iii. ideal gas law (p. 334-335, 340-346) ch. 10 & 11 - gases

12
III. Ideal Gas Law (p. 334-335, 340- 346) Ch. 10 & 11 - Ch. 10 & 11 - Gases Gases

Upload: blaze-ward

Post on 23-Dec-2015

223 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

III. Ideal Gas Law(p. 334-335, 340-

346)

III. Ideal Gas Law(p. 334-335, 340-

346)

Ch. 10 & 11 - Ch. 10 & 11 - GasesGases

Page 2: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

Quantities to Describe Quantities to Describe GasesGasesQuantities to Describe Quantities to Describe GasesGases

P: Pressure

V: Volume

T: Temperature (Kelvin!)

n: # of moles

Page 3: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

kn

VV

n

Avogadro’s PrincipleAvogadro’s PrincipleAvogadro’s PrincipleAvogadro’s Principle

Equal volumes of gases contain equal numbers of moles• at constant temp & pressure• true for any gas

Page 4: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

PV

TVn

PVnT

Ideal Gas LawIdeal Gas LawIdeal Gas LawIdeal Gas Law

= kUNIVERSAL GAS

CONSTANTR=0.0821 Latm/molK

R=8.315 dm3kPa/molK

= R

You don’t need to memorize these values!

Merge the Combined Gas Law with Avogadro’s Principle:

Page 5: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

Ideal Gas LawIdeal Gas LawIdeal Gas LawIdeal Gas Law

UNIVERSAL GAS CONSTANT

R=0.0821 Latm/molKR=8.315

dm3kPa/molK

PV=nRT(listen to song!!!)

You don’t need to memorize these values!

Page 6: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

Ideal Gas Constant, RIdeal Gas Constant, RIdeal Gas Constant, RIdeal Gas Constant, R

We know that:• 1 mol of a gas occupies 22.4 L at

STP (273.15 K and 101.325 kPa)

R = PV = (101.325kPa)(22.4L) Tn (273.15K)(1mol)

R = 8.31 L·kPa/mol·K

Page 7: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

Ideal Gas Constant, RIdeal Gas Constant, RIdeal Gas Constant, RIdeal Gas Constant, R

Units of numerator depend on:

• Unit of volume and pressure

• Common units of R

Numerical Value

Units

62.4 L·mmHg

mol·K

0.0821 L·atm

mol·K

8.314 J

mol·K

8.314 L·kPa

mol·K

Page 8: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

GIVEN:

P = ? atm

n = 0.412 mol

T = 16°C = 289 K

V = 3.25 LR = 0.0821Latm/molK

WORK:

PV = nRT

P(3.25)=(0.412)(0.0821)(289) L mol Latm/molK K

P = 3.01 atm

Ideal Gas Law ProblemsIdeal Gas Law ProblemsIdeal Gas Law ProblemsIdeal Gas Law Problems Calculate the pressure in atmospheres of

0.412 mol of He at 16°C & occupying 3.25 L.

Page 9: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

GIVEN:

V = ?

n = 85 g

T = 25°C = 298 K

P = 104.5 kPaR = 8.315 dm3kPa/molK

Ideal Gas Law ProblemsIdeal Gas Law ProblemsIdeal Gas Law ProblemsIdeal Gas Law Problems

Find the volume of 85 g of O2 at 25°C and 104.5 kPa.

= 2.7 mol

WORK:

85 g 1 mol = 2.7 mol

32.00 g

PV = nRT(104.5)V=(2.7) (8.315) (298) kPa mol dm3kPa/molK K

V = 64 dm3

Page 10: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

MM from IGL from IGLMM from IGL from IGL

a) If the P, V, T, and mass are known for a gas sample, then n can be calculated using IGL

Then, the molar mass is found by dividing the mass by the number of moles

Page 11: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

MM from IGL from IGLMM from IGL from IGL

b) The number of moles (n) is equal to mass (m) divided by molar mass (M)

g ÷ g = g x mol = mol mol g

c) Substitute m/M for n in IGL: PV = mRT OR M = mRT

M PV

Page 12: III. Ideal Gas Law (p. 334-335, 340-346) Ch. 10 & 11 - Gases

D from IGLD from IGLD from IGLD from IGL

Density, D, is m/V which results in:

M = DRT

P

Rearranging for D:

D = MP

RT