impact of battery characteristics on fuel economy - presentations/hevs and...la92 03 0.4 n the red...

21
Impact of Battery Characteristics on Fuel E E conomy AABC AABC March 2008 A ymeric Rousseau, Neeraj Shidore, Richard Carlson, Dominik Karbowski Argonne National Laboratory Sponsored by Lee Slezak Sponsored by Lee Slezak This presentation does not contain any proprietary, confidential, or otherwise restricted information

Upload: others

Post on 30-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Impact of Battery Characteristics on Fuel EEconomy 

    AABCAABCMarch 2008

    Aymeric Rousseau, Neeraj Shidore, y , j ,Richard Carlson, Dominik Karbowski

    Argonne National Laboratory

    Sponsored by Lee SlezakSponsored by Lee Slezak

    This presentation does not contain any proprietary, confidential, or otherwise restricted information

  • Outline

    Process Description

    Optimum Control Strategy 

    Impact of Available Energy

    Impact of Peak Power

    Impact of Temperature

    – Battery in an emulated vehicle

    – On‐Road vehicle testingg

    Conclusions

    2

  • Battery Characteristics Evaluation ProcessBattery Hardware

    Vehicle Simulation

    tJtSOCtP 11

    Simulation

    4WD Test Facility

    tSOCtP nm ,

    tJtSOCtP '0,000 ,1',1

    tJtSOCtP MMMM ',' ,1,1

    tU 0

    tU M

    TX 0X. . .

    .

    .

    .

    Emulated Vehicle

    Global Optimization

    Natural Cold Test Chamber

    100% Modeling 100% Hardware

    Energy & Power Temperature Effects

    3

  • Global Optimization Allows Fair Comparison of Component Sizes and TechnologiesComponent Sizes and Technologies Knowing the drive cycle, the algorithm defines what would be the optimum component operating points to minimize fuelthe optimum component operating points to minimize fuel consumed. Algorithm adapts itself to all parameters influencing control: Drive cycle Distance Component size (energy, power) and technology…p ( gy, p ) gy

    Impact of Energy Impact of Power

    5 different AER (UDDS)Power remains constant

    5 different powerEnergy remains constant

  • PSAT Vehicle Assumptions2.3L Ford

    Duratec (100kW)5 SpdAMT

    Ratio3.8

    P195_60_R15Radius=0.317

    Cd = 0.315FA = 2.244 m2

    S ll SUV

    Li-ionJCS

    800W UQM75kW

    Small SUVAll Electric Range of 5, 10, 20, 30 and 40 miles on UDDS

    JCS41 Ah

    72 cells61 kW (10s)

    6 4 kWh usable

    75kW Peak

    5

    6.4 kWh usable

  • Energy Sizing Impacts Fuel Displacement when Distance Traveled > AERwhen Distance Traveled > AER Distance Traveled  AER– Decrease in fuel consumption is proportional to increase in AER

    1 5 L/100 km differen e bet een UDDS and LA92

    6

    7

    100k

    m)

    Driven Distance: 10 miles

    6

    7

    100k

    m)

    Driven Distance: 10 miles

    300

    350

    (Wh/

    km)

    Driven Distance: 40 miles

    Wh/km (UDDS)Wh/km (HWFET)

    300

    350

    (Wh/

    km)

    Driven Distance: 40 miles

    Wh/km (UDDS)Wh/km (HWFET)

    – 1.5 L/100 km difference between UDDS and LA92

    3

    4

    5

    Cons

    umpt

    ion

    (L/1

    L/100km (UDDS)3

    4

    5

    Cons

    umpt

    ion

    (L/1

    L/100km (UDDS) 150

    200

    250

    Con

    sum

    ptio

    n (Wh/km (HWFET)

    Wh/km (LA92)

    150

    200

    250

    Con

    sum

    ptio

    n (Wh/km (HWFET)

    Wh/km (LA92)

    0

    1

    2

    Min

    imal

    Fue

    l C L/100km (HWFET)L/100km (LA92)

    0

    1

    2

    Min

    imal

    Fue

    l C L/100km (HWFET)L/100km (LA92)

    0

    50

    100

    Elec

    tric

    Ene

    rgy

    0

    50

    100

    Elec

    tric

    Ene

    rgy

    6

    05 10 20 30 40

    AER (miles)

