impact of fission on r-process nucleosynthesis within the ... · impact of fission on r-process...

36
Impact of fission on r-process nucleosynthesis within the energy density functional theory Samuel A. Giuliani , G. Mart´ ınez Pinedo , L. M. Robledo , M.-R. Wu Technische Universit¨ at Darmstadt, Darmstadt, Germany Universidad Aut´ onoma de Madrid, Madrid, Spain January 17th, 2017 Neutron star mergers: from gravitational waves to nucleosynthesis Hirschegg, Austria

Upload: others

Post on 17-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Impact of fission on r-process nucleosynthesiswithin the energy density functional theory

Samuel A. Giuliani†, G. Martınez Pinedo†, L. M. Robledo‡,M.-R. Wu†

†Technische Universitat Darmstadt, Darmstadt, Germany‡Universidad Autonoma de Madrid, Madrid, Spain

January 17th, 2017

Neutron star mergers: from gravitational waves tonucleosynthesis

Hirschegg, Austria

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Outline

1. Introductionr-process in neutron star mergers (NSM)

2. Fission rates from the BCPM EDFFission within the Energy Density Functional approachFission properties of the BCPM EDFStellar reaction rates

3. r-process nucleosynthesis in NSMr-process abundances: BCPM vs FRDM-TFRadioactivityAveraged fission rates

4. Conclusions & Outlook

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Outline

1. Introductionr-process in neutron star mergers (NSM)

2. Fission rates from the BCPM EDFFission within the Energy Density Functional approachFission properties of the BCPM EDFStellar reaction rates

3. r-process nucleosynthesis in NSMr-process abundances: BCPM vs FRDM-TFRadioactivityAveraged fission rates

4. Conclusions & Outlook

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances distributions

Cowan & Sneden, Nature 440, 1151 (2006).

50 60 70 80 90

Atomic number

–12

–10

–8

–6

–4

–2

0

Rela

tive

log ε

CS22892–052HD115444BD+17°3248

CS31082–001HD221170SS r-process abundances

Site?

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process in Neutron Star Mergers & fission10

0

150

200

250

10−310

−210−110

0101

r−process waiting point (ETFSI−Q)

Known massKnown half−life

N=126

N=82

Sola

r r a

bund

ance

s

r−process path

2830 32 34 36 38 40 42 44 46 48 50 52 54 56 58

6062

6466 68

7072

74 7678

8082

8486

88 90

92 9496

98100 102

104106

108110

112 114

116 118120

122124

126

128130 132

134 136138

140 142 144 146 148150

152154

156

158

160

162

164 166 168 170 172 174176

178180 182

184

186188 190

26

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

N=184

30

32

28

fission recycling

Mendoza-Tem

iset

al.,Phys.Rev.

C92,055805

(2015)

Condition for robust r-process abundances in NSM

Material in the fissioning region (A > 250) dominating at freeze-out→ systematic calculations of fission rates using different models are

required!

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Outline

1. Introductionr-process in neutron star mergers (NSM)

2. Fission rates from the BCPM EDFFission within the Energy Density Functional approachFission properties of the BCPM EDFStellar reaction rates

3. r-process nucleosynthesis in NSMr-process abundances: BCPM vs FRDM-TFRadioactivityAveraged fission rates

4. Conclusions & Outlook

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Fission within the Energy Density Functional approachPotential Energy Surface

Energy evolution from the groundstate to the scission point.

Relevant degrees of freedom?

SAG+ PRC90(2014); Sadhukhan+ PRC90(2014)

Collective inertias

Resistance of the nucleusagainst the deformation forces.

Hard to compute.

Baran+ PRC84 (2011).

0 10 20 30 40 50 60 70 80 90 100Q20 [b]-2060

-2056

-2052

-2048

-2044

-2040

E(Q

20) [

MeV

]

286114Fl

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Static fission propertiesI Parameters defining the potential energy surface:

- inner and outer fission barrier heights,- isomer excitation energy.

