immune control of clade c hiv infection

62
Immune Control of Clade C HIV Infection Bruce D Walker, MD University of KwaZulu Natal Ragon Institute of MGH, Harvard and MIT

Upload: sven

Post on 13-Jan-2016

59 views

Category:

Documents


0 download

DESCRIPTION

Immune Control of Clade C HIV Infection. Bruce D Walker, MD University of KwaZulu Natal Ragon Institute of MGH, Harvard and MIT. Question. Why do children do worse than adults when they become HIV infected? Can answering this question shed light on important immune mechanisms?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Immune Control of  Clade C HIV Infection

Immune Control of Clade C HIV Infection

Bruce D Walker, MD

University of KwaZulu Natal

Ragon Institute

of MGH, Harvard and MIT

Page 2: Immune Control of  Clade C HIV Infection

Question

• Why do children do worse than adults when they become HIV infected?

• Can answering this question shed light on important immune mechanisms?

Page 3: Immune Control of  Clade C HIV Infection

HIV Prevalence in Antenatal Clinics: 2001

0

5

10

15

20

25

30

35

Percent

KZN Gauteng WesternCape

US

Page 4: Immune Control of  Clade C HIV Infection

Philip Goulder

PhotiniKiepiela

Not shown: H. CoovadiaS. Abdool Karim

Page 5: Immune Control of  Clade C HIV Infection

Doris Duke Medical Research Institute

UKZN

Page 6: Immune Control of  Clade C HIV Infection

DDMRI

Page 7: Immune Control of  Clade C HIV Infection

MarkSchwartz

Page 8: Immune Control of  Clade C HIV Infection

KristaDong

KayeAjao

Page 9: Immune Control of  Clade C HIV Infection

ThumbiNdung’u

Page 10: Immune Control of  Clade C HIV Infection

CTL

Can we find signals indicating what is involved in immune control?

Page 11: Immune Control of  Clade C HIV Infection

CTL

Host Genetics

Host Immune Responses

Virus

Page 12: Immune Control of  Clade C HIV Infection

CTL

Host Genetics

Page 13: Immune Control of  Clade C HIV Infection

HLA Class I

817 B alleles

263 C alleles

486 A alleles

Page 14: Immune Control of  Clade C HIV Infection

Experimental Design

• Subjects– HIV-infected Zulu/Xhosa (n=706)

• Methods– High resolution HLA typing– Viral load determination

Page 15: Immune Control of  Clade C HIV Infection

p < 0.0001

p = 0.0006

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HLA B-association with control of HIV

B*57

B*5801

B*5802

B*1801 p < 0.0001p = 0.0008

p = 0.0014

B*8101

Kiepiela et al, Nature, 2004

Page 16: Immune Control of  Clade C HIV Infection

p = 0.0006

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HLA-association with control of HIV

B*5801

B*5802p < 0.0001

Kiepiela et al, Nature, 2004

Page 17: Immune Control of  Clade C HIV Infection

Marked differences in HLA associations: B*5801 and B*5802

p< 0.0001

n = 93 n = 259 n = 722

Median= 14, 650

Median= 75, 200

Median= 33, 000

B5801 B5802 Neither-10

100

1000

10000

100000

1000000

10000000

Vir

al lo

ad

(RN

A C

op

ies/

ml)

Ngumbela et al, ARHR 2008

Page 18: Immune Control of  Clade C HIV Infection

p< 0.0001 p< 0.0001

n = 93 n = 259 n = 722

Median= 14, 650

Median= 75, 200

Median= 33, 000

B5801 B5802 Neither10

100

1000

10000

100000

1000000

10000000

Vir

al lo

ad

(RN

A C

op

ies/

ml)

Ngumbela et al, ARHR 2008

Marked differences in HLA associations: B*5801 and B*5802

Page 19: Immune Control of  Clade C HIV Infection

HLA B*5802 is deleterious?

Page 20: Immune Control of  Clade C HIV Infection

Conclusions I

• HLA B alleles influence viral load

• Certain alleles are associated with protection, and others with progression

Page 21: Immune Control of  Clade C HIV Infection

CTL

How do HLA alleles influence viral load?

Page 22: Immune Control of  Clade C HIV Infection

HLA Class I

BPocket

FPocket

Infected cell

Page 23: Immune Control of  Clade C HIV Infection

HLA Class I

BPocket

FPocket

Viral Peptide

Infected cell

Page 24: Immune Control of  Clade C HIV Infection

HLA Class I

BPocket

FPocket

T Cell Receptor

Infected cell

Page 25: Immune Control of  Clade C HIV Infection

Experimental Design

• Subjects– HIV infected treatment naïve Zulu/Xhosa

• Methods– Determine the dominant protein targeted by CD8 T

cells by ICS using pooled peptides (61 subjects)

– Determine breadth of CD8 T cell responses by Elispot, using individual overlapping peptides spanning all HIV proteins (578 subjects)