    05 10 20 30 40

    AER (miles)5 10 20 30 405 10 20 30 40

    0

    AER (miles)5 10 20 30 405 10 20 30 40

    0

    AER (miles)

  • Energy Impact on Battery use depends on Trip Distanceon Trip Distance

    Distance Traveled  AER, 

    Blended mode, 

    120Driven Distance: 10 miles

    120Driven Distance: 10 miles

    120Driven Distance: 40 miles

    120Driven Distance: 40 miles

    Similar RMS current Lower RMS current

    80

    100

    (A) 80

    100

    (A)

    80

    100

    (A)

    UDDSHWFETLA92

    80

    100

    (A)

    UDDSHWFETLA92

    40

    60

    RM

    S cu

    rren

    t

    40

    60

    RM

    S cu

    rren

    t

    40

    60R

    MS

    curr

    ent

    40

    60R

    MS

    curr

    ent

    5 10 20 30 400

    20UDDSHWFETLA92

    5 10 20 30 400

    20UDDSHWFETLA92

    0

    20

    R

    0

    20

    R

    7

    5 10 20 30 40AER (miles)

    5 10 20 30 40AER (miles)

    5 10 20 30 40AER (miles)

    5 10 20 30 40AER (miles)

  • Peak Battery Power Has Little Influence on Fuel Consumptionon Fuel Consumption Lower fuel consumption for lower power levels due to decrease in regenerative 

    braking energy

    5

    00km

    )

    250

    Wh/

    km)

    Driven Distance: 10 miles5

    00km

    )

    250

    Wh/

    km)

    Driven Distance: 10 miles

    g gy

    3

    4

    mpt

    ion

    (L/1

    0

    150

    200

    umpt

    ion

    (W

    L/100km (UDDS)

    L/100k (HWFET)

    Wh/km (UDDS)

    Wh/k (HWFET)

    3

    4

    mpt

    ion

    (L/1

    0

    150

    200

    umpt

    ion

    (W

    L/100km (UDDS)

    L/100k (HWFET)

    Wh/km (UDDS)

    Wh/k (HWFET)

    2

    Fuel

    Con

    sum

    100

    Ener

    gy C

    onsL/100km (HWFET)L/100km (LA92)

    Wh/km (HWFET)Wh/km (LA92)

    2

    Fuel

    Con

    sum

    100

    Ener

    gy C

    onsL/100km (HWFET)L/100km (LA92)

    Wh/km (HWFET)Wh/km (LA92)

    0

    1

    Min

    imal

    0.6 0.8 1 1.2 1.40

    50

    Elec

    tric

    E

    0

    1

    Min

    imal

    0.6 0.8 1 1.2 1.40

    50

    Elec

    tric

    E

    8

    0.6 0.8 1 1.2 1.4Power Scaling Ratio

    0.6 0.8 1 1.2 1.4Power Scaling Ratio

  • Lower Power Leads to Higher Time Spent at High CurrentsSpent at High Currents

    0.5

    e

    Driven Distance: 10 miles0.5

    e

    Driven Distance: 10 miles0.5e

    Driven Distance: 20 miles0.5e

    Driven Distance: 20 miles

    0 3

    0.4

    the

    Red

    Zon

    e

    UDDSHWFETLA92

    0 3

    0.4

    the

    Red

    Zon

    e

    UDDSHWFETLA92

    0 3

    0.4

    n th

    e R

    ed Z

    on UDDSHWFETLA92

    0 3

    0.4

    n th

    e R

    ed Z

    on UDDSHWFETLA92

    0.2

    0.3

    age

    of C

    urri

    n

    0.2

    0.3

    age

    of C

    urri

    n

    0.2

    0.3

    tage

    of C

    urri

    n

    0.2

    0.3

    tage

    of C

    urri

    n0.6 0.8 1 1.2 1.4

    0

    0.1

    Perc

    enta

    0.6 0.8 1 1.2 1.40

    0.1

    Perc

    enta

    0.6 0.8 1 1.2 1.40

    0.1

    Perc

    ent

    P S li R ti0.6 0.8 1 1.2 1.4

    0

    0.1

    Perc

    ent

    P S li R tiPower Scaling RatioPower Scaling Ratio Power Scaling RatioPower Scaling Ratio

