implicit perceptual learning during passive listening o f...

68
Implicit perceptual learning during passive listening of sound sequences: an ECoG study Raphaëlle Bertrand-Lalo Supervised by Jérémie Mattout and Gerwin Schalk Co-supervised by Françoise Lecaignard and Peter Brunner Master of cognitive neuroscience, ENS (~12271 words ) September, 2017

Upload: lehanh

Post on 27-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

 

 

Implicit perceptual learning during passive         

listening of sound sequences: an ECoG study 

 Raphaëlle Bertrand-Lalo 

 Supervised by  

Jérémie Mattout and Gerwin Schalk 

 

Co-supervised by 

Françoise Lecaignard and Peter Brunner 

 

Master of cognitive neuroscience, ENS 

(~12271 words ) 

 

September, 2017 

 

 

Table of contents   

Abstract 4 

Contributions 5 

Distinctiveness Statement 6 

Introduction 7 Scientific Background 7 

Perception and learning 8 Electrophysiological brain signals 8 A predictive coding perspective 11 Open questions 12 

An original EEG/MEG study 13 Experimental paradigm 13 Main results 14 

The current ECoG study 15 Motivations 116 Related recent ECoG studies 16 Outline of the report 18 

Method 19 Participants 20 Experimental design 20 ECoG recordings 22 Data preprocessing 22 Montage reference 23 ERP analysis 24 Spectral analysis 25 Computational modeling (ERP analysis) 26

29 

Results 30 ERP analysis 31 

Responsive sensors 31 ERP sensor-level 34 Computational modelling 36 

Spectral analysis 40 

 

 

Responsive sensors 40 Alpha 41 Broadband gamma 45

47 

Discussion 48 ERP analysis 49 Spectral analysis 49 

ECoG limitations 52 Number of subjects 52 

Supplementary material: 53 ECoG clinical and research procedure 53 Patient rejection 54 Detailed results from statistical analysis 56

59 

Bibliography 60  

 

   

 

 

Abstract 

Auditory oddball paradigms have been widely used for almost four decades, to study human                             

perception and perceptual learning. Despite a huge amount of data, these processes remain partly                           

unknown but the oddball paradigm is still very much used, namely because of the recent                             

computational theories that have associated electrophysiological responses to oddball stimuli with a                       

measure of surprise or prediction error. This is the case for the well-known Mismatch Negativity                             

(MMN) component. 

The MMN is traditionally measured with Electroencephalography (EEG). It is acknowledged as a                         

marker of automated or implicit perceptual learning, not only in the auditory domain but also other                               

sensory modalities. It reflects the processing of sequences of stimuli and is one of the most robust                                 

marker of the updated predictions computed by the brain. It is thus a valuable marker to study                                 

predictive coding by the brain. 

Moreover, the MMN has been shown to be altered in several neurological and psychiatric conditions,                             

which makes it also valuable to study brain dysfunctions. What remain unknown though are the                             

precise computational processes at play during auditory sequence processing and their                     

neurophysiological correlates, including but also beyond the MMN. 

 

Recent experimental studies implementing new tone sequences have revealed the structure in the                         

trial by trial variations of electrophysiological responses. These variations at various post-stimulus                       

latencies, suggest that a fronto-temporal cortical hierarchy support the perception of sound                       

sequences up to the level of contextual regularities. 

In the aim of finely characterizing this cortical network, both at the algorithmic and                           

electrophysiological levels, my project consisted in combining for the first time, these new auditory                           

sequences with the high spatial, temporal and frequency resolution of Electrocorticographic (EcoG)                       

recordings of implanted epileptic patients. 

 

Three patients have been recorded so far. This report describes in details the analysis of the first                                 

patient’s data. 

Three main analysis were conducted: 

1. An event-related potential analysis in order to relate ECoG findings with known                       

EEG findings, namely identifying the spatio-temporal signature of mismatch                 

responses as well as the effect of sequence predictability. 

 

 

 

2. A trial-by-trial computational analysis of the above (low frequency) responses in                     

order to reveal the associated computational learning processes. 

 

3. An analysis of oscillatory and high frequency activities in the alpha and broad 

gamma bands. 

 

We observed a mismatch response at the latency of the MMN which was modulated by predictability                               

as expected: i.e. its amplitude was reduced as the sequence was more predictable. Moreover, the                             

computational analysis of trial-by–trial responses revealed that mismatch responses over time are                       

not simply binary (different for the standard and the deviant tone) but reflects perceptual learning in                               

the sense that they correlate with surprise as predicted by an approximate Bayesian learning model.                             

Finally, we observed alpha suppression as well as an increase in broadband gamma after a deviant                               

tone. An effect that was reduced with predictability. 

 

Keeping in mind that these findings come from one subject only, we discuss the consistency of these                                 

results with other findings and existing theories in the literature. We conclude this report with some                               

perspective of this work.   

 

Contributions 

 

While the desire to study human perception and learning was mine, many helped in the literature                               

review, experimental design, and data analysis.  

Claire Sergent helped me pave the way by sending me relevant literature that she believed would be                                 

helpful in my research.   

Françoise Lecaignard, Anne Caclin and Jérémie Mattout have been of a precious help from the very                               

beginning in sharing with me the oddball paradigm that they designed and introduced me to the                               

great literature dealing with mismatch negativity and computational neuroscience. Françoise                   

trained me to use the Elan Software and with the contribution of Emmanuel Maby and Aurelie                               

Bidet-Caulet, she supervised me at each step of the signal processing.  

 

 

 

The ECoG data were collected with Lawrence Crowther, Ladan Moheimanian, Peter Brunner and                         

James Swift. The 3D cortical brain models and the electrodes’ coordinates were determined by Peter                             

Brunner and Lawrence Crowther using Freesurfer, SPM8 and custom MATLAB scripts.  

 

I set up the experiment, with the help of Peter Brunner; he checked and reviewed all my studies                                   

before running them online. Peter then introduced me to ECoG signals from scratch, aided me in my                                 

analysis and gave me critical feedback about how to perform the right statistics.  

 

Jérémie Mattout and Gerwin Schalk both aided me in identifying and clarifying my specific research                             

questions.  

 

I made the theoretical interpretations and wrote the thesis. Jérémie Mattout, Françoise Lecaignard,                         

Peter Brunner and Gerwin Schalk gave me precious feedback on this work, including theoretical                           

notes, style as well as presentation and analysis notes.  

 

I am very grateful for all their contributions.   

Distinctiveness Statement 

 

The originality of our approach lies in the combination of: 

- A recently proposed auditory sequence that carefully manipulates sound                 

predictability; 

 

- Computational models of perceptual learning that can be tested against                   

trial-by-trial variations of electrophysiological responses; 

 

- EcoG recordings in epileptic patients in order to benefit from high spatial,                       

temporal and frequency resolution, to characterize the functional anatomy of                   

implicit perceptual learning within the auditory cortical hierarchy. 

 

 

Introduction  

A) Scientific Background  

a) Perception and learning  

i) Perceiving sequences  

A pixel is of little interest if it is not considered as part of a picture. Similarly, a sound is only                                         

meaningful as part of a scene. Humans are confronted with a tremendous amount of information                             

that needs to be processed as part of a whole, as part of a broader picture, a context. Hence,                                     

segregation of information is inherent to any cognitive process. We perform sequencing of sensory                           

inputs every day to make sense: speech or music sounds, actions…  

This process involves being able to extract and store the right information at different levels of                               

details. Several neural mechanisms have so far been proposed and reviewed in1.   

ii) Implicit learning in the auditory domain  

You don’t have to be Victor Hugo nor Wolfgang Mozart to sense that “This is not right”/”That sounds                                   

wrong” when a non-native speaker utters a grammatical mistake in your language, or when a                             

musician breaks the rules of harmony. Indeed, human learners are highly sensitive to the                           

hierarchical structures in their environment and are able to extract the rules underlying these                           

structures, without intention and awareness. First introduced by Reber (1967) in a seminal paper on                             

artificial grammar learning, the term “implicit learning” refers to the way people acquire the                           

regularities of their environment, without any effort. A body of evidence suggests that implicit                           

learning governs language 2,3 and music 4 acquisition and perception.  

 

My project aimed at better characterizing the mental processes and physiological mechanisms                       

underlying implicit perceptual learning of structured sound sequences.  

 

   

 

 

iii) The experimental paradigms to study the implicit learning of                 

perceptual sequences 

Perceptual sequences 

To investigate how the brain deals with sequences of sounds, one typically uses an oddball paradigm,                                 

i.e. one presents a sequence of identical and frequent stimuli ( the standards), occasionally interrupted                             

by a different rare sound ( a deviant). 

The stimuli can be of different types: tactile 5, visual6, auditory7. And the dimension along which they                               

differ may be frequency, intensity, duration… Note that another way of eliciting a mismatch response                             

is simply to omit the stimulus8, as the timing of the sequence is also important and could be predicted                                     

by the brain. 

In order to tackle the learning process underpinning the perception of sequences, the experimental                           

design may further manipulate the temporal or statistical regularity of the sequence. For instance, the                             

occurrence of deviant sounds may follow a deterministic (i.e., highly predictable) pattern or a random                             

(i.e., less predictable) one. 

 

Implicit presentation  

In order, to investigate the implicit extraction of the environmental regularities, the attention of the                               

subject must be diverted away from the sequence of stimuli. 

To this end, the subject or patient is given another task, such as watching a movie or responding to                                     

asynchronous stimuli in another sensory modality. 

Such paradigms are referred to as passive as the sequence of interest is thus passively perceived. It                                 

does not require any behavioral response or report. It does not require the voluntary focus of                               

attention.   

 

b) Electrophysiological brain signals  

Electrophysiological brain signals can be analyzed either in the time domain or in the spectral                               

domain. 

In the time domain, we refer to evoked related potential (ERP) as averaged responses that are                               

time-locked to stimulus presentation. 

In the spectral domain, we refer to oscillations or high frequency activities that represent synchronized activity of neuronal populations. By convention they are divided into frequency bands like: delta (δ, <4

 

 

Hz); theta (θ, 4–7 Hz); alpha (α, 8–12 Hz); beta (β, 13–29 Hz); low gamma (Lγ, 30-60Hz); broadband gamma (Hγ, >60Hz). Here, we focus our analysis on ERPs, alpha and broadband gamma activities.   

 

i) Mismatch Negativity 

The Mismatch Negativity (MMN) is an evoked related potential (ERP) elicited by the violation of a                                 

rule, established by a sequence of sensory stimuli. First discovered by Näätänen9 , it is widely accepted                                 

that the MMN reflects the brain’s ability to detect a change in the environment10,11. Since then, many                                 

mechanisms have been proposed to explain the MMN, such as the “stimulus adaptation” and the “model                               

adjustment ” hypothesis (for a review, see 7). Either way, the MMN is widely recognized as a measure for                                 

surprise. 

 

Mismatch Negativity has been associated to “primitive intelligence”12. It is worth noting that this                           

response cannot be refrained and does not need any attention from the subject. In fact, the MMN was                                   

also found in babies13, in coma14, during sleep 15, or under anesthesia 16 .   

Encephalographic recordings showed that the MMN typically peaks at about 100-250 ms after the                           

stimulus onset (reviewed in17). However, the mechanisms underlying the generation of the MMN                         

remain unclear. Though, recent studies5,18,19 using dynamical causal modelling (DCM) of evoked                       

responses20 pertain to a bilateral fronto-temporal cortical network, hierarchically organized. The                     

MMN would result from the interplay between those regions, through forward and backward message                           

passing.   

 

ii) Alpha oscillations 

Alpha oscillations reflect cortical excitability  

Alpha oscillations are associated with a rhythmic inhibition of cortical processing21 . In other words,                             

alpha power increases in the areas of the brain that are not involved in the current task (e.g over                                     

occipital cortex when a subject closes the eyes22) and decreases elsewhere (e.g. over auditory cortex                             

when a subject listens to sounds23,24 ; or over the contralateral motor cortex during voluntary                             

movement 25–27.). It was further found that decreases of alpha power reflects the excitability of the                               

cortex 28–30) and enhances the efficacy with which information is processed 31–35. For example, reduced                         

alpha power over the occipital cortex promotes the perception of subtle visual stimuli29,36 and is                             

 

 

observed in anticipation of an upcoming stimulus31–3537,38. Indeed, one way to convey the information                           

from one area of the brain to another is to inhibit the irrelevant pathways and this inhibition could be                                     

mediated by oscillatory activity in the alpha band39,40 .   