I Probability of tunneling under the fission barrier (WKB):

P =1

1 + exp(2S) ;

S =

∫ b

adQ20

[2 B(Q20)︸ ︷︷ ︸

inertias

(V (Q20)︸ ︷︷ ︸

PES

−E∗)] 1

2.

- Spontaneous fission lifetimes: tsf =ln 2

n×P ;- fission cross sections.

I Interaction:- Now: Barcelona-Catania-Paris-Madrid EDF Baldo et al., PRC87 (2013).- (next) Future: Gogny and BCPM∗ EDFs.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

BCPM: systematic of fission barriers

0

2

4

6

8

10

12

14

120 140 160 180 200 220 240Neutron number

90

100

110

120TF

2

2

2

2 2 2

2

4

4

4

4 4

6

6

6

6

6

8

8

10 12 14

90

100

110

120

Prot

on n

umbe

r HFB14

2 2 2

2

2

2

2

2

2

2

2

4 44

4 444

6 68810 12

Sn = 2 MeVSn = 0 MeV

90

100

110

120BCPM

2

2 2

4

4

4

4

4

66

6

6

8

8

10

12 12

14 14

Fission barrier (MeV)

I Mean-field models predict largerBf than mic-mac for Z ≤ 110;

I n-induced fission importantabove N = 184.

BCPM: SG, Martınez-Pinedo and Robledo (in

preparation); HFB14: S. Goriely et al., PRC75

(2007); TF: W. D. Myers and W. J. Swiatecki,

PRC60 (1999); FRDM: P. Moller et al., At. Data

Nucl. Data Tables 52 (1995).

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

BCPM: systematic of fission barriers

0

2

4

6

8

120 140 160 180 200 220 240Neutron number

90

100

110

120TF-FRDM

90

100

110

120

Prot

on n

umbe

r HFB14

Sn = 2 MeVSn = 0 MeV

90

100

110

120BCPM

Bf−Sn (MeV)

I Mean-field models predict largerBf than mic-mac for Z ≤ 110;

I n-induced fission importantabove N = 184.

BCPM: SG, Martınez-Pinedo and Robledo (in

preparation); HFB14: S. Goriely et al., PRC75

(2007); TF: W. D. Myers and W. J. Swiatecki,

PRC60 (1999); FRDM: P. Moller et al., At. Data

Nucl. Data Tables 52 (1995).

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Nuclear inputs for reaction rates

I Reaction rates require knowledge/modeling of nuclear level densities, γ-raystrengths, masses, fission barriers. . .

I The EDF theory useful framework for providing nuclear inputs:- neutron separation energies and barriers from the same interaction;

120 130 140 150 160 170 180 190 200N

0

2

4

6

8

10

12

14

16

18

20

S2n

Z =120

Z =84

BCPM

120 130 140 150 160 170 180 190 200N

0

2

4

6

8

10

12

14

16

18

20

S2n

Z =120

Z =84

FRDM

- tunneling probability from full fission barrier and microscopic collectiveinertias.

I Several optical models, level densities and γ-ray strengths implemented inTALYS.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Cross sections: BCPM vs experimentI n-induced fission, γ-induced fission, spontaneous fission and n-capture rates

computed using the BCPM nuclear masses and fission barriers.

102

103

104

σ(n,fiss)

(mb)

238Pu 239Pu

10-2 10-1 100 101

Energy (MeV)

102

103

104

σ(n,fiss)

(mb)

240Pu

10-2 10-1 100 101

Energy (MeV)

241Pu

ExperimentConstant TemperatureBack-Shifted Fermi Gas

Goriely, Eur. Phys. J. A (2015) 51:22.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Cross sections: BCPM vs experiment

I n-induced fission, γ-induced fission, spontaneous fission and n-capture ratescomputed using the BCPM nuclear masses and fission barriers.