    Battery current is considered in the “red zone” when it exceeds the ti i l ( 150 A f f )

    9

    continuous maximum value (>150 Amps for reference)

  • Evaluation of Battery In An Emulated Vehicle SystemVehicle System

    JCS VL41M260V, 41Ah

    10

  • AER Decreases with Temperature

    100

    Initial Temperature 20 CVehicle Speed (m/s)

    80

    90

    e speed

    Initial Temperature 20 C Initial Temperature 0 CInitial Temperature -7 C

    60

    70

    rge, Veh

    icle

    40

    50

    ate of Char

    0 500 1000 1500 2000 2500 3000 350020

    30Sta

    11

    Time (seconds)

  • AER Drops by 13% at -7C17 5

    17.3417

    17.5

    16.5

    DDS (m

    iles)

    9% Decrease 

    13% Decrease

    15.74

    15.5

    16

    Range on

     UD

    15 0615

    15.5

    EV R

    15.06

    14.5

    ‐10 ‐5 0 5 10 15 20 25

    Initial Mod le Temperat re (De ree C)

    12

    Initial Module Temperature (Degree C)

  • AER Decrease Mostly Due to Regen Energy and Other Losses than Internal ResistanceOther Losses than Internal Resistance

    Initial Temperature Battery kWh ΔkWh

    Battery Losses at Lower Temperature

    e pe u e

    20 6.2 0

    0 5.6 0.53

    –7 5.5 0.73

    SourceInitial

    TemperatureΔWh compared to Wh

    delivered at 20°CΔRegen Energy as

    % of ΔWhΔI2Rt as % of

    ΔWhΔOther Losses as

    % of ΔW

    0C 530 34% 8% 58%0C 530 34% 8% 58%

    –7C 730 34% 12% 54%

    13

  • Battery Temperature Impact During On Road TestingOn-Road Testing

    315 VDC Li-Ion

    20kW DC/DC

    Hymotion/A123 7kWh Pack

    Converter

    Escape NiMH 340 VDC Battery Pack

    Escape Powertrain

    Inverter

    Escape Powertrain

    Hymotion Escape PHEVHymotion Escape PHEV7 kWh Li-ion (A123)

    14

  • Fuel Economy Still Increases After 20 miles!miles!

    Battery Temperature Still Increasing After

    60 i t !

    15

    Entire Vehicle Was Cold 60 minutes!

  • Higher Li-ion Temperature Leads to Increased Battery Usage and Lower Fuel ConsumptionBattery Usage and Lower Fuel Consumption

    16

    Both Batteries Warmed – Cold Vehicle

  • Most of the Fuel Consumption Increase Due to Cold BatteryIncrease Due to Cold Battery

    17

    Percent increase in fuel consumption over steady-state fuel consumption –5°C

  • Impact of Cold Battery Mostly Due to Discharge EnergyDischarge Energy

    18

    Regenerative Braking Difference only Due to NiMH

  • Conclusion When the distance driven is higher than the AER, the optimal 

    control is blended. As the engine is operated at high power, the battery RMS current is lowered.battery RMS current is lowered.

    The available battery energy has significant impact on fuel consumption.

    The peak battery power affects fuel consumption mostly with regard to regenerative braking energy.

    The RMS battery current is influenced by several factors: The RMS battery current is influenced by several factors:

    – Blended control lowers Irms

    – Irms increases with electrical consumptionIrms increases with electrical consumption

    Lower power batteries operate more often above their continuous current limits

    19

  • Conclusion (cont’d)

    Testing a battery in an emulated vehicle, the AER decreases by 9% at 0°C and by 13% at ‐7°C, as compared with 20°C conditions. Decreases in regenerative braking energy combined with “other losses” explain the changes.

    For the PHEV conversion tested the on road test results For the PHEV conversion tested, the on‐road test results demonstrated that: 

    – The powertrain warm‐up causes most of the losses during the early stage of the drive cycle (10 minutes)

    – The battery pack then accounts for most of the changes in fuel consumptionconsumption

    At cold temperatures, control limitations, especially discharging energy, are the main reason for lower fuel economy.

    20

    n1

  • Slide 20

    n1 First bullet on this slide : Decreses in inherent battery capacity and regen energy explain the chagnes. ( There are the major contributors).nshidore, 4/27/2008