 

Alpha oscillations in the auditory system 

Auditory cortical areas being spatially more confined than visual or sensorimotor ones, may explain                           

why it appears more difficult to reveal alpha rhythms in the auditory cortex with scalp recordings.                               

However, there is also an auditory alpha-like rhythm independent of visual and motor generators.                           

The feasibility of recording alpha-like dynamics from auditory cortex is reviewed in41. Authors report                           

that there is indeed the equivalent of a resting state in the auditory system whose perturbation (e.g.                                 

by the presentation of a sound) yields a momentary suppression of alpha power.   

 

Alpha oscillations and evoked responses  

Post-stimulus alpha and other low frequency oscillations may be linked to evoked related potentials                           

(ERPs). Three main theories have been proposed to explain ERPs (for a review see:42): additivity,                             

phase-resetting and baseline-shift. Additivity and phase reset theories offer an explanation for                       

exogenous early components. The former suggests that the stimulus itself involves a time-locked                         

response superimposing to the background activity in each trial, whereas the latter suggests that the                             

phase of ongoing oscillations get aligned to the stimulus. In both case, averaging over trials leads to a                                   

time-locked component that differs from the baseline. The baseline-shift theory relies upon the                         

asymmetry in the amplitude of the oscillations, such that the peaks of the oscillations are more            strongly modulated than the troughs, leading to a depression (or increase) in the oscillatory activity in response to a stimulus.  

Additional studies have shown that background alpha in particular predicts the latency and the                           

amplitude of ERP components such as the P1-N143,44 , and the P345.  

 

Alpha oscillations and cognitive skills 

Finally, regarding the functional interpretation of alpha activity, it has been shown to modulate or                             

correlate with perception, attention and memory46,47 

 

 

 

iii) Broadband gamma 

Increases in broadband gamma power provide a measure of the local average firing rate of neuronal                               

populations, as demonstrated by 48 using local field potentials (LFP).  

Moreover, broadband gamma power has been shown to be tightly correlated with the cortical activity                             

of neuronal populations involved in a task. For example, broadband gamma power increases in motor                             

areas during motor movements 49–51 , in areas of speech processing during speech perception 23,52 , in                                 

auditory cortex during music perception 53,54 and auditory attention 55,56, in sensorimotor, prefrontal                         

and visual areas during visual spatial attention 57,58, and in speech production areas during overt                             

speech 59 or imagined speech 60.  

An overview of auditory broadband gamma responses and the methods to study them is provided in                               

tutorial 61.  

c) A predictive coding perspective  

 

Predictive coding has been proposed to model the processing of new information in the brain based                               

on the assumption that the brain adapts to its environment in a fashion that is closed to optimal                                   

described by bayesian statistics.  

  

Bayesian Brain hypothesis states that the brain constantly updates an internal model of the                           

environment which enables to predict the sensory environment and weighs these predictions                       

depending on how trusty they are. The key computational components are:  

- The prediction (Pd); 

- The prediction error (PE), ie. the difference between the prediction and the                       

observation; 

- The precision weight (PW), which signals when it is worth updating the internal                         

model; 

- The precision-weighted-prediction-error (PWPE);  

 

Friston 62 proposed that the ERPs encode for PWPE in the brain, hence that the MMN could be                                   

understood as a PWPE. Predictive coding reconciles the adaptation and the model adjustment                         

hypothesis7. to explain mismatch responses and the MMN in particular and was used in 5,18,63 to study                                 

 

 

10 

how brain activity (that reflects the processing of the sequences of sounds) is modulated by the                               

experimental manipulations.  

 

In a predictive coding scheme, mismatch responses can be measured at each level of a cortical                               

hierarchy is the result of a bottom-up message passing of prediction errors and a top-down message                               

passing of predictions. Strong efforts to control the biological plausibility of a (cortical)                         

implementation of a predictive coding scheme have been done.  

Recent studies (reviewed in 64) suggest that differences in neuronal dynamics of superficial and deep                             

layers could explain this two-ways flow of information. Practically speaking, superficial layers in                         

charge of forward messages (PE or PWPE) , while deep layers in charge of backward messages (Pd,                                 

PW). In addition, superficial layers tend to synchronize in high frequencies (gamma) and deep layers                             

would rather express in lower frequencies (alpha, beta). Accordingly, prediction errors (PE) would be                           

conveyed by broadband activity, while precisions (PW) and predictions (Pd) would be reflected by                           

alpha and beta activities 65 .  

Such model provides precise predictions: the higher the PWPE, the greater the increase in high                             

frequency activity, while the more relevant the incoming PE, the higher the PW, hence the lower the                                 

alpha activity.   

 

d) Open questions  

Studies using scalp recordings suggest that the MMN has interacting generators in the temporal and                             

frontal lobes 7. The distinct contribution of each part of this network, especially the prefrontal one,                               

could worth further investigations though. Studies of patients with prefrontal lesions suggest a                         

critical role of the prefrontal cortex on contextual processing 66 and working memory 67. Yet, previous                               

intracranial recordings using a mismatch protocol showed a frontal participation in the MMN                         

generation in some patients, but not all. For example, 68,69 investigated 29 patients and found an                               

intracranial MMN in the superior temporal lobe for 13 patients, in the inferior frontal gyrus for 2                                 

patients and in the frontal interhemispheric fissure for only 1 patient. Hence, there is work needed in                                 

refining the spatio-temporal characteristics of the mismatch responses measured directly from the                       

surface of the brain.  

 

 

 

11 

Furthermore, the high level of noise often restricts the analysis to low frequency70 and only a few                                 

research studies have investigated the high frequency correlates of auditory oddball sequence                       

processing. Nevertheless, there are recent evidence in favor of crucial high frequency contributions,                         

shedding light on the involved levels of the cortical hierarchy 71 and the functional role of oscillations                               72. 

 

This summarized status of knowledge calls for a refined description of the functional anatomy of                             

implicit auditory perceptual learning, namely through the characterization in space, time and                       

frequency of mismatch responses and their contextual modulations.   

 

B) An original EEG/MEG study 

My project used the same experimental paradigm as the one proposed in a recent study by Françoise                                 

Lecaignard and colleagues from the Lyon Neuroscience Research Center (CRNL). They used                       

non-invasive recordings (simultaneous electroencephalography (EEG) and magnetoencephalography             

(MEG)) during a passive oddball auditory paradigm in which the predictability of the sound                           

sequences were manipulated so as to test predictive coding hypothesis in auditory perception to                           

characterize the learning behind deviance processing. Precisely, the PWPE decreases with                     

predictability and if MMN is indeed a PWPE (Friston), then MMN should decrease with                           

predictability.  

a) Experimental paradigm  

This coupled EEG-MEG study was performed on 27 healthy subjects, among which 22 were retained                             

for post-experimental debriefing. They used an auditory oddball paradigm with a frequency deviant.                         

The probability for a deviant sound to occur was set to 17% in all sequences. However, in the                                   

predictable sequences (PF, where ‘P’ states for Predictable and ‘F’ for the type of deviance used, ie.                                 

Frequency), the number of standards preceding a deviant was incremented regularly from 2 to 8,                             

whereas in the unpredictable sequences (UF, where ‘U’ states for Unpredictable), there was no such                             

ordered pattern. 

 

 

 

12 

b) Main results 

i) Effect of predictability on ERPs 

In a first stage, Lecaignard et al. showed that the Mismatch Negativity (MMN) was shaped by                               

predictability, such that the more predictable the deviant stimulus is, the smaller the elicited                           

mismatch response.19 (FIG.1 ). This effect was interpreted as a signature of the learning of the                               

structure of the sequence. Importantly, the subjects were watching a movie, making the experiment                           

a passive listening task. The observed learning was implicit. A debriefing of the subjects after the                               

recording confirmed that they did not notice a difference between sequences. 

 

  

 FIGURE 1 | Findings of Lecaignard et al. (2015). The grand-average ERPs (N = 22 subjects) measured               in EEG, elicited by difference responses at electrode               Fz in bandwidth 2–45 Hz for condition UF (red) and                   PF (green). Shaded areas display the windows of               statistical significance.  

 

ii) Source reconstruction  

In a second stage, EEG and MEG data were fused and inverted so as to localize the cortical network                                     

of the MMN. For each subject and each trial, activity was reconstructed in each source of this                                 

fronto-temporal network. This activity was then used to compare alternative computational models                       

of perception (see below).  

 

iii) Underlying computational processes  

In a third stage, Lecaignard et al. tested different hypotheses of how such a learning of the                                 

regularities between the sounds had been performed by these cortical sources. Using computational                         

learning models 5 and dynamic causal models of evoked responses 20,73, they showed that the MMN                               

does not reflect a simple deviance detection mechanism, but rather a (precision-weighted) prediction                         

error (PWPE) which is shaped by the informational content of the auditory. When moving from an                               

 

 

13 

unpredictable to a predictable sound sequence, prediction error was found to be reduced while its                             

precision increased 74 .   

C) The current ECoG study  

My project aimed at trying to refine the above results and answer the new questions raised by this                                     

initial EEG-MEG study, but which required a higher spatial and frequency resolution than the one                             

provided by non-invasive recordings. Therefore, we initiated a fruitful collaboration between the                       

Center for Medical Science in Albany, USA and the Lyon Neuroscience Research Center in France.                             

This collaboration provided me with the needed access to intra-cortical data (EcoG measures in                           

epileptic patients implanted for neurosurgery planning) and the rich complementary expertise in                       

human electrophysiology, signal processing and computational neurosciences. 

 

Importantly, the experimental design of our task has a twofold advantage which makes it particularly                             

appropriate for testing with implanted epileptic patients: 

- It is a completely passive, hence very easy to perform; 

- It involves the auditory system, a fronto-temporal network that is often covered (at least                           

partially) by EcoG implants since most patients suffer from temporal epilepsy. 

 

a) Motivations 

i) Taking advantage of the fine spatial resolution 

The results obtained by Lecaignard et al. identified the activation of a bilateral fronto-temporal                           

cortical network which was reconstructed by combining spatial information from both EEG and                         

MEG, at the group level. Computational modelling succeeded in revealing learning within each                         

source at the MMN latency. However, no spatio-temporal pattern could be found. For instance one                             

could have expected that the frontal part to be more sensitive to slowly evolving features in the                                 

environment (typically the context and what makes a sequence more or less predictable), whereas the                             

lower temporal part of the hierarchy would be more sensitive to short scale changes 62. Such absence                                 

of findings may be due to the limits of inverse modelling, that we hopefully don’t have to face using                                     

ECoG recordings.  

 

 

 

14 

Since EcoG combines high temporal and spatial resolutions, we hoped to shed light on this time                               

resolved specialization within the hierarchy. 

This motivation was clearly defining the successive steps of our investigation: 

(1) To identify and confirm the hierarchical network underlying the processing of                     

sound sequences (change detection and its more or less predictable context); 

(2) To assess the functional role of the different levels of the cortical hierarchy, using                           

computational modelling in combination with the high temporal resolution of                   

electrophysiological recordings.     

ii) Taking advantage of the larger frequency range   

In addition, ECoG data provide the opportunity to study cortical responses in higher frequencies,                           

with a much higher signal to noise ratio, allowing for single subject level analysis. Namely, using the                                 

same experimental paradigm, we could test the modulation of different cortical rhythms with                         

predictability and test their computational implication in the learning process. Practically speaking,                       

this allows us to test the precise hypothesis cited above: alpha codes for precision and broadband                               

gamma for PE/PWPE.  

 

Our aim was first to test whether our experimental manipulations, either local (mismatch) or global                             

(change in predictability) would modulate alpha and/or gamma activity. If so, informed by                         

computational models of perceptual learning, we would thus be in a position to specific hypothesis                             

about the functional role of these oscillatory and broad band activities. 

 

b) Related recent ECoG studies  

i) Physiological findings using ECoG and auditory/visual oddball  

Using intracranial recordings, studies could confirm scalp findings, by showing that in the temporal                           

gyrus (TG) and frontal gyrus (FG), there was indeed a significant difference between the responses                             

evoked by the standard and the deviant stimuli, respectively, at the MMN latency (100-200 msec) 71,75–78                             

 

Additionally, time-frequency analyses showed significant broadband gamma responses to auditory                   

stimuli 71,75,77,79–81 followed by a decrease in alpha power 23. Precisely, these studies report evidence for an               

 

 

15 

early stronger increase of broadband gamma power in response to deviant compared to standard tones, and a correlation between the amplitude of broadband gamma power (at around 50–200 ms), followed by an α power decrease (at around 200-450ms). This is consistent with an other study of Knight and colleagues, that showed a coupling between                               

broadband gamma amplitude and alpha troughs, which is stronger in the visual cortical regions                           

during visual task 81   

 

These findings have been interpreted as coupling between frequencies and a signature of reciprocal                           

but asymmetrical message passing within the hierarchy, in line with the structural asymmetry                         

between feedforward and backward pathways. The former would thus be facilitated by broadband                         

gamma, while the latter would convey information carried by alpha decrease.  