0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10

102

103

0.01 0.1 1 10

238Pu(n,f)

n,f [m

b]

E [MeV]

102

103

0.01 0.1 1 10

239Pu(n,f)

E [MeV]

100

101

102

103

104

0.01 0.1 1 10

240Pu(n,f)

E [MeV]

102

103

104

0.01 0.1 1 10

E [MeV]

241Pu(n,f)

Goriely, Eur. Phys. J. A (2015) 51:22.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Outline

1. Introductionr-process in neutron star mergers (NSM)

2. Fission rates from the BCPM EDFFission within the Energy Density Functional approachFission properties of the BCPM EDFStellar reaction rates

3. r-process nucleosynthesis in NSMr-process abundances: BCPM vs FRDM-TFRadioactivityAveraged fission rates

4. Conclusions & Outlook

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

BCPM rates

120 140 160 180 200 220 240Neutron number

90

100

110

120

Prot

on n

umbe

r

-25 -20 -15 -10 -5 0

log10(Y)

120 140 160 180 200 220 240Neutron number

90

100

110

120

Prot

on n

umbe

r

Dominating channel at nn =1028 cm−3

(n,γ)(n,fission)spont. fissionSn= 2 MeVSn= 0 MeV

I Narrow (n, γ) path through A ∼ 300; r-path up to A ∼ 320.I Fission dominates at A & 350: heavier nuclei cannot be produced.I SF relevant when Bf < 2 MeV.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances: BCPM vs FRDM-TF Panov+, A&A 513 (2010)

I Trajectory: 3D relativistic simulations from1.35 M�-1.35 M� NS mergers [Bauswein+(2013)].

I Same rates for Z ≤ 83 and same τβ .

I BBCPMf > BTF

f and ∆BCPMn > ∆FRDM

n atN = 184: larger production of nuclei withA > 280.

I Accumulation above the 2nd peak:

- formed by fission fragments of nuclei withA ∼ 283− 286.

I FRDM-TF peak at A ∼ 257:

- jump in Sn at N = 172 (not present inBCPM).

I Similar 232Th/238U ratio: relevant physicsbelow Z = 84 or close to stability.

10-910-810-710-610-510-410-310-2

abun

danc

es a

t n/s

=1

10-910-810-710-610-510-410-310-2

abun

danc

es a

t τ(n,γ

)=τ β

100 150 200 250 300A

10-910-810-710-610-510-410-310-2

abun

danc

es a

t 1 G

y

PANOVBCPMsolar

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances: BCPM vs FRDM-TF Panov+, A&A 513 (2010)

I Trajectory: 3D relativistic simulations from1.35 M�-1.35 M� NS mergers [Bauswein+(2013)].

I Same rates for Z ≤ 83 and same τβ .

I BBCPMf > BTF

f and ∆BCPMn > ∆FRDM

n atN = 184: larger production of nuclei withA > 280.

I Accumulation above the 2nd peak:

- formed by fission fragments of nuclei withA ∼ 283− 286.

I FRDM-TF peak at A ∼ 257:

- jump in Sn at N = 172 (not present inBCPM).

I Similar 232Th/238U ratio: relevant physicsbelow Z = 84 or close to stability.

10-910-810-710-610-510-410-310-2

abun

danc

es a

t n/s

=1

10-910-810-710-610-510-410-310-2

abun

danc

es a

t τ(n,γ

)=τ β

100 150 200 250 300A

10-910-810-710-610-510-410-310-2

abun

danc

es a

t 1 G

y

PANOVBCPMsolar

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances: BCPM vs FRDM-TF Panov+, A&A 513 (2010)

I Trajectory: 3D relativistic simulations from1.35 M�-1.35 M� NS mergers [Bauswein+(2013)].

I Same rates for Z ≤ 83 and same τβ .

I BBCPMf > BTF

f and ∆BCPMn > ∆FRDM

n atN = 184: larger production of nuclei withA > 280.

I Accumulation above the 2nd peak:

- formed by fission fragments of nuclei withA ∼ 283− 286.

I FRDM-TF peak at A ∼ 257:

- jump in Sn at N = 172 (not present inBCPM).

I Similar 232Th/238U ratio: relevant physicsbelow Z = 84 or close to stability.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

n/s

=1

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at τ (n,γ)=τ β

100 150 200 250 300A

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

1 G

y

PANOV

BCPM

solar

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances: BCPM vs FRDM-TF Panov+, A&A 513 (2010)

I Trajectory: 3D relativistic simulations from1.35 M�-1.35 M� NS mergers [Bauswein+(2013)].

