |p

Page 11: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

10 M. HAJMOHAMADI ET AL.

≤ ber

⟨⎡⎢⎢⎢⎢⎣n∑

i=1α | Ci |p +(1 − α) | B∗

i |p 0

0n∑

i=1α | Bi |p +(1 − α) | C∗

i |p

⎤⎥⎥⎥⎥⎦

k(λ1,λ2), k(λ1,λ2)

⟩.

By the definition of the Berezin number and Lemma 2.3(a), we get

berpp(T1,T2, . . . ,Tn)

≤ max

{ber

( n∑i=1

α | Ci |p+(1 − α) | B∗i |p), ber

( n∑i=1

α | Bi |p+(1 − α) | C∗i |p)}

.

Now, we would like to estimate the Berezin number for matrix [ A BC D ].

Proposition 3.4: Let T = [ A 00 D ] ∈ B(H1(�) ⊕ H2(�)). Then

berr(T) ≤ 12 max{ber(|A|r + |A∗|r), ber(|D|r + |D∗|r)} (3.3)

for r ≥ 1.

Proof: Let k(λ1,λ2) = [ kλ1kλ2

] be the normalized reproducing kernel of H (�1) ⊕ H (�2).Then

|〈Tk(λ1,λ2), k(λ1,λ2)〉|≤ 〈|T|k(λ1,λ2), k(λ1,λ2)〉1/2〈|T∗|k(λ1,λ2), k(λ1,λ2)〉1/2

≤ 12

⟨[| A | 00 | D |

]k(λ1,λ2), k(λ1,λ2)

⟩+ 1

2

⟨[| A∗ | 00 | D∗ |

]k(λ1,λ2), k(λ1,λ2)

≤(12

⟨[| A | 00 | D |

]k(λ1,λ2), k(λ1,λ2)

⟩r+ 1

2

⟨[| A∗ | 00 | D∗ |

]k(λ1,λ2), k(λ1,λ2)

⟩r)1/r

≤(12

⟨[| A |r 00 | D |r

]k(λ1,λ2), k(λ1,λ2)

⟩+ 1

2

⟨[| A∗ |r 00 | D∗ |r

]k(λ1,λ2), k(λ1,λ2)

⟩)1/r

=

⎛⎜⎝⟨⎡⎢⎣12(| A |r +|A∗|r) 0

012(| D |r +|D∗|r)

⎤⎥⎦ k(λ1,λ2), k(λ1,λ2)

⟩⎞⎟⎠1/r

.

Page 12: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

LINEAR ANDMULTILINEAR ALGEBRA 11

Thus

|〈Tk(λ1,λ2), k(λ1,λ2)〉|r ≤⟨⎡⎢⎣1

2(| A |r +|A∗|r) 0

012(| D |r +|D∗|r)

⎤⎥⎦ k(λ1,λ2), k(λ1,λ2)

⟩.

Therefore

berr(T) ≤ 12 max{ber(|A|r + |A∗|r), ber(|D|r + |D∗|r)}.

The following corollary deduces from inequalities (3.1) and (3.3) directly.

Corollary 3.5: Let T = [ A BC D ] with A,B,C,D ∈ B(H (�)). Then

ber(T) ≤ 12 max{ber(|C| + |B∗|), ber(|B| + |C∗|)}+ 1

2 max{ber(|A| + |A∗|), ber(|D| + |D∗|)}.In particular,

ber([

A BB A

])≤ 1

2(ber(|A| + |A∗|) + ber(|B| + |B∗|)).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Halmos PR. A Hilbert Space Problem Book. 2nd ed. New York: springer; 1982.[2] Berezin FA. Covariant and contravariant symbols for operators. Math USSR-Izv. 1972;6:

1117–1151.[3] Berezin FA. Quantizations. Math USSR-Izv. 1974;8:1109–1163.[4] Karaev MT. Berezin symbol and invertibility of operators on the functional Hilbert spaces.

J Funct Anal. 2006;238:181–192.[5] Bakherad M. Some Berezin number inequalities for operator matrices. Czech Math J. 2018.

doi:10.21136/CMJ.2018.0048-17.[6] Garayev MT. Berezin symbols, Hölder-McCarthy and Young inequalities and their applica-

tions. Proc Inst Math Mech Natl Acad Sci Azerb. 2017;43(2):287–295.[7] Garayev MT, Gürdal M, Saltan S. Hardy type inequaltiy for reproducing kernel Hilbert space

operators and related problems. Positivity. 2017;21(4):1615–1623.[8] Karaev MT. Functional analysis proofs of Abels theorems. Proc Amer Math Soc.

2004;132:2327–2329.[9] Karaev MT, Saltan S. Some results on Berezin symbols. Complex Var Theory Appl.

2005;50(3):185–193.[10] Nordgren E, Rosenthal P. Boundary values of Berezin symbols. Oper Theory Adv Appl.

1994;73:362–368.[11] Yamanci U, Gürdal M. On numerical radius and Berezin number inequalities for reproducing

kernel Hilbert space. New York J Math. 2017;23:1531–1537.[12] Yamanci U, Gürdal M, Garayev MT. Berezin number inequality for convex function in

reproducing Kernel Hilbert space. Filomat. 2017;31(18):5711–5717.

Page 13: Improvements of Berezin number inequalities · 2018-10-31 · Linear and Multilinear Algebra ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: ... Rahmatollah Lashkaripour

12 M. HAJMOHAMADI ET AL.

[13] BakheradM,KaraevMT. Berezin number inequalities forHilbert space operators. ConcrOper.(to appear).

[14] Hajmohamadi M, Lashkaripour R, Bakherad M. Some generalizations of numerical radius onoff-diagonal part of 2 × 2 operator matrices. J Math Inequal. 2018;12(2):447–457.

[15] HajmohamadiM, Lashkaripour R, BakheradM. Further refinements of generalized numericalradius inequalities for Hilbert space operators. Georgian Math J. (to appear).

[16] Hardy GH, Littlewood JE, Polya G. Inequalities. 2nd ed. Cambridge: Cambridge UniversityPress; 1988.

[17] Kittaneh F, Manasrah Y. Improved Young and Heinz inequalities for matrices. J Math AnalAppl. 2010;361:262–269.

[18] Kittaneh F. Notes on some inequalities for Hilbert space operators. Publ Res Inst Math Sci.1988;24:283–293.

[19] Bakherad M, Moslehian MS. Reverses and variations of Heinz inequality. Linear MultilinearAlgebra. 2015;63(10):1972–1980.

[20] Hajmohamadi M, Lashkaripour R, Bakherad M. Some extensions of the Young and Heinzinequalities for matrices. Bull Iranian Math Soc. 2018;44(4):977–990.