   

ii) Predictive coding related findings  

Two recent EcoG studies provided evidence for a predictive coding based interpretation of                         

perception of sound sequences.  

 

In 72 (2016) , the focus was on the distinct role of different spectral activities in the implicit learning                                     

process. This study involved three epileptic patients implanted with contact depth electrodes along                         

the axis of the axis of Heschl’s gyrus. Patients were presented with series of sounds of different                                 

frequencies. The authors used an original design where sounds were generated by a hidden                           

hierarchical generative model. Standard and deviant sounds were both drawn from two different                         

gaussian distributions centered on their respective fundamental frequency. The mean and standard                       

deviations of those distributions could theoretically be inferred through prolonged perception. This                       

implicit process was modelled by a Bayesian learning model whose computed quantities could then                           

be correlated with the dynamics of local field potentials over trials, in various frequency bands.   

The author could show a correlation between gamma band power fluctuations (>30 Hz) and                           

prediction error (PE) , beta band activity (12-30 Hz) and prediction (Pd) , and between alpha band                                 

activity (8-12 Hz) and the precision of prediction error (PW). 

 

In 71 (2016), the focus was on the role of the different cortical areas in the implicit learning process.                                     

This ECoG study used a paradigm relatively close to ours. Five epileptic patients were presented with                               

an auditory oddball paradigm in which the standard and deviant tones differed by their frequency                             

 

 

16 

(500 and 550 Hz respectively). The deviant sound occurred with a constant probability of 0.2 but was                                 

presented either regularly (i.e., after every five standards) or randomly. Hence, although the                         

occurrence of the deviant followed the same probability, its position is fully predictable in the first                               

condition only. The authors focused on ERP and broadband gamma. They found: 1) a                           

deviance-related effect in temporal and frontal areas in both frequency range, with an earlier latency                             

for broadband gamma than ERP; 2) A predictability-related effect in frontal areas in broadband                           

gamma but not ERP. 

 

To conclude, these promising findings, in keeping with predictive coding assumptions, highlight the                         

need for trial-wise modelling to go beyond speculation and test the dynamics of learning,                           

questioning both its psychological and physiological underpinnings.  

 

c) Outline of the report  

The first part of my work aimed at characterizing the (EcoG equivalent of the) Mismatch Negativity                                 

and to investigate other deviance related responses, in a physiologically motivated approach.                       

Specifically, I focused on three signal features: 1) MMN as a measure for cortical mismatch, 2) Alpha                                 

power (8-12 Hz) as a measure of cortical excitability; and 3) Broadband gamma power (70-170 Hz) as a                                   

measure of population level activity. 

 

The second part of my work aimed at analyzing the modulation of cortical activity by predictability,                               

through the quantification that is at quantifying of the effect of the sequence statistical structure                             

onto the deviance measures. 

 

The third part of my work aimed at modelling the above effects at the single trial level, using                                   

psychophysiological computational models of implicit learning. Precisely, following Lecaignard et                   

al.’s rationale, we hypothesize that the brain is an approximate Bayesian observer with an internal                             

model of how the sequence of sounds is generated. Such an observer uses this model online to update                                   

its parameters and optimize its predictions about the auditory stimuli to come 82 .  

 

 

   

 

 

17 

This report is organized as follow:  

 

The first part of this report aimed at providing a general context for this project. We provided the                                   

necessary scientific background of this project and a brief overview of the main associated findings                             

in the field of perception, neurophysiology and computational neuroscience. Then, we presented the                         

original EEG/MEG study behind the designing of this project and finally, we described the                           

motivations and objectives of the current ECoG study.  

 

In the second part, we will present the methodology. First, we present the experimental framework                             

(participant, experimental design, recordings). Then, we describe the signal processing strategy                     

(preprocessing, referencing), as well as the feature extraction and the statistical analysis (for ERP                           

and Oscillatory activity separately). Finally, we introduce the computational modelling approach.                     

Therefore, we underly the key elements of Bayesian learning, we present our different models, and                             

the methodology used to confront them to the data.  

 

In the third part, we report the results obtained with the first ECoG subject. We first present the                                   

findings from the ERP analysis, including the analysis of averaged responses and the trial-by-trial                           

modeling approach. We then move on to the spectral analysis restricted to the analysis of averaged                               

responses. 

 

In the fourth and last part, we interpret and describe the significance of our findings.  

Method 

The present study was conducted with electrocorticography (ECoG) recordings of neurosurgical                     

epileptic patients at the Albany Medical Center (Albany, New York). It rests on the oddball paradigm                               

previously used in Lecaignard et al. (2015) that comprises predictable and unpredictable tone                         

sequences (with regard to deviant occurrence). We performed two separate analyses to assess the                           

perceptual learning at play during passive auditory processing: the first one was based on                           

event-related potentials (ERPs, 2-20 Hz bandwidth) and will be referred to as the ERP analysis. The                               

second one pertains to the oscillatory activity in the alpha band (8-12 Hz) and broad-gamma band                               

(70-170 Hz) and will be referred to as the spectral analysis. For each analysis, we conducted in a first                                     

step a typical comparison between conditions based on averaged responses across trials. And we plan                             

 

 

18 

to perform in a second step a trial-by-trial computational modeling approach to capture the                           

dynamics of learning (if any) over the course of the experiment. During my internship, it could be                                 

achieved for the ERP part only. For each analysis and for each approach, we tested an effect of                                   

deviance (standard vs. deviant) and an effect of predictability (predictable vs. unpredictable). 

A. Participants 

During my internship, four subjects (or patients) were included in the study. They underwent                           

temporal placement of electrocorticographic grids over frontal, parietal and temporal cortices. All                       

patients provided written informed consent prior to this study, which was approved by the                           

Institutional Review Board of Albany Medical College and the Human Research Protections. In the                           

present manuscript, we report findings from one patient (referred to as Su78, male). Two patients                             

had to be excluded (one with data highly contaminated with epileptic activity, and the other one with                                 

unresponsive data with regard to the auditory stimuli; more details can be found in the                             

Supplementary Materials). The fourth patient was recorded at the very end of my internship and is                               

currently being processed. 

B. Experimental design 

To insure that the auditory listening remains passive, the subject was awake during the experiment                             

and watched a silent movie with subtitles. He was instructed to ignore the sounds. A short                               

debriefing at the end of the experiment aimed at checking that the subject did not notice the                                 

difference between the predictable and unpredictable conditions. (eg. “ Were you concentrating on                         

the movie ?”, “Did you pay attention to the sounds ?”, ‘Did you notice any pattern in the sequences ?”). 

 

The subject listened to stimuli consisting of 80-ms-long (with 5 ms rise/fall) harmonic sounds                           

differing in their fundamental frequency (500 Hz; 550 Hz). The stimulus onset asynchrony (SOA) was                             

fixed to 600 ms. The stimuli were delivered using BCI-2000 software (Schalk et al., IEEE Trans                               

Biomed Eng, 2004 , http://www.bci2000.org ) and presented with loudspeakers placed near the                       

subject’s bed at a low but audible level.   

 

The sounds were presented either in a predictable (i.e., structured) or unpredictable (i.e.,                         

pseudo-random) sequence with the same deviant probability (p = 0.17). 

 

 

 

19 

In the predictable condition (referred to as PF), the deviants are presented in a deterministic periodic                               

pattern. In contrast, in the unpredictable condition (referred to as UF), the deviants are presented                             

pseudo-randomly. The rule was based on the number of standards that precedes the deviant. As                             

depicted in FIG.2 the number of successive identical tones preceding a change was incremented and                             

decremented progressively for PF, whereas it was pseudo-randomly chosen in the unpredictable                       

condition. As in Lecaignard et al. 2015 , let us define a “chunk with n standards” as a sequence of n                                         

repetitive tones ending by a different one. Hence, both PF and UF sequences can be seen as                                 

successive n chunks, with different length (n ranging from 2 to 8). The chunks are presented within                                 

cycles of seven incrementing chunks and seven decrementing chunks. In the UF sequences, the order                             

of the chunk are shuffled, in a pseudo-random way, so that there can be neither successive                               

incrementation nor decrementation, or consecutive chunks with n standards. 

 

Importantly, such rule allows the same history of deviants in both condition (unlike 71. Hence, our                               

predictability manipulation consists in a contextual manipulation of exactly the same local rule.  

 

Each sequence type (PF ; UF) was delivered twice in separate 7 min long blocks, resulting in 224                                   

deviants in each condition. To ensure an optimal control for undesirable effects of specific acoustic                             

properties, we switch the role of the tones in subsequent runs. Namely, the sound frequency used as                                 

the standard in the one block becomes the deviant in the other (reverse) block. 

 

 FIGURE 2 | Experimental design. Scheme of a complete cycle in predictable (left) and unpredictable (right)                               condition. Chunk are sorted by their size in the predictable conditions (ascending, descending order), and are                               shuffled in the unpredictable condition. Above, the serie of chunk from the shaded area is depicted for each                                   condition. Circles symbolize single tones (standard and deviant). Sound duration is 80 ms with stimulus onset                               asynchrony (SOA) set to 600 ms.   

 

 

 

20 

C. ECoG recordings 

a) Data acquisition 

Implanted subdural grids were approved for human use (PMT Corp., Chanhassen, MN) and                         

consisted of platinum-iridium electrodes embedded between two layers of silastic material 

(4 mm diameter, 2.4 mm exposed) that were embedded in silicone and spaced 6–10 mm from each                                   

other. In patient Su78, we recorded from 92 subdural electrodes placed on the lateral surface of right                                 

temporal and frontal lobes. Reference and ground were subdural electrodes distant from the                         

epileptogenic foci. ECoG recordings were conducted at the patient bedside using BCI2000. Raw                         

signals were amplified (256-channel g.HIamp biosignal acquisition device, g.tec, Graz, Austria),                     

digitized using a sampling frequency of 1200 Hz and lowpass filtered below 5 kHz. 

 

b) Coregistration with the cortical anatomy  

The 3D cortical brain model was constructed using Freesurfer software                   

(http://surfer.nmr.mgh.harvard.edu) and rests on pre-implantation magnetic resonance imaging               

(MRI) scans. Then, the electrode stereotactic coordinates were estimated by co-registering the MRI                         

scans with post-implantation computer tomography (CT) images using SPM8.  

To define the labels of the electrodes of interest, we first considered the cortical segmentation given                               

by Freesurfer, and in case of discrepancies, we used post-implantation photographies taken in the                           

operating room to check this first (automatic) estimation.  

In spite of this precaution, it remains an uncertainty regarding the anatomical assignment of the                             

electrodes (usually assumed to be around 5 mm).  

D. Data preprocessing 

The software package for electrophysiological analysis (ELAN) developed at the Lyon Neuroscience                       

Research Center (Aguera et al., 2011) was used for data preprocessing, ERP computation and                           

statistical analysis. 

Preprocessing of raw data was carried out using the acquisition reference and comprised the                           

following successive steps: 

1. an initial rejection of trials for which the audio trigger was corrupted;   

 

 

21 

2. a 0.5 Hz high-pass digital filter (bidirectional Butterworth, fourth order) was                       

applied to the data; 

3. an initial rejection of sensors : either  bad (by visual inspection and         

consultation of the neurologist) or  irrelevant for the present study;  

4. three stop-band filters centered on 60, 120,  and 160 Hz (with bandwidth of ±3 Hz)               

were applied to get rid of the power line artifact;   

5. individual trials were from −200 ms to 400 ms and automatically inspected:. 

5.1. Following the method presented in83, we performed a two step rejection of                         

trials and sensors: we computed the distribution of signal amplitude across                     

sensors, samples and conditions. Any trial having a sample with amplitude                     

larger than 5 SD was rejected. In addition, any sensor implied in more than                           

5% of such rejections was declared as bad.  

 

5.2. Artifacts due to a saturation of the amplifier are rejected based on the                         

range of the signal on a moving time window. The dynamic of the artifact                           

(time window duration and range threshold) is defined manually. For Su78,                     

we rejected events where the signal had an amplitude range larger than 110                         

µV in any time-window of 5 ms duration).  