I Same rates for Z ≤ 83 and same τβ .

I BBCPMf > BTF

f and ∆BCPMn > ∆FRDM

n atN = 184: larger production of nuclei withA > 280.

I Accumulation above the 2nd peak:- formed by fission fragments of nuclei with

A ∼ 283− 286.

I FRDM-TF peak at A ∼ 257:

- jump in Sn at N = 172 (not present inBCPM).

I Similar 232Th/238U ratio: relevant physicsbelow Z = 84 or close to stability.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

n/s

=1

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at τ (n,γ)=τ β

100 150 200 250 300A

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

1 G

y

PANOV

BCPM

solar

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances: BCPM vs FRDM-TF Panov+, A&A 513 (2010)

I Trajectory: 3D relativistic simulations from1.35 M�-1.35 M� NS mergers [Bauswein+(2013)].

I Same rates for Z ≤ 83 and same τβ .

I BBCPMf > BTF

f and ∆BCPMn > ∆FRDM

n atN = 184: larger production of nuclei withA > 280.

I Accumulation above the 2nd peak:- formed by fission fragments of nuclei with

A ∼ 283− 286.

I FRDM-TF peak at A ∼ 257:- jump in Sn at N = 172 (not present in

BCPM).

I Similar 232Th/238U ratio: relevant physicsbelow Z = 84 or close to stability.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

n/s

=1

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at τ (n,γ)=τ β

100 150 200 250 300A

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

1 G

y

PANOV

BCPM

solar

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

r-process abundances: BCPM vs FRDM-TF Panov+, A&A 513 (2010)

I Trajectory: 3D relativistic simulations from1.35 M�-1.35 M� NS mergers [Bauswein+(2013)].

I Same rates for Z ≤ 83 and same τβ .

I BBCPMf > BTF

f and ∆BCPMn > ∆FRDM

n atN = 184: larger production of nuclei withA > 280.

I Accumulation above the 2nd peak:- formed by fission fragments of nuclei with

A ∼ 283− 286.

I FRDM-TF peak at A ∼ 257:- jump in Sn at N = 172 (not present in

BCPM).

I Similar 232Th/238U ratio: relevant physicsbelow Z = 84 or close to stability.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

n/s

=1

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at τ (n,γ)=τ β

100 150 200 250 300A

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

ab

und

ance

s at

1 G

y

PANOV

BCPM

solar

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Emitted radioactive energyEnergy emitted by radioactive products in NSM crucial for predicting kilonovalight curves [J. Barnes et al., ApJ 829 110 (2016)].

10-5 10-4 10-3 10-2 10-1 100 101 102

Days

10-2

10-1

100

Frac

tion

of ra

dioa

ctiv

e en

ergy

BCPMPanovβ-decayα-decaytotal fission

I Minor impact in the radioactive energy production ⇒ physics Z < 84 and/orβ-decay more relevant.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Averaged fission rates

10-1 100 101 102

Time (s)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Rat

e (s−

1)

BCPMPanovn-induced fissionβ-delayed fissionspontan. fissionγ-induced fission

I n-induced dominates until freeze-out and revived by β-delayed neutrons⇒ β-delayed fission rates from BCPM barriers required!

I photo-induced fission always subdominant;I decay of material to stability triggers spontaneous fission.

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

What is next? Gogny interaction

0 2 4 6 8 10 12 14

120 140 160 180 200 220 240Neutron number

90

100

110

120D1N

2

2

4

4

4

6

6

6

8 8

8

8

88

8

1010

10

12 12 14

90

100

110

120

Prot

on n

umbe

r D1S

2

2

2

4

4

4

6

6

6

6

66 6

8

8

8

8

8

8 8

10 10

10

10

10

10

12

12

1414 14

Sn = 2 MeVSn = 0 MeV

90

100

110

120D1M

2

2

4

4

4

6

6

6

8 8

8

8

8

8

8

1010

10

12 12 14

Fission barrier (MeV)

-5 -3 -1 1 3 5

120 140 160 180 200 220 240Neutron number

90

100

110

120D1S-BCPM

90

100

110

120

Prot

on n

umbe

rD1M-BCPM

Sn = 2 MeVSn = 0 MeV

90

100

110

120D1M-BCPM

Fission barrier: GOGNY vs BCPM (MeV)

I Three Gogny parametrizations in the market: D1S, D1M, D1N.I BCPM and Gogny differ up to 5 MeV for r-process nuclei: impact in

rates/abundances?