– Correlate to viral load

Page 26: Immune Control of  Clade C HIV Infection

A dominant CD8 Gag-specific response is associated with lower

viremia

Ramduth, Chetty, Mngquandaniso et al, JID 2005

Page 27: Immune Control of  Clade C HIV Infection

r=-0.25p<0.0001

p<0.0001

102

103

104

105

106

107

0 1 2 3 >3

Number of Gag responses

Vir

al L

oad

A p<0.0001

p<0.0001

GAG

The breadth of the Gag-specific CD8 response is associated with lower viral load

Kiepiela, Leslie, Honeyborne et al, Nature Medicine 2007

21,000

94,000

Page 28: Immune Control of  Clade C HIV Infection

102

103

104

105

106

107

p=0.0163p=0.0072

r=0.17p<0.0001

ENV

0 1 2 3 >3

Number of Env responses

Vir

al L

oad

Bp=0.0155

p=0.0456

The breadth of the Env-specific CD8 response is associated with higher viral load

220,000

29,000

Kiepiela, Leslie, Honeyborne et al, Nature Medicine 2007

Page 29: Immune Control of  Clade C HIV Infection

p = 0.0006

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HLA-association with control of HIV

B*5801

B*5802p < 0.0001

Kiepiela et al, Nature, 2004

Page 30: Immune Control of  Clade C HIV Infection

Gag-specific CD8 responses are minimal to undetectable in the first 6

months after vertical transmission

0-2 mo 4mo 6mo 2-12 yrs0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p=0.0531

ns

ns

% C

D8

IFN

- R

esp

on

ses

(A)

Thobakgale et al, JV 2007

Page 31: Immune Control of  Clade C HIV Infection

Are there functional differences in HIV-specific immune responses?

Page 32: Immune Control of  Clade C HIV Infection

Experimental Design

• Subjects selected from a cohort of 288 persons with chronic HIV infection– 13 high Gag-specific CD8 T cell responses

• Mean breadth 8+2.6

• Mean magnitude 3380+1304 SFC/10^6 PBMC

– 13 low Gag-specific CD8 T cell responses • Mean breadth 0.64+0.6

• Mean magnitude 808.8+1038 SFC/106 PBMC

Page 33: Immune Control of  Clade C HIV Infection

Subjects matched for CD4 count and overall Elispot responses

High Gag responder Low Gag responder0

100

200

300

400

500

600

700

800

900p=0.153

High Gag responder Low Gag responder0

10000

20000

30000

40000

50000p=0.161

No difference in terms of CD4 cell counts or total elispot responses

in high vs low Gag responders

Julg, Williams, Reddy et al, unpublished

Page 34: Immune Control of  Clade C HIV Infection

Experimental Design

• Methods– Measure the ability of freshly isolated CD8

T cells to• Inhibit a heterologous strain of virus in

autologous CD4 cells• Proliferate in response to HIV peptides• Secrete cytokines in response to HIV

peptides

Page 35: Immune Control of  Clade C HIV Infection

High Gag responders have significantly lower viral loads

High Gag responder Low Gag responder0

1

2

3

4

5

6

7p=0.002

Julg, Williams, Reddy et al, unpublished

Page 36: Immune Control of  Clade C HIV Infection

0 1 2 3 4 5 6 7 8 9 10 11 12 131

10

100

1000

10000

100000

1000000

CD4 uninfected

CD4 infected withHIV-1 (X4) MOI 0.1

Day

p2

4 p

g/m

l

Page 37: Immune Control of  Clade C HIV Infection

0 1 2 3 4 5 6 7 8 9 10 11 12 131

10

100

1000

10000

100000

1000000

CD8 Cells added

CD4 uninfected

CD4 infected withHIV-1 (X4) MOI 0.1

Day

p2

4 p

g/m

l

Julg, Williams, Reddy et al, unpublished

Page 38: Immune Control of  Clade C HIV Infection

High Gag responder Low Gag responder0.0

0.5

1.0

1.5

2.0

2.5p<0.003

High Gag-responders inhibit virus replication better

Julg, Williams, Reddy et al, unpublished

Page 39: Immune Control of  Clade C HIV Infection

Conclusions II

• Broader Gag-specific CD8 T cell responses are associated with lower viral loads

• Broader Env-specific CD8 T cell responses are associated with higher viral loads

• Broad Gag-specific CD8 T cell responses are associated with enhanced ability to neutralize infectious HIV and greater functionality

Page 40: Immune Control of  Clade C HIV Infection

CTL

Virus

Page 41: Immune Control of  Clade C HIV Infection

CTL

Viral Epitope

Page 42: Immune Control of  Clade C HIV Infection

S W

HLA B5801

Page 43: Immune Control of  Clade C HIV Infection

TSTLQEQIAW

Rapid selection for mutation in the B5801-restricted TW10 epitope

--N-------

Wild type

T242N

Page 44: Immune Control of  Clade C HIV Infection

Wild-type virus outgrows mutant T242N

0 10 20 30 40 50 600

20

40

60

80

100

NL4-3/T242N

NL4-3

days post-infection

% v

iral v

aria

nt

0 10 20 30 40 50 600

20

40

60

80

100

Child T242N

Child WT

days post-infection

% v

iral v

aria

nt

A B

NL4-3 NL4-3/T242N Child WT Child T242N0

2

4

6

8

10

12

14

% G

FP+

cells

C D

% v

iral

var

iant

% v

iral

var

iant

% G

FP

+ c

ells

0 100 200 300 400 500 600012

34567

Age (days)