 

Importantly, time epochs and sensors that survived these artifact rejection procedures were exactly                         

the same for both the ERP and the spectral analyses.   

 

E. Montage reference 

Common averaged reference (CAR) is widely used in ECoG to suppress in an easy-to-achieve manner                             

the different sources of (correlated) noise degrading the quality of signal 84. Alternatives such as                             

bipolar montages can however be considered in the case of noisy or irrelevant sensors in order to                                 

avoid the contamination of the reference by the corresponding irrelevant signals. Bipolar montage                         

(where data at each sensor Vi is replaced by Vi-Vj with Vj the data collected at a neighboring sensor)                                     

offers the advantage to locally enhance the signal-to-noise ratio by cancelling out the local noise.                             

Spectral analysis was carried out using a CAR montage and the ERP analysis employed a bipolar                               

montage (using a neighboring rule as described in FIG.3).  

 

 

 

22 

 

FIGURE 3 | Illustration of the bipolar             montage. Each electrode is referenced to a             nearby electrode, following a determined         direction. This implies that some electrodes           within the boundary of the grid cannot be               referenced and are rejected from further           analysis. On the above scheme, the boundary             electrodes are depicted in green. The           electrodes in black are referenced to the             nearest electrode in green, and so on, keeping               the same direction drawn by the blue lines.   

 

F. ERP analysis 

For the ERP analysis, a 2-20 Hz band-pass filter (Butterworth, fourth order) was applied to the                               

bipolar re-referenced signals. 

 

a. ERP computation 

We considered the responses to standards preceding a deviant and to deviants for averaging within                             

an epoch of 600 ms including a pre-stimulus period of 200 ms. Baseline correction was achieved by                                 

subtracting the mean value of the signal during the pre-stimulus period. ERPs for each stimulus type                               

(standard and deviant) are first computed per block. The two reverse blocks for each condition were                               

then pooled by averaging corresponding ERPs. Difference responses (also referred to as mismatch                         

responses) were obtained by subtracting the standard ERP from the deviant one.  

 

b. Statistics (sensor level) 

We tested for (1) an effect of deviance in the two conditions (i.e., standard vs. deviant in UF and PF),                                       

and (2) an effect of predictability (i.e., PF vs. UF) in difference, deviant and standard responses. For                                 

each effect of interest, we ran a Kruskal-Wallis H test at each sample over the entire time series                                   

[−200, N] ms.  

 

 

 

23 

For (1), considering a single subject preliminary analysis, we set the statistical threshold to 0.001                             

with no correction for multiple comparison. For (2), we restricted the analysis to significant time                             

windows for the deviance effect and because the effect was more difficult to capture, we set the                                 

statistical threshold to 0.05.  

G. Spectral analysis 

This analysis focuses on the alpha (8-12 Hz) and broadband gamma (70-170 Hz) and rests on CAR                                 

referenced data. 

a. Alpha and gamma envelope computation 

Frequency envelopes were obtained as follows: 

 

1. Signals were band-pass filtered using the  zero-phase lag filtfilt function of         

Matlab (Butterworth: 8-12Hz and sixth order (alpha), 70–170 Hz and 18th order                       

(broadband gamma)).   

2. The Hilbert amplitude envelope was  extracted in these two bands by computing             

the absolute value of the  analytical signals.   

3. Broadband gamma envelope was low-pass filtered at 30Hz (Butterworth, fourth   

order).   

 

b. Averaged responses across trials  

For the broadband gamma, each trial was baseline corrected (with baseline defined from -200 ms to                               

-100 ms with respect to the sound onset). 

For the alpha analysis, since our hypothesis is that alpha represents precision and thus corresponds                             

to a contextual adaptation, we decided not to apply any baseline correction.  

We compute the evoked related activity for each stimulus type and block condition following the                             

same procedure described for the ERP.  

c. Statistics (sensor level) 

We replicated the statistical analysis for the ERPs described above for the alpha and broadband                             

gamma epoched trials. 

 

 

24 

H. Computational modeling (ERP analysis) 

For reasons of time, I could only perform the computational modeling on ERP features.  

 

This section is organized as follows: first we describe the different (competing) models that were                             

considered in our analysis and that each represents a cognitive process at play during the passive                               

exposure to our oddball sequences. We present in particular the model spaces used to characterize                             

the deviance effect and the predictability effect. We then provide details about model inversion and                             

we finally describe the statistical analysis based on Bayesian model comparison 82 conducted for each                             

effect (deviance, predictability) in order to select the winning model (being the most plausible to have                               

generated the observed data). 

 

Computational modeling was performed using Matlab and the VBA toolbox (Variational Bayes                       

Analysis introduced in85 available from the website http://mbb-team.github.io/VBA-toolbox ). This                 

matlab package is dedicated to the simulation, the selection and the optimization of probabilistic                           

nonlinear models of behavioral and neuroimaging data. 

a) Cognitive models  

We perform a meta-bayesian analysis 82, as depicted in FIG.4: the brain formulates a model of how                                 

the sounds are generated (the perceptual model) and the experimenter formulates a model to map                             

computational representations to neural activity (the response model). 

The perceptual model links the sensory cues (input u) to the computational variables (here PWPE)                             

and the response model links the computational variables to the brain signals (here, ERP).  

 

In our study, we tested different cognitive processes involved during passive auditory processing and                           

for each model, we assumed that trial-wise cortical activity reflects the dynamics of PWPE computed                             

at each new observation by the brain. Practically speaking, the observed data entering model                           

inversion is y, a N trials x 1 vector corresponding to the trial-by-trial activity at a particular sample. We                                   

present here the model space for deviance processing and predictability effect.  

 

 

25 

 

FIGURE 4 | Meta-Bayesian analysis. The experimenter makes assumptions on the brain’s                       

perceptual process (encompasses evolution and observation function), so that giving a sequence                       

of sounds (input), we construct the trajectory of elicited surprises (ie. PWPE) throughout the                           

sequence. Given these trajectories X and given the collected neuroimaging data y, the                         

experimenter can take turn in being a bayesian observer, by fitting these data towards a                             

minimization of his own surprise when looking at them.  

 

Model space: deviance processing 

This analysis aims at characterizing the cognitive process behind deviance processing. Every                       

perception model (which embrasses evolution and observation functions) was defined as a two-level                         

linear model of the form: 

 

 

 

Where y indicates the data feature to be fitted, X the trajectory of the PWPE over the experimental                                   

session, θ1 a Gaussian observation parameter, and, ε a Gaussian noise.  

 

 

26 

 

Following Ostwald et al. , we considered different models to describe the deviance effect, which are                               

are classified into three families. The famnull family comprises only the null model (Mo), which states                               

that the brain processes all inputs identically, yielding a trajectory with PWPE always equal to 1.  

The famnoL family comprises the ‘change detection’ (CD) and ‘linear change detection’ (LinCD)                         

models. They are are non-learning models which consider the brain as simply comparing                         

subsequent sounds. In the CD model, Xk = 0 if there is no change in the sound, X k = 1 in case of a                                               

change. In the LinCD model, X k in case of a change takes a value that depends on the number of                                       

preceding identical sounds. Finally, the famL family comprises Bayesian learning models, which                       

suppose that the brain makes an estimate of the probability of a standard sound, assuming a                               

Bernoulli distribution. Indeed, our paradigm recreates in some ways, a biased coin (e.g standard is                             

head and deviant is tail) with 80% chance to get a head and 20% chance to get a tail. Put simply, one                                           

could picture the brain throwing this coin and tracking, at each toss, the likelihood that heads or                                 

tails will come up. In this example, the internal model of the brain follows a Bernoulli process of                                   

hidden parameter, the probability to get a tail (i.e. deviant). To account for the fact that the brain                                   

may forget about past event, a temporal integration window τ is introduced, whereby distant events                             

are weighted down. We have been using 5 values of τ: 5, 10, 15, 20 and 25, which makes up 5                                         

models in famL . Each trial’s PWPE measures the belief update about µ using the PWPE (defined as                                 

the Kulback-Leibler divergence between the prior and the posterior distribution of µ). 

 

Within this framework, neural activity reflects the dynamics of Bayesian learning, that is of the                             

inference on the hidden parameter. To tackle the underlying mechanisms of this bayesian inference                           

performed by the brain, we consider trial-by-trial changes and we compare them to the                           

computational variables of the hypothesized internal model.   

 

The whole model space thus included 8 models. 

Model space: predictability modulation  

The deviance processing analysis revealed bayesian learning models outperforming others. Hence,                     

this analysis aims at characterizing how predictability modulates the learning that was showed in the                             

previous analysis.  

We refined the perceptual model, by testing the hypothesis that the global structure of the sequence                               

of sounds influences the dynamic of the perceptual model. Practically speaking, the incrementing                         

 

 

27 

structure of the predictable sequences implies that the observer needs to consider at least three                             

deviants to capture the incrementing session. Hence, it could be that the global temporal structure of                               

the sequence of sounds induces changes in the depth of the memory involved in the update and in                                   

the prediction. 

In this subsequent analysis restricted to the learning model family, we fit the predictable and the                               

unpredictable conditions separately and investigate a potential difference in the temporal                     

integration window τ. Precisely, we expected this temporal integration window to be larger when                           

inverting PF data compared to UF data.  

b) Model inversion  

Model inversions were performed with the VBA toolbox at each time sample of ECoG time series. To                                 

reduce the number of inversions, we restricted the time interval to - 100 ms to 400 ms sampled at 240                                       

Hz and considered one over 4 samples, leading to 41 samples (hence 41 inversions).  

 

For the deviance analysis, given the 8 models and 9 electrodes, 2952 meta-Bayesian inversions were                             

carried out for Su78. Individual UF and PF data (4 sessions) were fitted all at once (multi-session                                 

inversions). 

 

For the predictability analysis, given the 1 model, 9 electrodes and the four sessions (PF, UF and                                 

reversed separately), 1476 meta-Bayesian inversions were carried out for Su78. Hence, we have for                           

each sensor, each sample and each session, an estimated value of τ.  

c) Statistical analysis  

Analysis 1: Deviance processing 

We performed a family model comparison 86 using a fixed-effect analysis (FFX). Our decision                           

criterion was the family posterior probability, which represents how likely it is that, given our model                               

space, a family ( famnull, famnoL, famL ) is able to explain the data. We consider that a value of the the                                       

posterior probability greater than 0.75 reflects strong evidence in favor of family fam-noL/L. We                           

expected Bayesian learning models famL to outperform the famnull and famnoL at the latency of                             

mismatch responses. For each time-window and location where a family was found significantly                         

outperforming others, we then compared the relative free energy to precise the winning model                           

within the winning family.   

 

 

 

28 

Analysis 2: Predictability effect 

We compared the estimated value of τ between conditions (PF and UF).  

For each electrode, the statistical analysis was performed over the time samples resulting from the                             

intersection between the time-windows where the computational modelling for deviance processing                     

was significant and the time-windows identified by the previous ERP sensor-level analysis                       

(Kruskal-Wallis statistical test for deviance or predictability).   

We then computed the mean and the standard deviation of the estimated τ over the samples of                                 

these selected time-windows and over the two PF (resp. UF) sessions.   

Results  

We report here findings obtained with Su78, for the ERP analysis (first part) including the typical                               

analysis of averaged responses and the trial-by-trial modeling approach, and for the spectral analysis                           

(second part), restricted to the typical analysis of averaged responses. 

 

Post-experimental debriefing with Su78 led us assume that he did not notice the different sound                             

attributes nor pay attention to the sequence structure. Hence, likewise the original study                         

(Lecaignard et al 2015), we will assume that any cortical activity difference measured between UF and                               

PF conditions reflects the implicit learning of the sound sequence regularities.   

 

Preprocessing of data in Su78 led to reject 34 sensors over 92 (see FIG. 5 ), and 24% of events.                                       

Precisely, the number of retained standard trials (standards preceding a deviant sound) was 173 for                             

the unpredictable sequence and 161 for the predictable sequence. Similarly for deviants, the number                           

of retained trials was 173 for unpredictable sequence and 169 for the predictable sequence.  

 

FIGURE 5 | Selected sensors resulting from the preprocessing 

Small yellow dots depict the position of the 92 sensors on the brain and                           

large black dots depict the selected ones for further analysis: 

- Upper: using CAR referenced data  

- Lower: using Bipolar referenced data (then, a rejection of a sensor                     

leads to the rejection of its neighbor ).  