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Outline

1. Introductionr-process in neutron star mergers (NSM)

2. Fission rates from the BCPM EDFFission within the Energy Density Functional approachFission properties of the BCPM EDFStellar reaction rates

3. r-process nucleosynthesis in NSMr-process abundances: BCPM vs FRDM-TFRadioactivityAveraged fission rates

4. Conclusions & Outlook

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Conclusions

I Fission plays a crucial role in r-process nucleosynthesis.I EDFs valuable tool for a microscopic description of the fission process.I New set of stellar rates suited for r-process calculations using the BCPM

EDF:- n-induced, γ-induced fission and spontaneous fission stellar rates.

I BCPM fission barriers higher than TF: r-process towards A ∼ 320.I Small impact on radioactive energy generation and 232Th/238U ratio.

I Future work:- computation of fragments distributions;- β-delayed fission rates;- explore sensitivity to BCPM and different EDF’s (Gogny, BCPM∗).

Introduction Fission rates from the BCPM EDF r-process nucleosynthesis in NSM Conclusions & Outlook

Thank you!

Minimizing the action: B(∆N 2) vs E(∆N 2) - 234U

S =

∫ b

ads√

2× B(s)[E(s)− E0

]

5 10 15 20 25 30 35

〈∆N2〉

-1777

-1776

-1775

-1774

-1773

-1772

-1771

-1770

-1769

-1768Erot(M

eV)

Erot ∼ 〈∆N2〉2

2.00e-03

4.00e-03

6.00e-03

8.00e-03

1.00e-02

1.20e-02

1.40e-02

1.60e-02

1.80e-02

2.00e-02

B(h

2/M

eVb2)

B∼ 1/〈∆N2〉2

4.09e-03

4.29e-03

4.49e-03

4.69e-03

4.90e-03

5.10e-03

5.30e-03

5.50e-03

5.70e-03

S(h)

action S

The least action path

I The least action path (black) strongly differ from the leastenergy one (red)!

Fission barriers and E0 - 244U

S =

∫ b

ads√

2× B(s)[E(s)− E0

]244U

­10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Q2 (b)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

EHFB­E

GS (

MeV

)

DYNAMIC

STATIC

Spontaneous fission lifetimes (BCPM results)

• Exp: Xiaojun Bao et al., Nucl. Phys. A906, 1–13 (2013).

35 36 37 38 39 40 4121110

17

50

70

232T

h

232U

234U

235U

236U

238U

240C

m24

2Cm

243C

m24

4Cm

245C

m24

6Cm

248C

m25

0Cm

250N

o25

2No

254N

o25

6No

258N

o26

0No

262N

o

37 38 39 40 41 42 43

241A

m24

3Am

237C

f23

8Cf

240C

f246C

f24

8Cf

249C

f25

0Cf

252C

f25

4Cf

256C

f

245M

d24

7Md

255D

b25

7Db

260D

b26

3Db

36 37 38 39 40 41ZZ2 /AA

236P

u23

8Pu

239P

u24

0Pu

242P

u24

4Pu

249B

k

241F

m24

3Fm

244F

m24

6Fm

248F

m25

0Fm

252F

m25

4Fm

255F

m25

6Fm

257F

m25

8Fm

259F

m26

0Fm

260F

m

39 40 41 42 43 44ZZ2 /AA

253E

s25

5Es

258L

r25

9Lr

261L

r26

2Lr

253R

f25

4Rf

255R

f25

6Rf

257R

f25

8Rf

259R

f26

0Rf

262R

f

258S

g26

0Sg

264H

s

ATDHFBGOA-GCMSEMPEXP

log10(tSF[s])