ART

Viral Load

% T242N

100%

80%

60%

40%

20%

0%

log

vira

l loa

dL

og v

iral

load

Days post-infection Days post-infection

Figure1

% v

iral

var

ian

t

% v

iral

var

ian

t

days post infection

Martinez-Picado, J Virol, 2006

Page 45: Immune Control of  Clade C HIV Infection

Number of HLA-B-associated Gag mutationscorrelated with median viral load for each allele

0 1 2 3 4 5 6

10000

100000 r = -0.56p = 0.0034

B*5703

B*5702B*8101

B*5801

B*3910B*1401B*4403B*0702B*3501B*1510

B*41

B*1516B*5301B*1302B*4201B*4501B*1503B*0801B*5802B*1402B*1801B*0705B*4202B*51B*4901

50000

Number of HLA-B Gag mutations

Vir

al L

oad

Matthews, Prendergast et

al, J Virol, 2008

Page 46: Immune Control of  Clade C HIV Infection

Conclusions III

• Gag-specific CD8 T cell responses select for fitness mutants that cripple HIV

Page 47: Immune Control of  Clade C HIV Infection

CTL

What is this epitope-specific immune pressure doing at a population level?

Page 48: Immune Control of  Clade C HIV Infection

• Subjects– 2800 persons with chronic HIV infection– 9 cohorts, 5 continents

• Methods– HLA typing– Virus sequencing in Gag– Analyze the relationship between HLA

prevalence and detection of escape mutationsY Kawashima et al, Nature 2009

Global CTL Escape Collaboration

Page 49: Immune Control of  Clade C HIV Infection

London

% I

135X

var

ian

t in

pop

ulat

ion

75

50

25

00 10 20

% HLA-B51 Prevalence

p=0.0001Kumamoto

VancouverPerth

Oxford

Barbados

LusakaDurban

Gaberone

Percent escape mutant in theentire

population

Y Kawashima et al, Nature in press

Page 50: Immune Control of  Clade C HIV Infection

% I

135X

var

ian

tin

HL

A-m

ism

atch

ed75

50

25

00 10 20

% HLA-B51 Prevalence

p=0.0006Percent escape mutant

in persons NOT

expressing HLA B51

Y Kawashima et al, Nature in press

Page 51: Immune Control of  Clade C HIV Infection

Conclusions IV

• HIV is being shaped by the immune response on a global level, and some protective epitopes are being lost

Page 52: Immune Control of  Clade C HIV Infection

Do host genetics affect transmission?

Page 53: Immune Control of  Clade C HIV Infection

Impact of Protective HLA alleles on HIV Transmission

0

5

10

15

20

25

30

35

Non-Transmitters Transmitters

Percent mothers expressing

protective HLA alleles

N=236 N=61

P = 0.05

Thobakgale et al, JV in press

Page 54: Immune Control of  Clade C HIV Infection

Impact of Protective HLA alleles on disease progression in infants

0

10

20

30

40

50

60

Slow Progressor Progressor

Percent mother or child expressing

protective HLA alleles

N=17 N=44

P = 0.047

Thobakgale et al, JV in press

Page 55: Immune Control of  Clade C HIV Infection

Conclusions V

• HLA is impacting transmission

• Protective HLA alleles should increase in the population as the epidemic progresses

Page 56: Immune Control of  Clade C HIV Infection

What else can international partnerships and local leadership

achieve?

Page 57: Immune Control of  Clade C HIV Infection

KwaZulu Natal Research Institute for TB and HIV (K-RITH)

Page 58: Immune Control of  Clade C HIV Infection

Given where we are now, what should the priorities be moving forward?

Page 59: Immune Control of  Clade C HIV Infection

0

0

25

50

75

Female (15-49) Male (15-49) RSA antenatal clinics 2006PMMH March 2009

Age8 16 24 32 40 48 54 60

66%

%

By age 22, 66% of mothers are HIV infected(Durban, March 2009)

Page 60: Immune Control of  Clade C HIV Infection

A vaccine for HIV is possible, but still a long way off

More efforts must turn to prevention

• Whizzkidsunited.com

Page 61: Immune Control of  Clade C HIV Infection
Page 62: Immune Control of  Clade C HIV Infection

Christina ThobakgaleKholiswa NgumbelaDanni RamduthKirebnashe NairBoris JulgKatie WilliamsIsobel HoneyborneMary Van der StockEshia MoodleyKaren BishopSharon ReddyFundi ChoncoWendy MphatsweSister Kesia

Zenele Mncube Nompumelelo Mkhwanazi Cheryl Day

Janet GiddyHenry SunpathHelga Holst

Thumbi Ndung’uJerry CoovadiaSalim Abdool KarimWilliam CarrVictoria Kasprowicz

Marcus AltfeldMarylyn AddoMark Brockman

Philip Goulder

Jill Conley

Marcus McGilvray