 

 

29 

 

A. ERP analysis 

The present ERP analysis was conducted with re-referenced data using a bipolar montage (FIG. 3), in                               

the 2-20 Hz bandwidth. 

 

Results for this section are organized as follows: 1) Responsive sensors identification and clustering;                           

2) ERP sensor-level ; 3) Computational modelling; 

 

The exact latencies of the significative time-windows that depict figures from part 2), 3), 4) are                               

detailed in the Supplementary Materials. 

a) Responsive sensors  

Responsive sensors retained in the present analysis were selected if a significant mismatch effect ( (1)                               

deviance test, p < 0.001) could be find in either PF or UF condition. As depicted in FIG. 6, we could                                         

identify nine electrodes. As this stage, we clustered these electrodes into two regions of interest with                               

regard to their anatomical location: the Temporal Gyrus (TG) and Frontal Gyrus (FG).  

  This tempo-frontal network is aligned with previous findings 5,18,19 and allows us to study the                             mismatch responses at different stages of the hierarchy.   

   

 

 

30 

 

 

 

FIGURE 6 | Responsive channels for ERP analysis 

Location of the 9 electrodes that showed a statistically                 

different time-locked response to deviant compared to             

standard, grouped with regard to the anatomy. 

 

 

b) ERP sensor-level 

i) Deviance effect 

FIG. 7 shows ERPs for the standard and the deviant, as well as the difference between these two                                   

responses in condition UF (red) and PF (green) at the nine responsive electrodes.  

 

In both conditions, standard traces at electrode e37 in primary auditory cortex exhibited a typical                             

auditory P50-N1-P2 complex.  

 

In condition UF, two significant time-windows for the deviance effect were found: - at the MMN latency: this effect consisted as a succession of significant peaks                         

starting at electrode e35 (peaking around 130 ms), and followed at e36 and e18                           

peaking around 180 ms. 

- at the P3 latency: this effect starts at e19 and e7 around 260 ms and is followed by a                                     

significant deflection around 330 ms at e18 (which fails to reach significance at                         

e36). 

 

In addition, it should be noted that an early mismatch effect was found significant at electrode e12,                                 from 55 to 70 ms.  In condition PF, a similar temporal (but not spatial) pattern could be observed. Namely: 

- at the MMN latency from temporal to frontal electrodes: the effect was found                         

peaking  first around 115 ms at e37, then around 130 ms at e35, and finally                           

followed by a peak at e30 and e23 around 160 ms. 

 

 

31 

- at the P3 latency over the frontal electrodes: the effect starts at e30 at 214 ms,                               

followed by a peak at e23 at 250 ms followed by a peak at e12 at 300 ms.  

 

FIGURE 7 | Deviance effect on ERP. Average ERP in bandwidth 2–20 Hz for Su78 elicited by                                 

standards just preceding a deviant (solid line), deviants (dotted line) and the difference responses                           

(bold solid line) at the shown locations. 

The unpredictable condition(UF) is depicted in red (upper row) and the predictable condition(PF)                         

in green (lower row) . Shaded area correspond to significant time intervals for the comparison of                               

the deviant and the standard traces (p<0.001).  

 

 

32 

 

ii) Predictability effect 

The effect of predictability was assessed by comparing mismatch, deviant and standard responses                         

between conditions. FIG.8 displays the difference response for both PF (green) and UF (red)                           

conditions and the statistically significant time-windows for the predictability effect (p < 0.05).  

 

Predictability effect on the mismatch response: As depicted in blue in FIG. 8, the mismatch response                               

is significantly modulated with predictability (decrease observed when moving from UF to PF) :  - At the latency of the MMN at temporal electrodes e36 and e18.  

- At the P3 latency at frontal electrode e7. 

 

Predictability effect on the deviants: When looking at the averaged traces depicted in FIG.8, the                             

significant effect of predictability on mismatch (e36, e18, e7) could be due to deviant but did not reach                                   

significance. The only effects that reached the significance were: 

- at the P3 latency in e19 and e7.  

Surprisingly, the main effect on e18 did not come out from this statistical test.  

 

Predictability effect on the standards: As depicted in orange in FIG.8, the response to standards is                               

significantly modulated with predictability (increase observed when moving from UF to PF) :  - At the latency of the MMN at electrodes e18 

- At the P3 latency at electrode e18.  

 

 

33 

 

FIGURE 8 | Predictability effect on ERP. Mismatch responses elicited in PF (green) and the UF                               

(red) conditions. Grey shadows correspond to the significant time-windows for the deviance                       

effect (vs.deviant , p < 0.001). Above each graph, the statistically significant time-windows for the                             

predictability effect (UF vs. PF, p < 0.05) are depicted in blue (predictability effect on the mismatch                                 

signal), orange (predictability effect on the standard response) and purple (predictability effect on                         

the deviant response).  

 

 

To sum up these sensor -level analysis:  

- We found mismatch at frontal and temporal electrodes, at the MMN and P3                         

latencies, that validate the significance of our data.  

- Only a weak effect of predictability could be measured, at 2 relevant electrodes (at                           

the MMN-latency in FG and at the P3 latency in FG).  

 

 

34 

- We also measured a strong effect on e18, that would worth further investigations,                         

insofar as the electrode could eventually capture other non-related activities (e.g                     

eye movements).  

 

c) Computational modelling 

i) Deviance processing  

First of all, it should be noted that neither the non-learning nor the learning model significantly                               

performs during the baseline period. On the post-stimulus period though, results show that learning                           

models outperforms the null model on the one hand, but more interestingly outperforms the                           

generally accepted non-learning models on six cortical locations. Hence, PWPE encoding is shown                         

to participate in the modulation of the low frequency components.   

 Three time intervals indicated non-null models family outperforming M0: at early latency; at the                           

latency of the MMN and at the latency of the P3. The components that we had previously identified at                                     

the latency of the MMN were best modelled by family famL (except for two electrodes: e35 and e18 ).   

None of our models succeed in model the effect at the MMN latency at e18, and the effect at the P3                                         

latency at electrodes e36, e23, e18, and e12.   

 

FIG 9-a dissect the computational analysis investigation steps:  

1) Mismatch traces are plotted for PF (green) and UF (red) conditions.  

2) Black shadows from above recall the time-windows that showed a deviance effect in                           

either of the two conditions.  

3) Relative free energy maps obtained at each location for the 7 models (rows) and the 121                                 

samples (columns) between -100 ms and 400 ms around the onset.  

4) FFX posterior probability to draw out which family ( famnull, famnoL or famL) best                           

explains the single-trials variability of the data.  

5) Colored shadows corresponds to the time-windows where the FFX probability of famnoL                         

( orange) or famL (purple) exceeds 0.75. Dark blue time-windows indicates either a                       

preference for famnull, or for none of the three families.  

 

Figure 9-b show the results of the computational analysis, ie,: 

 

 

35 

1) Identification of a family model if its posterior probability exceeds 0.75.  

2) Cross-checking of the models within the winning family and select a winner model                         

(Bayes factor criterion)  

3) Interpretation of the decision with regard to the emerging timeèwindows for                     

sensors-level statistical tests (grey shadows under the time axis).  

 

One distinguishes the same windows of interest previously identified with the typical Kruskal Wallis                           

test on deviance. Namely, we found a family that outperformed M0: 

 

- At the MMN latency:  

- At e36, e37, e23 and e30, famL (LT with τ of about 10) prevails;   

- At e35, the previously identified component (starting at 125 ms) is best                       

explained by famnoL (CD), but a later one (at 175 ms) seems to be explained                             

by famL . - At the P3 latency:  

- At e35 and e30, greater evidence was found in favour of famnoL (CD)  

- At e36 and e19, in favour of famL (LT with τ of about 10)   

- At e12 and e18 our model space failed in explaining the variability of the                           

previously identified component.  

- At e7, famnoL (LinCD) hardly pass the significance threshold (one sample). 

  

Also, we could identify new components showing a famnoL/famL-like-dynamic, that did not come out                           

with a traditional comparison between deviants and standards (Kruskal Wallis deviance test) :  - An early latency, at 2 electrodes (e19, e36);  

- At the MMN latency, at 3 electrodes (e7, e12, e19);  

- At the P3 latency, at 2 electrodes (e30, e35).  

   

 

 

36 

 

FIGURE 9a | Investigation steps for the ERP computational analysis (legend for FIG 9-b) 

 

 

 

 

 

 

 

 

 

 

FIGURE 9-b| Results for the ERP computational analysis  

 

 

 

 

 

37 

ii) Predictability modulation  

We found 5 electrodes with a non-empty time window intersection between the ERP statistical                           

analysis and the single-trial statistical analysis.  

Though, our estimation of the evolution parameter were not convincing at any identified time                           

window at e30 and at the early time-window at e36, due to an extremely high variability within the                                   

two sessions of the same condition (PF, UF).  

In the above table (FIG. 10), we show the temporal integration window estimated for PF and UF                                 

conditions separately. Considering a bayesian learning of PF (resp. UF) sequence of sounds, the                           

estimated τ represent the optimal size of the integration window to use in order to model the                                 

dynamic of these selected samples over the trials.  

At e7, e35 and e36 (but not at e12), the component identified (around the MMN-latency) led to larger                                   

estimated τ with condition PF compared to condition UF.  

For example, if we average the estimation on e35 and e36, we estimate τ at 7.9 for PF and 6.2 for UF.                                           

Considering the fact that sequences were built with a fixed SOA of 600 ms, this translates into                                 

around 3.6 s for PF inversions and 3.7 s for UF inversions. In view of the high variability and slight                                       

difference in the estimates values, these results are not yes fully convincing.  

 

FIGURE 10 | Overview table of results from the single trial computational modelling (analysis 2).   

  e7  e12  e35  e36 

Time-window (ms)  200:225  125:150  100:150  162:200 

Number of samples used for the estimation (for each block)  2  2  4  3 

Estimated τ for PF (s-1)  6.0±2.1  3.4±0.7  8.2±2.1  7.6±1.7 

Estimated τ for UF (s-1)  3.6±0.9  6.6±1.5  6.2±0.6  6.2±1.4 

 

Results of all estimations (inversion computed for each electrode and pooled across reversed sessions                           

and samples of each identified time-windows) are detailed in the Supplementary Materials. 

 

 

38 

B. Spectral analysis 

The present spectral analysis was conducted with re-referenced data using a CAR montage.  

 

This section is organized as follows: 1) alpha envelope in the 8-12 Hz bandwidth; 2) broadband                               

gamma envelope in the 70-170 Hz bandwidth. For each of these frequency bands, we identified the                               

responsive sensors and studied both the deviance and the predictability effect.   

 

Responsive sensors retained in the present analysis were selected if they showed a deviance effect for                               

UF condition (deviant vs. standard, p > 0.001) or a predictability effect regarding standard or deviant                               

response (PF vs. UF, p < 0.05). The significative time-windows for deviance and predictability effects                             

on alpha and broadband gamma responses are detailed in the Supplementary Materials. 

a) Responsive sensors  

Responsive sensors retained in the present analysis were selected if they showed a deviance effect for                               

UF condition (deviant vs. standard, p > 0.001) or a predictability effect regarding standard or deviant                               

response (PF vs. UF, p < 0.05).  

 

As depicted in FIG.11, we could identify sixteen electrodes (including one on the left lobe) that we                                 

clustered into frontal (FG) and temporal (TG) gyrus with regard to their anatomical locations.  

 

FIGURE 11 | Responsive channels for spectral             

analysis 

Location of the 18 electrodes that showed either               

a deviance effect (p<0.001) or a predictability             

effect (p<0.05) : - For alpha analysis: 18 electrodes  

- For broadband gamma: e36 and e37           

(primary auditory cortex).  

FG states for frontal gyrus and TG for temporal                 

gyrus. 

 

 

 

39 

 

Again, coregistration issues prevent from a reliable interpretation of findings relative to these                         

anatomical labels. This tempo-frontal network is in line with ERP findings and even show a frontal                               

activation.  

b) Alpha 

i) Deviance effect  

In condition UF, we identified two temporal electrodes showing a significant effect for deviance (p <                               

0.001) : e36 and e12. In line with previous findings 87,88 , the response to a deviant sound was                                     

characterized by a lower alpha power for the deviant compared to the standard (around 200-250 ms                               

after the stimulus onset).  