BCPM barrier heights and isomer energy

• Exp:R. Capote et al., Nucl. Data Sheets 110, 3107 (2009);

S. Bjørnholm and J. E. Lynn, Rev. Mod. Phys. 52, 725 (1980).

125 130 135 140 145 150 155N

4

2

0

2

4

BC

PM

-EX

PE

RIM

EN

T (

MeV

)

BI

140 145 150 155N

BII

Bjørnholm Capote

140 142 144 146 148 150N

4

2

0

2

4EII

BCPM barrier heights and isomer energy BCPM: Baldo et al., PRC87 (2013)

Exp: Sing et al., Nucl. Data Sheets 97, 241 (2002); R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

­2

­1

0

1

2

3

4

5

6

7

8

9

10

11

E [M

eV

]

Inner barrier

Isomer excitation

Outer barrierEXP

BCPM

Potential energy surface parameters

234U

236U

238U

238P

u

240P

u

242P

u

244P

u

240C

m

242C

m

244C

m

246C

m

248C

m

250C

f

252C

f

SAG and Robledo, Phys. Rev. C88, 054325 (2013)

- Outer barriers and isomer energies quite well reproduced for all nuclei.- Inner barriers are reduced when triaxiality is allowed (Erler+(2012), Guzman+(2014)).

Uranium fission barrier heights: theoretical predictionsBSk14: S. Goriely et al., Phys. Rev. C75, 064312 (2007). Moller: P. Moller et al., Phys. Rev. C91, 024310 (2015).

138 144 150 156 162 168 174 180 186 192 198 204

N

2

3

4

5

6

7

8

9

10

11

12

13

Fis

sio

n b

arr

iers

he

igh

ts [

Me

V]

BCPM

BSk14

Moeller

Experimental

Z=92

138 144 150 156 162 168 174 180 186 192 198 204

N

20

40

60

80

100

120

140

160

180

log

10(tsf (s

)) BCPM

BSk14

Experimental

Z=92

Collective inertias

BSk14: B = 0.054A5/3 MeV−1

BCPM: B =12

(M−2)2

(M−1)3 with M(−n) =∑α>β

|〈αβ|Q20|0〉|2

(Eα + Eβ)n

The BCPM functional

The energy of a finite nucleus is given by

E = T0 + E∞int + EFRint + Es.o. + EC + Epair

E∞int[ρp, ρn] =

∫d~r[Ps(ρ)(1− β2) + Pn(ρ)β2]ρ

with ρ(~r) = ρn(~r) + ρp(~r) and β(~r) = (ρn(~r)− ρp(~r))/ρ(~r).

Ps and Pn are polynomial fits to reproduce microscopic EoS in nuclear matter.

I Phenomenological surface contribution

EFRint [ρn , ρp] =

12∑t,t′

∫∫d~rd~r ′ρt(~r)vt,t′ (~r − ~r ′)ρt′ (~r ′)

with vt,t′ (r) = Vt,t′ e−r2/r0 tt2; Vn,n = Vp,p = VL = 2b1/(π3/2r3

0Lρ0);Vn,p = Vp,n = VU = (4a1 − 2b1)/(π3/2r3

0Uρ0) .M.Baldo et al. Phys. Lett. B663 (2008) 390; Phys. Rev. C87 064305 (2013)

Remaining contributions to the EDF

I Coulomb Direct EHC = (1/2)

∫∫d~rd ~r ′ρp(~r)|~r − ~r ′|−1ρp(~r ′) Exchange:

EexC = −(3/4)(3/π)1/3 ∫ d~rρp(~r)4/3

I Spin-Orbitvso

ij = iWLS(~σi + ~σj) · [~k′ × δ(~ri − ~rj)~k]

Free parameters

WLS and r0L, r0U

I Pairing Correlations (E. Garrido et al. Phys. Rev. C 60, 064312 (1999)) Zero-rangeinteraction,

vpp(ρ(~r)) = η × v0

2

[1− γ

(ρ(~r)

ρ0

)α], ρ0 =

23π2 k3

F .

η ≡multiplicative parameter setting the pairing strength. . .