ifts fotovoltaico cfiegna 1

Upload: dosio-davide

Post on 03-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    1/27

    Dispositivi e impianti per la conversionefotovoltaica

    Claudio FiegnaMauro Zanuccoli

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    2/27

    Argomenti

    Effetto fotovoltaico

    Celle fotovoltaiche

    Principio di funzionamento

    Tecnologie e fabbricazione

    Caratterizzazione sperimentale

    Moduli fotovoltaici

    Impianti fotovoltaici

    Tipologie e classificazione

    Esempi

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    3/27

    Argomenti (2)

    Caratterizzazione sperimentale dei dispositiviPV (caratteristiche I-V)

    Esempio di progetto (con sw dedicato)

    Integrazione con l'architettura

    Energy pay-back time

    Il conto energia GSE

    Mercato e tendenze del fotovoltaico

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    4/27

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    5/27

    Energia solare e conversione

    fotovoltaica

    La potenza che colpisce latmosfera terrestre dicirca 170 milioni di miliardi di watt (170 PW).

    In meno di unora il sole invia sulla Terra una

    quantit di energia pari allintero consumocomplessivo mondiale annuale.

    Il flusso di energia solare molto diluito edintermittente

    La conversione fotovoltaica sfrutta il meccanismo digenerazione di carica elettrica prodotto dallaradiazione luminosa in un materiale semiconduttore

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    6/27

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    7/27

    Development of PV technology

    The photovoltaic (PV) effect was discovered in 1839

    by Edmond Becquerel

    After the introduction of silicon as the prime

    semiconductor material in the late 1950s, silicon PVdiodes became available; main applications: TLC

    equipments in remote locations and satelites

    The oil crisis of 1973 led to public investments for

    technology development

    Since the beginning of the 1990s, ecological

    considerations acted as a main driving force in

    promoting PV solar energy

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    8/27

    Global Status of Solar Photovoltaics

    By the end of 2007, the cumulative installed

    capacity of solar photovoltaic (PV) systems

    around the world had reached more than 9,200

    MW. (1,200 MW at the end of 2000). Installations of PV cells and modules around

    the world have been growing at an

    solar electricity industry that it is now worthmore than an annual 13 billion

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    9/27

    Semiconductors - Silicon

    Atomic Number: 144th Group4 Valence Electrons

    Cubic Crystal

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    10/27

    Semiconduttori: bande di energia

    Nei solidi cristallini gli elettroni possono assumere valori di energia totale compresiall'interno di bande di estensione finita, separate da intervalli di valori proibiti (gap).

    Concetto di banda di valenza e banda di conduzione.

    Transizioni inter-banda promosse termicamente o da radiazione elettromagnetica.

    Lacuna: pseudoparticella a carica positiva corrispondente alla mancanza di un elettronein banda di valenza.

    La conducibilit elettrica dipende in modo critico dalla concentrazione di elettroni (lacuneall'interno della banda di conduzione (valenza).

    Tali concentrazioni sono controllabili mediante drogaggio

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    11/27

    Semiconductor Doping

    In solar cell production the silicon has dopant atoms introduced to create a p-type and an n-typeregion and thereby producing a p-n junction. This doping can be done by high temperaturediffusion, where the wafers are placed in a furnace with the dopant introduced as a vapour. Thereare many other methods of doping silicon. In the manufacture of some thin film devices the

    introduction of dopants can occur during the deposition of the films or layers.

    A silicon atom has 4 relatively weakly bound (valence) electrons, which bond to adjacent atoms.Replacing a silicon atom with an atom that has either 3 or 5 valence electrons will thereforeproduce either a space with no electron (a hole) or one spare electron that can move more freelythan the others, this is the basis of doping. P-type doping, the creation of excess holes, is achievedby the incorporation into the silicon of atoms with 3 valence electrons, most often boron and n-type

    doping, the creation of extra electrons is achieved by incorporating an atom with 5 valenceelectrons, most often phosphorus (see figure)

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    12/27

    Interaction of light with

    semiconductors When light strikes the surface of a

    semiconductor it is partially transmitted and

    partially reflected;

    The transmitted light is absorbed by thesemiconductor;

    The energy associated to absorbed light

    promotes the transition of electrons fromoccupied states (e.g. valence band) to the

    higher-energy unoccupied states (conductions

    band.

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    13/27

    Solar spectrum

    =c

    f

    =hc

    E

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    14/27

    Absorption of light in

    semiconductors

    Absorption of light in a direct-bandgap semiconductor (right) andabsorption coefficient as a function of photon energy in GaAs.

    M.A. Green, Solar Cells, Univ. South Wales.

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    15/27

    Absorption of light in

    semiconductors

    Absorption of light in an indirect-bandgap semiconductor (right)and absorption coefficient as a function of photon wave-length inSilicon.

    =

    c

    f=

    hc

    E

    M.A. Green, Solar Cells, Univ. South Wales.

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    16/27

    Other absorption mechanisms

    Phonon-assisted absorption in direct-gap

    semiconductors;

    free-carrier absorption (no electro-hole

    generation)

    two-steps absorption through an energy level

    within the bandgap

    electric-field assisted sub-bandgap absorption

    effects of bandgap narrowing at large doping

    levels

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    17/27

    Solar cells

    Basic requirements for solar-cell operation:

    optical generation of electron-hole pairs under sun

    illumination: the band-gap must correspond to

    wavelength included in the spectrum of solar light. Built-in electric field for separation of carriers.

    low recombination rate low defect density.

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    18/27

    P-N Junction

    Two region with opposite doping typeA strong Electric Field is present in the region close to the

    junction plane

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    19/27

    Cella fotovoltaica convenzionale al silicio

    Efficienza di conversione: 16% - 22%Massimo teorico: 31%Tecnologie alternative:Film sottile silicio amorfo (7% - 9%)Celle multi-giunzione (fino a 40%)Celle in materiale organico (basso costo, bassa efficienza 5%)

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    20/27

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    21/27

    PN junction solar cell

    M.A. Green, Solar Cells, Univ. South Wales.

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    22/27

    Conversion Efficiency

    Efficiency requires:

    large open-circuit voltage VOC

    Low saturation current IO (dark I-V charact.)

    Large short-circuit current ISC

    Low IO --> low recombination rates

    Large ISC --> small band-gap (downside: energywasted into heat generation).

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    23/27

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    24/27

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    25/27

    Tellururo di Cadmio CdTe

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    26/27

    Ivano Pola, SUPSI

  • 7/28/2019 IFTS Fotovoltaico CFiegna 1

    27/27

    Ivano Pola, SUPSI