 

 

FIGURE 12 | Alpha response to an auditory oddball paradigm. Average alpha envelope (8-12Hz) for                             

one subject elicited by standards just preceding a deviant (solid line) and deviants (dotted line) at                               

the shown locations. Only the unpredictable condition is depicted here. Shadowed area correspond                         

to significant time interval for the comparison of the deviant and the standard traces (p<0.001). 

 

 

 

 

40 

ii) Predictability effect  

To characterize the influence of the global context on alpha oscillations, we compare the alpha                             

response to standards and to deviants from UF and PF conditions.  

 

Predictability influence on standards 

We found 10 electrodes where alpha responses to standard sounds were modulated by the                           

predictability context. Precisely:  

- At temporal electrodes e36, e37, e11, e18, alpha responses to standard decrease when                         

moving from UF to PF.  

- At frontal electrodes e6 and e47 alpha responses to standard seem to show an                           

anticipation effect, for the PF condition exclusively, characterized by a decrease of                       

the alpha response before the onset.   

- At frontal electrodes e1, e44, e48 and e5, the modulation goes the other way around                             

and we found an increase in the alpha response when moving from UF to PF.  

 

 

 

41 

 

FIGURE 12| Modulation of alpha responses to standards by predictability. Average alpha                       

envelope (8-12Hz) for one subject elicited by standards just preceding a deviant in PF (green) and                               

UF (red) condition at the shown locations. Shadowed area correspond to significant time intervals                           

for the comparison of the two traces (p < 0.05 ).   

 

 

Predictability influence on deviants 

We found e12 electrodes where alpha responses to deviant sound were modulated by the predictability                             

context. Precisely:  

- In e37 and e38, alpha responses to deviant decrease when moving from UF to PF.                             

(same trend than for the responses to standard).  

 

 

 

42 

- In the right TG, electrodes e11 and e18 show the same modulation in the                           

post-stimulus time-window, that is a decrease of alpha with predictability. In the                       

left TG (e81), this effect seems to appear earlier. 

 

- Electrodes e12 (TG) and e51 (FG) seem to behave in the opposite way, showing an                             

increase of alpha level with predictability.  

 

However, we can see along the Sylvian fissure, the propagation of a trough of alpha response to                                 

deviant enhanced in the predictable context. Indeed, we measure a significant trough starting at                           

around -34.2 ms at e60 (FG), that moves down in the hierarchy to its tempo-lateral neighbors, at                                 

around +13.4 ms at e21 followed by e13 at around + 20.8 ms.   

This effect, specific to deviant, suggests that the predictable deviant was in some way, expected.  

 

However, one must be cautious concerning these interpretations, to the extent that we assume, by                             

omitting on purpose a baseline correction of the trials, that there is not any counterpart at play in the                                     

modulation of alpha power that is not related to the task. For example at e37, it is not sure whether                                       

the effect is due to anticipation or to a pervasive downshift of alpha amplitude from the whole                                 

sequence, specific to the predictable context, or to other undesirable factors. 

 

To sum up, it seems like a predictable auditory input triggers the construction of a tempo-frontal                               

network, by “switching on” the cortical sites of interest (decreased alpha in some fronto-temporal                           

electrodes) and “turning off” the others (e.g., increased alpha in e1, e51, e44 and e48). The                               

interpretation remains unclear with regards to the FG. Hence, the effect at e46 and e40 seeme to come                                   

out later, while e51 and e48 stay up (i.e., low excitability).   

 

 

 

 

43 

 

FIGURE 13 | Modulation of alpha responses to deviants by predictability. Average alpha envelope                           

(8-12Hz) for one subject elicited by deviants in the predictable (green) and unpredictable (red)                           

context at the shown locations. Shadowed area correspond to significant time interval for the                           

comparison of the two traces (p<0.05).   

 

c) Broadband gamma  

i) Responsive sensors  

We could identify two temporal electrodes (e36 and e37) that showed a significant deviance and                             

predictability effect in the broadband gamma range.  

 

 

44 

ii) Deviance effect 

First, we observe that the amplitude of the broadband gamma response is larger for e36 than for e37,                                   

showing that the excitation of the population underneath the first electrode is greater.  

 

The deviance effect is then characterized in the UF condition by a clear increase in broadband                               

gamma envelope between 80 and 300 ms after the deviant onset.  

Although we did not draw the traces here, we could also identify a deviance effect emerging in the PF                                     

at e35 and e23.  

 

FIGURE 14 | Broadband gamma response to an auditory oddball paradigm. Average broadband                         

gamma envelope (70-170 Hz) for one subject elicited by standards just preceding a deviant (solid                             

line) and deviants (dotted line) at the shown locations. Shadowed area correspond to significant                           

time interval for the comparison of the deviant and the standard traces (p<0.001).  

 

 

   

 

 

45 

iii) Predictability effect 

With the same analysis procedure than for ERP and alpha analysis, we found a weak effect of                                 

modulation of the broadband gamma signal with predictability, that would promote a decrease of                           

broadband gamma mismatch activity with the predictability.  

 

 

FIGURE 15 | Modulation of broadband gamma responses to deviants by predictability. Average                         

broadband gamma envelope (70-170Hz) for one subject elicited by deviants in PF (green) and UF                             

(red) conditions at the shown locations. Shadowed areas correspond to significant time interval for                           

the comparison of the predictable deviant and the unpredictable deviant (p<0.05).  

 

   

 

 

46 

Discussion We studied the ECoG responses of exposed human cortex to auditory oddball sequences during                           

passive listening. Mismatch activity was characterized by specific ERPs and the modulation of the                           

spectral components in both the (8-12Hz) and broadband gamma (70-170Hz) range. 

A) ERP analysis 

a) ERPs measured with ECoG 

Our ERP analysis showed that the processing of an oddball sequence involves different levels of the                               

cortical hierarchy. Precisely, we pointed out a network composed of temporal and frontal lobes in                             

line with previous findings 5,18,19 . In this network, we identified three post-stimulus time-windows at which the response to deviant                           

sounds differs from the one to standard sounds: an early effect (before 100 ms), an effect at the MMN                                     

latency (between 100 and 200 ms) and a late one (between 200 and 350 ms). 

b) Comment on the choice of a bipolar reference for the ERPs analysis 

To analyze ERPs, we chose a bipolar montage instead of a common average reference (CAR). Indeed,                                 

while a common average montage allowed us to reveal the automatic auditory responses, it failed to                               

discriminate different components of the ERPs although these were later shown to be shaped by the                               

temporal structure of the sequence. Dürschmid and colleagues (2016), using a slightly different                         

protocol did not report a predictability effect on the ERPs. The predictability effect was indeed not                               

emerging using a CAR, which emphasizes the crucial role of the reference montage for the analysis of                                 

low-frequency components84. 

c) Predictability effect on the mismatch response 

The mismatch response is defined as the difference between the deviant and standard responses. We                             

found that this difference is shaped by the global structure of the sound sequence. Precisely, the                               

mismatch response reduces when moving from an unpredictable sequence to a predictable sequence. 

This result corroborates, in a single subject, the group-level findings of the original EEG-MEG                           

study 19. 

 

 

 

47 

d) Computational analysis  

Our computational approach applies to single trial data, with the aim of explaining trial-to-trial                           

variations of the EcoG signal by the predictable variations of the precision-weighted- prediction error                           

(PWPE), given a model of the underlying learning process. From the simplest model (null model                             

assuming no trial to trial variations except noise) to non-learning models (e.g. assuming a simple,                             

context-independent difference between responses to deviants and standards) and up to Bayesian                       

learning models (assuming an influence of the history of more or less recently perceived sounds),                             

these models were fitted to the peri-stimulus data of each sensor where an averaged mismatch                             

response had been identified.  

We revealed three time-windows of interest, in which trial-to-trial changes of the time signals sample                             

were best explained by one of the learning model. Interestingly, this computational approach allowed                           

us to highlight some components that did not emerge with the traditional deviance detection                           

approach on evoked responses. The traditional MMN approach which is equivalent to fitting a                           

non-learning model, assuming a simple and context-independent difference between responses to                     

standards and deviants. Furthermore, for the face validity of the approach, it is also important to note                                 

that the null model proved best in the pre-stimulus period. Finally, the fact that a learning model                                 

proved best in some post-stimulus time window demonstrates that mismatch responses are sensitive                         

to context and reflect learning. 

 

However, some late components eluded our model space. Future work will require an extension of the                               

model space. For instance, we could consider models that explicitly track the number of standards                             

before a deviant 18,63.  

 

We could not yet assess the effect of predictability on the temporal integration window used as a                                 

parameter in the Bayesian learning models to explain the variability between PF and UF sequences. 

B) Spectral analysis  a) Broadband gamma 

Our results showed a mismatch response on two electrodes located near the Sylvian fissure,                             

characterized by a larger amplitude of broadband gamma envelope for deviants compared to                         

standards. 

 

 

48 

The predictability effect on deviants was found significant on late and very short time-windows,                           

suggesting a decrease of broadband gamma power with predictability. However, the current analysis                         

is preliminary and does not allow us to conclude about the precise post-stimulus dynamics of the                               

high frequency response. Indeed, this activity is highly variable over trials. Further analysis could use                             

a higher low-pass filter on the envelope of broadband gamma activity or would try to characterize the                                 

distribution of broadband gamma peaks over trials 89. 

Traces obtained in temporal cortices were not shaped by predictability, but both predictive coding                           

hypothesis and Dürschmid’s findings led us to expect that traces from frontal cortices would be                             

sensitive to the global structure of the sequence71. However, we did not find any frontal electrodes that                                 

showed a significant broadband gamma activity related to the task, contrary to what had been                             

observed in a similar task. 

b) Alpha oscillations 

Our findings show a deviance effect in two electrodes from TG, expressed as a larger alpha decrease                                 

(often called “event-related desynchronization”) evoked by a deviant compared to a standard tone.                         

Let us remind here that previous studies showed that an increase of broadband gamma in response                               

to deviant led to a later decrease of alpha, interpreted as a bottom-up modulation of alpha ERD.                                 

Hence, the relationship between evoked broadband gamma and alpha ERD in our study could worth                             

further investigations. We could for example : 1) Evaluate the relative latencies of broadband gamma                             

peak and alpha trough; 2) Study correlation and Granger-causal interaction between the two                         

features.  

 

With regards to predictability, care is taken to distinguish two different modulation mechanisms: 1)                           

In the predictable condition, pervasive alpha level seems to decrease in the involved cortical network                             

and to increase elsewhere, 2) Some electrodes localized along the Sylvian Fissure showed an                           

anticipation effect, which was characterized by a short decrease in PF compared to UF prior to the                                 

sound onset (electrode e6 and e60 in FG, and e13 in TG). Interestingly, this expectation marker seems                                 

to be specific to the stimulus category. 

 

However, one must be cautious concerning these interpretations, insofar as:  

- The omission of a baseline-correction assumes that there is not any counterpart at                         

play in the modulation of alpha power that is not related to the task, which is not                                 

guaranteed. 

 

 

49 

- Statistical analysis showed different predictability modulation for responses to                 

deviants on early latencies (understood as an anticipation) but these did not come                         

out from the statistical analysis for the deviance effect.  

 

c) Relationship between broadband gamma and alpha 

Interestingly, these findings are in line with a more general hypothesis, formulated by Gerwin Schalk                             90 as the function-through-biased oscillations (FBO). The FBO postulates that oscillatory alpha voltage                         

reflects cortical excitability and is responsible for the selection of functional networks involved in a                             

cognitive task. Put simply, one can imagine the cortex as a relief map and the information as a ‘ball’                                     

constrained on the “cortical landscape”. Alpha would determine the height of the relief and                           

broadband gamma would express the route taken from the ball tending to go downhill.  

The measured modulations of the alpha envelope when averaging across trials can result either from                             

a decrease in the amplitude of the voltage oscillation in all trials (“background downshifting”) or to a                                 

time-locked desynchronization of neuronal populations driven by thalamic sources (“attention                   

switch”). The “background downshifting” defines the “cortical landscape” as a whole (ie. low for                           

engaged populations and high elsewhere). In contrast, the “attention switch” refers to an                         

event-driven desynchronization leading to a brief decrease in the averaged alpha. 

 

If alpha represents cortical excitability and broadband gamma is a proxy for population level activity,                               

one would expect that the excitable populations prior to the onset (“attention switch”: alpha decreases                             

before the onset), would indeed be excited in the post-stimulus time (broadband gamma increases                           

after the onset). In our data, we measured a decrease in PF compared to UF condition prior to the                                     

stimulus onset in some electrodes, but no significant change in broadband gamma responses                         

afterwards.   

 

d) Predictive coding and future work 

The FBO and the predictive coding hypotheses are compatible and future work should include                           

interpreting the coupling between alpha and broadband gamma activities in the predictive coding                         

framework.  

 

 

50 

Precisely, when the FBO hypothesis refers to “cortical excitability” and “population-level activity” as an                           

interpretation of a decrease in alpha voltage and an increase in broadband gamma power respectively,                             

the predictive coding hypothesis refers to “precision” and “prediction error”.  

Hence, we could keep the same model-space used for the ERP single-trial analysis and defined in the                                 

methods and adapt the observation functions from ERP to spectral features (alpha and broadband                           

gamma envelopes).   

One initial approach consists in : 1) Extracting alpha and broadband gamma power averaged on the                               

identified significant time-windows and, 2) Fitting separately the precision, the prediction error and                         

the precision-weighted prediction error (PWPE) to the two spectral features.  

C) ECoG limitations 

ECoG allows fine spatial localization of effects as well as an exceptionally high signal-to-noise ratio.                               

On the hand, cortical coverage is limited compared to scalp recordings, that may provide a better                               

global picture of the phenomenon of interest.  

Critically, coregistration issues prevent from a reliable interpretation of findings relative to these                         

anatomical labels. It remains possible that some electrodes from the FG (e.g e30, e23) capture activity                               

generated in the superior temporal plane. In the same vein, electrodes in the TG could reflect an                                 

inferior frontal activity (e.g e12). 

Furthermore, the number of recordable patients is limited and one has to carefully clean the signals                               

from pathological waveforms.  

D) Number of subjects 

These early analysis on a single-subject are showing very promising results that beg to be confirmed                               

and completed with future subjects. 

The fourth involved patient (Su81) was implanted with a high density grid (232 electrodes - 2 mm                                 

diameter, 1.0 mm exposed), which allows even more precise spatial localization. Co-registration                       

issues are again to be considered carefully when clustering the sensors with regards to the functional                               

anatomy. Although, in order to perform a group-level analysis, it is crucial to cluster the responsive                               

sensors.  

 

 

51 

Supplementary material:  

A) ECoG clinical and research procedure 

 

 

 

 

52 

B) Patient rejection 

a) Epilepsy of patient Su79 

 

FIGURE 16 | Raw signals of patient Su79. The epileptical activity is recognized by an abnormal                               

synchronization of the signals across channels. It is characterized by an activity pattern that is not                               

physiological but pathological.  

 

 

53 

 

b) Screening of patient Su80 

 

FIGURE 17 | Brain mapping of patient Su80. We perform a screening in order to identify the                                 

location of the brain networks involved in different cognitive process in order to assure that the                               

seizure focus can be removed without causing damage to important nearby brain regions. For this                             

aim, we consider broadband gamma power evoked by the screening task (eg. listen to music, speak,                               

moving the tongue…). In the above figure, each red dot represents an electrode and its size the level                                   

of broadband gamma evoked by the auditory (here listening to voice, music, foreign language) task.                             

For patient Su80, there were no responsive electrodes for auditory tasks, so he could not take part to                                   

any experiments.  

 

 

 

 

 

   

 

 

54 

C) Detailed results from statistical analysis  

a) ERP analysis 

i) Sensor-level analysis  

FIGURE 18 | Significant (p<0.001) time-windows resulting from the Kruskal-Wallis statistical tests for                         

deviance effect (ie. standards vs. deviants for PF and UF separately) and the predictability effect (ie. PF                                 

vs. UF for standards and deviants separately). 

Significant post-stimulus time windows (in ms) e7 e12 e18 e19 e23 e30 e35 e36 e37

Deviance effect (UF) p<0.001 267:315 58:66

166:229; 296:364 265:305 X X 106:148 161:202 X

Deviance effect (PF) p<0.001 X 291:307 X X

167:188; 232:267

137:15 ; 222:244 114:47 X 117:122

Predictability effect on standards - p<0.05 82:119 129:148

164:173 ; 352:383 58:68 58:68 X 54:87 X 62:82

Predictability effect on deviants - p<0.05

206:226; 252:287 X X 268:298 59:67 60:77 60:77

65:82; 371:179 X

Predictability effect on difference (p<0.05)

252:272; 337:346 X 153:228 X X X X

82:100; 110:127; 202:223 X

Single-trial computational analysis effect (FFX log-posterior probability> 0.75) 200:225 100:150 X

62:125 ; 175:187 X

125:187; 225:250

100:150; 187:200; 225:287

75:112; 162:225 137:150

 

 

   

 

 

55 

ii) Computational analysis 

 

FIGURE 19 | Predictability effect on the computational analysis: Posterior mean and standard deviation of 𝜏                               estimated on PF and UF blocks separately. Average is performed on : A) Samples with FFX log-posterior                                 probability exceeding 0.75; B) Samples with FFX log-posterior probability exceeding 0.75 and with a significant                             deviance effect (Kruskall-Wallis p>0.001) ; C) Samples with FFX log-posterior probability exceeding 0.75 and                           with a significant predictability effect (Kruskall-Wallis p>0.05)  Significant post-stimulus time windows (in ms) e7 e12 e18 e19 e23 e30 e35 e36 e37

A) Time windows relevant from the single-trial analysis effect (FFX log-posterior probability> 0.75) 200:225 100:150 X

62:125; 175:187 X

125:187; 225:250

100:150; 187:200; 225:287 75:100 ; 137:150

mean, std of 𝜏 estimated for PF blocks on the above time-windows (A) 6.0±2.1 3.8±0.8 X

10.8±6.2; 4.9±0.8 X

8.1-1.6; 8.2±2.2

8.2±2.1; 15.2±14.3; 14.5±9.6 11.5±8.9; 4.4±0.7

mean, std of 𝜏 estimated for UF blocks on the above time-windows (A) 3.6±0.9 6.6±1.4 X

6.5±0.15; 6.01±5.5 X

17.6±17.6; 9.8±7.7

6.2±0.6; 9.5±7.1; 13.8±13.7 6.5±1.3; 10.8±1.4

B)Intersection of time-windows from “deviance” and “single-trial” analysis X X X X X

125:150; 225:250 100:150 162:200 X

mean, std of 𝜏 estimated for PF blocks on the above time-windows (B) X X X X X

6.8±1.8; 8.2±2.2 8.2±2.1 7.6±1.7 X

mean, std of 𝜏 estimated for UF blocks on the above time-windows (B) X X X X X

24.5±21.6; 9.8±7.7 6.2±0.6 6.2±1.4 X

C)Intersection of time-windows from “predictability” and “single-trial” analysis 200:225 125:150 X X X X X 75:82 X

mean, std of 𝜏 estimated for PF blocks on the above time-windows (C) 6.0±2.1 3.4±0.7 X X X X X 15.9±13.5 X

mean, std of 𝜏 estimated for UF blocks on the above time-windows (C) 3.6±0.9 6.6±1.5 X X X X X 6.8±1.9 X

 

 

56 

b) Spectral analysis 

i) Sensor-level analysis for alpha  

FIGURE 20 | Statistics on alpha responses: Significant (p<0.001) time-windows resulting from the                         

Kruskal-Wallis statistical tests for deviance effect (ie. standards vs. deviants for PF and UF separately)                             

and the predictability effect (ie. PF vs. UF for standards and deviants separately). 

Significant post-stimulus time windows (in ms) e1 e6 e11 e12 e13 e18 e21 e36 e37

Deviance effect (UF) p<0.001 X X X 260:320 X X X 300:330 X

Deviance effect (PF) p<0.001 X -110:-70 X X X X X X X

Predictability on standards (p<0.05) -20:+220 -130:-40 -90:170 X X 260:300 X

10:70; 310:380 30:380

Predictability on deviants (p<0.05) X X 20:130 250:320 -20:-60 130:240 50:140 -200:-150 -200:-110

 

Significant post-stimulus time windows (in ms) e38 e40 e44 e46 e47 e48 e51 e60 e81

Deviance effect (UF) p<0.001 X X X X X X X X X

Deviance effect (PF) p<0.001 X X X X X X X X X

Predictability on standards (p<0.05) X X 300:380 X -160:-50 -10:160 -20:260 X X

Predictability on deviants (p<0.05) 20:120 190:370 X 230:320 X -200:-120 220:300

-140:-70; 250:280 -40:50

 

   

 

 

57 

ii) Sensor-level analysis for broadband gamma  

FIGURE 21 | Statistics on broadband gamma             

responses: Deviance and Predictability. 

Significant post-stimulus time windows (in ms) e35 e36 e37

Deviance effect (UF) p<0.001 X

89:109; 39:149; 209:259 229:239

Deviance effect (PF) p<0.001

119:169; 229:239 X X

Predictability on standards (p<0.05) X X X

Predictability on deviants (p<0.05) X

80:100; 230:270

10:30; 240:260

   

 

 

58 

 

 

 

Bibliography  

1. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L. & Pallier, C. The Neural Representation of 

Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees. Neuron 

88, 2–19 (2015). 

2. Conway, C. M., Karpicke, J. & Pisoni, D. B. Contribution of implicit sequence learning to 

spoken language processing: Some preliminary findings with hearing adults. J. Deaf Stud. 

Deaf Educ. 12, 317–334 (2007). 

3. Romberg, A. R. & Saffran, J. R. Statistical learning and language acquisition. Wiley Interdiscip. 

Rev. Cogn. Sci. 1, 906–914 (2010). 

4. Rohrmeier, M. & Rebuschat, P. Implicit Learning and Acquisition of Music. Top. Cogn. Sci. 4, 

525–553 (2012). 

5. Ostwald, D. et al. Evidence for neural encoding of Bayesian surprise in human 

somatosensation. Neuroimage 62, 177–188 (2012). 

6. Pazo-Alvarez, P., Cadaveira, F. & Amenedo, E. MMN in the visual modality: a review. Biol. 

Psychol. 63, 199–236 (2003). 

7. Garrido, M. I., Kilner, J. M., Stephan, K. E. & Friston, K. J. The mismatch negativity: a review 

of underlying mechanisms. Clin. Neurophysiol. 120, 453–463 (2009). 

8. Horváth, J., Müller, D., Weise, A. & Schröger, E. Omission mismatch negativity builds up late. 

Neuroreport 21, 537–541 (2010). 

9. Näätänen, R., Gaillard, A. W. & Mäntysalo, S. Early selective-attention effect on evoked 

 

 

59 

potential reinterpreted. Acta Psychol. 42, 313–329 (1978). 

10. Näätänen, R. The role of attention in auditory information processing as revealed by 

event-related potentials and other brain measures of cognitive function. Behav. Brain Sci. 13, 

201–233 (1990). 

11. Näätänen, R. Attention and Brain Function. (Lawrence Erlbaum Associates, 1992). 

12. Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P. & Winkler, I. ‘Primitive 

intelligence’ in the auditory cortex. Trends Neurosci. 24, 283–288 (2001). 

13. Basirat, A., Dehaene, S. & Dehaene-Lambertz, G. A hierarchy of cortical responses to 

sequence violations in three-month-old infants. Cognition 132, 137–150 (2014). 

14. Morlet, D. & Fischer, C. MMN and novelty P3 in coma and other altered states of 

consciousness: a review. Brain Topogr. 27, 467–479 (2014). 

15. Ruby, P., Caclin, A., Boulet, S., Delpuech, C. & Morlet, D. Odd sound processing in the 

sleeping brain. J. Cogn. Neurosci. 20, 296–311 (2008). 

16. Chennu, S. & Bekinschtein, T. A. Arousal modulates auditory attention and awareness: 

insights from sleep, sedation, and disorders of consciousness. Front. Psychol. 3, 65 (2012). 

17. Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic 

research of central auditory processing: a review. Clin. Neurophysiol. 118, 2544–2590 (2007). 

18. Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J. & Stephan, K. E. Modelling trial-by-trial 

changes in the mismatch negativity. PLoS Comput. Biol. 9, e1002911 (2013). 

19. Lecaignard, F., Bertrand, O. & Gimenez, G. Implicit learning of predictable sound sequences 

modulates human brain responses at different levels of the auditory hierarchy. Front. Hum. 

Neurosci. (2015). 

20. David, O. et al. Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 

30, 1255–1272 (2006). 

 

 

60 

21. Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α-Oscillations in the monkey 

sensorimotor network influence discrimination performance by rhythmical inhibition of 

neuronal spiking. Proc. Natl. Acad. Sci. U. S. A. 108, 19377–19382 (2011). 

22. Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A. & Rushby, J. A. EEG differences 

between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 118, 2765–2773 

(2007). 

23. Crone, N. E., Boatman, D., Gordon, B. & Hao, L. Induced electrocorticographic gamma 

activity during auditory perception. Clin. Neurophysiol. 112, 565–582 (2001/4). 

24. Lehtelä, L., Salmelin, R. & Hari, R. Evidence for reactive magnetic 10-Hz rhythm in the 

human auditory cortex. Neurosci. Lett. 222, 111–114 (1997). 

25. Pfurtscheller, G. & Aranibar, A. Evaluation of event-related desynchronization (ERD) 

preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 

46, 138–146 (1979). 

26. Neuper, C., Wörtz, M. & Pfurtscheller, G. ERD/ERS patterns reflecting sensorimotor 

activation and deactivation. Prog. Brain Res. 159, 211–222 (2006). 

27. Deiber, M.-P. et al. EEG alpha activity reflects motor preparation rather than the mode of 

action selection. Front. Integr. Neurosci. 6, 59 (2012). 

28. Tamura, Y. et al. Functional relationship between human rolandic oscillations and motor 

cortical excitability: an MEG study. Eur. J. Neurosci. 21, 2555–2562 (2005). 

29. Romei, V., Rihs, T., Brodbeck, V. & Thut, G. Resting electroencephalogram alpha-power over 

posterior sites indexes baseline visual cortex excitability. Neuroreport 19, 203–208 (2008). 

30. Sauseng, P., Klimesch, W., Gerloff, C. & Hummel, F. C. Spontaneous locally restricted EEG 

alpha activity determines cortical excitability in the motor cortex. Neuropsychologia 47, 

284–288 (2009). 

 

 

61 

31. Ergenoglu, T. et al. Alpha rhythm of the EEG modulates visual detection performance in 

humans. Brain Res. Cogn. Brain Res. 20, 376–383 (2004). 

32. Linkenkaer-Hansen, K., Nikulin, V. V., Palva, S., Ilmoniemi, R. J. & Palva, J. M. Prestimulus 

oscillations enhance psychophysical performance in humans. J. Neurosci. 24, 10186–10190 

(2004). 

33. Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. Alpha-band electroencephalographic 

activity over occipital cortex indexes visuospatial attention bias and predicts visual target 

detection. J. Neurosci. 26, 9494–9502 (2006). 

34. Hanslmayr, S. et al. Prestimulus oscillations predict visual perception performance between 

and within subjects. Neuroimage 37, 1465–1473 (2007). 

35. Romei, V., Gross, J. & Thut, G. On the role of prestimulus alpha rhythms over occipito-parietal 

areas in visual input regulation: correlation or causation? J. Neurosci. 30, 8692–8697 (2010). 

36. Lange, J., Oostenveld, R. & Fries, P. Reduced occipital alpha power indexes enhanced 

excitability rather than improved visual perception. J. Neurosci. 33, 3212–3220 (2013). 

37. Mazaheri, A. et al. Region-specific modulations in oscillatory alpha activity serve to facilitate 

processing in the visual and auditory modalities. Neuroimage 87, 356–362 (2014). 

38. Bauer, M. et al. Cholinergic enhancement of visual attention and neural oscillations in the 

human brain. Curr. Biol. 22, 397–402 (2012). 

39. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating 

by inhibition. Front. Hum. Neurosci. 4, 186 (2010). 

40. Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations: the inhibition-timing 

hypothesis. Brain Res. Rev. 53, 63–88 (2007). 

41. Weisz, N., Hartmann, T., Müller, N., Lorenz, I. & Obleser, J. Alpha rhythms in audition: 

cognitive and clinical perspectives. Front. Psychol. 2, 73 (2011). 

 

 

62 

42. Mazaheri, A. & Jensen, O. Rhythmic pulsing: linking ongoing brain activity with evoked 

responses. Front. Hum. Neurosci. 4, 177 (2010). 

43. Brandt, M. E. & Jansen, B. H. The relationship between prestimulus-alpha amplitude and 

visual evoked potential amplitude. Int. J. Neurosci. 61, 261–268 (1991). 

44. Gruber, W. R., Klimesch, W., Sauseng, P. & Doppelmayr, M. Alpha phase synchronization 

predicts P1 and N1 latency and amplitude size. Cereb. Cortex 15, 371–377 (2005). 

45. Haig, A. R. & Gordon, E. EEG alpha phase at stimulus onset significantly affects the 

amplitude of the P3 ERP component. Int. J. Neurosci. 93, 101–115 (1998). 

46. Palva, S. & Palva, J. M. New vistas for alpha-frequency band oscillations. Trends Neurosci. 30, 

150–158 (2007). 

47. Klimesch, W. α-band oscillations, attention, and controlled access to stored information. 

Trends Cogn. Sci. 16, 606–617 (2012). 

48. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential 

power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 

13613–13620 (2009). 

49. Crone, N. E. et al. Functional mapping of human sensorimotor cortex with 

electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. 

Brain 121 ( Pt 12), 2271–2299 (1998). 

50. Miller, K. J. et al. Real-time functional brain mapping using electrocorticography. Neuroimage 

37, 504–507 (2007). 

51. Kubánek, J., Miller, K. J., Ojemann, J. G., Wolpaw, J. R. & Schalk, G. Decoding flexion of 

individual fingers using electrocorticographic signals in humans. J. Neural Eng. 6, 066001 

(2009). 

52. Canolty, R. T. et al. Spatiotemporal dynamics of word processing in the human brain. Front. 

 

 

63 

Neurosci. 1, 185–196 (2007). 

53. Potes, C., Brunner, P., Gunduz, A., Knight, R. T. & Schalk, G. Spatial and temporal 

relationships of electrocorticographic alpha and gamma activity during auditory processing. 

Neuroimage 97, 188–195 (2014). 

54. Sturm, I., Blankertz, B., Potes, C., Schalk, G. & Curio, G. ECoG high gamma activity reveals 

distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a 

rock song. Front. Hum. Neurosci. 8, 798 (2014). 

55. Zion Golumbic, E. M. et al. Mechanisms underlying selective neuronal tracking of attended 

speech at a ‘cocktail party’. Neuron 77, 980–991 (2013). 

56. Dijkstra, K. et al. Identifying the Attended Speaker Using Electrocorticographic (ECoG) 

Signals. Brain Comput Interfaces (Abingdon) 2, 161–173 (2015). 

57. Gunduz, A. et al. Neural correlates of visual-spatial attention in electrocorticographic signals 

in humans. Front. Hum. Neurosci. 5, 89 (2011). 

58. Gunduz, A. et al. Decoding covert spatial attention using electrocorticographic (ECoG) signals 

in humans. Neuroimage 60, 2285–2293 (2012). 

59. Edwards, E. et al. Comparison of time-frequency responses and the event-related potential to 

auditory speech stimuli in human cortex. J. Neurophysiol. 102, 377–386 (2009). 

60. Pei, X., Barbour, D. L., Leuthardt, E. C. & Schalk, G. Decoding vowels and consonants in 

spoken and imagined words using electrocorticographic signals in humans. J. Neural Eng. 8, 

046028 (2011). 

61. Cervenka, M. C., Nagle, S. & Boatman-Reich, D. Cortical high-gamma responses in auditory 

processing. Am. J. Audiol. 20, 171–180 (2011). 

62. Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. 

Lond. B Biol. Sci. 364, 1211–1221 (2009). 

 

 

64 

63. Lecaignard, F. Predictive coding in auditory processing : insights from advanced modeling of 

EEG and MEG mismatch responses. (Université de Lyon, , 2016). 

64. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012). 

65. Bauer, M. Functional roles of rhythmic neuronal activity in the human visual and somatosensory 

system. ([Sl: sn], 2008). 

66. Fogelson, N., Shah, M., Scabini, D. & Knight, R. T. Prefrontal cortex is critical for contextual 

processing: evidence from brain lesions. Brain 132, 3002–3010 (2009). 

67. Lara, A. H. & Wallis, J. D. The Role of Prefrontal Cortex in Working Memory: A Mini Review. 

Front. Syst. Neurosci. 9, 173 (2015). 

68. Deouell, L. Y. The Frontal Generator of the Mismatch Negativity Revisited. J. Psychophysiol. 21, 

188–203 (2007). 

69. Rosburg, T. et al. Subdural recordings of the mismatch negativity (MMN) in patients with 

focal epilepsy. Brain 128, 819–828 (2005). 

70. Muthukumaraswamy, S. D. High-frequency brain activity and muscle artifacts in MEG/EEG: 

a review and recommendations. Front. Hum. Neurosci. 7, 138 (2013). 

71. Dürschmid, S. et al. Hierarchy of prediction errors for auditory events in human temporal 

and frontal cortex. Proc. Natl. Acad. Sci. U. S. A. 113, 6755–6760 (2016). 

72. Sedley, W. et al. Neural signatures of perceptual inference. eLife Sciences 5, e11476 (2016). 

73. Litvak, V. & Friston, K. Electromagnetic source reconstruction for group studies. Neuroimage 

42, 1490–1498 (2008). 

74. Lecaignard, F., Bertrand, O., Caclin, A. & Mattout, J. Empirical evaluation of fused MEG-EEG 

source reconstruction applied to auditory mismatch generators. in preparation 28, 14301–14310 

(2017). 

75. Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S. & Knight, R. T. High gamma activity in 

 

 

65 

response to deviant auditory stimuli recorded directly from human cortex. J. Neurophysiol. 94, 

4269–4280 (2005). 

76. Sinai, A. et al. Intracranial mapping of auditory perception: event-related responses and 

electrocortical stimulation. Clin. Neurophysiol. 120, 140–149 (2009). 

77. Phillips, H. N. et al. Convergent evidence for hierarchical prediction networks from human 

electrocorticography and magnetoencephalography. Cortex 82, 192–205 (2016). 

78. Komatsu, M., Takaura, K. & Fujii, N. Mismatch negativity in common marmosets: 

Whole-cortical recordings with multi-channel electrocorticograms. Sci. Rep. 5, 15006 (2015). 

79. Fishman, Y. I. & Steinschneider, M. Searching for the mismatch negativity in primary 

auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J. 

Neurosci. 32, 15747–15758 (2012). 

80. El Karoui, I. et al. Event-Related Potential, Time-frequency, and Functional Connectivity 

Facets of Local and Global Auditory Novelty Processing: An Intracranial Study in Humans. 

Cereb. Cortex 25, 4203–4212 (2015). 

81. Eliades, S. J. et al. Adaptation of high-gamma responses in human auditory association 

cortex. J. Neurophysiol. 112, 2147–2163 (2014). 

82. Daunizeau, J. et al. Observing the observer (I): meta-bayesian models of learning and 

decision-making. PLoS One 5, e15554 (2010). 

83. Besle, J. et al. Visual activation and audiovisual interactions in the auditory cortex during 

speech perception: intracranial recordings in humans. J. Neurosci. 28, 14301–14310 (2008). 

84. Liu, Y., Coon, W. G., de Pesters, A., Brunner, P. & Schalk, G. The effects of spatial filtering and 

artifacts on electrocorticographic signals. J. Neural Eng. 12, 056008 (2015). 

85. Daunizeau, J., Adam, V. & Rigoux, L. VBA: a probabilistic treatment of nonlinear models for 

neurobiological and behavioural data. PLoS Comput. Biol. 10, e1003441 (2014). 

 

 

66 

86. Penny, W. D. et al. Comparing families of dynamic causal models. PLoS Comput. Biol. 6, 

e1000709 (2010). 

87. Haenschel, C., Baldeweg, T., Croft, R. J., Whittington, M. & Gruzelier, J. Gamma and beta 

frequency oscillations in response to novel auditory stimuli: A comparison of human 

electroencephalogram (EEG) data with in vitro models. Proc. Natl. Acad. Sci. U. S. A. 97, 

7645–7650 (2000). 

88. Barry, R. J., Kirkaikul, S. & Hodder, D. EEG alpha activity and the ERP to target stimuli in an 

auditory oddball paradigm. Int. J. Psychophysiol. 39, 39–50 (2000). 

89. Coon, W. G. & Schalk, G. A method to establish the spatiotemporal evolution of task-related 

cortical activity from electrocorticographic signals in single trials. J. Neurosci. Methods 271, 

76–85 (2016). 

90. Schalk, G. A general framework for dynamic cortical function: the 

function-through-biased-oscillations (FBO) hypothesis. Front. Hum. Neurosci. 9, 352 (2015). 

  

 

 

67