iee5043 spring 2016 數位積體電路 · 1 part 7 special-purpose subsystems lecture 25 : clock...

77
1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits Professor Wei Hwang ( 黃 威 教授 ) Department of Electronics Engineering National Chiao Tung University [email protected]

Upload: others

Post on 22-Dec-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

1

Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems

IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits

Professor Wei Hwang ( 黃 威 教授 ) Department of Electronics Engineering National Chiao Tung University [email protected]

Page 2: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Topics covered in a typical DIC Course

Page 3: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

3

Outline Introduction Synchronous Systems

Timing Issues Clock generation Phase-Locked Loops (PLL) Delay-Locked Loops (DLL)

Clock distribution Asynchronous Systems Summary

Page 4: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

4

Issues in Timing

Source from : McLaughlin

Page 5: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

5

Issues in Timing

Page 6: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

6

Some Definitions Signals that can only transition at predetermined

times with respect to a signal clock are called “{syn,meso,plesio} chronous” An asynchronous signal can transition at any

arbitrary time.

Page 7: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

7

Some Definitions (contd) Synchronous Signal: exactly the same frequency as local

clock, and fixed phase offset to that clock. Mesochronous Signal: exactly the same frequency as local

clock, but unknown phase offset. Plesiochronous Signal: frequency nominally the same as local

clock, but slightly different

Mesochronous and plesiochronous concepts are very useful for the design of systems with long interconnections, and/or multiple clock domains

Page 8: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

8

Mesochronous Interconnect

Page 9: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

9

Mesochronous Communication

Page 10: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

10

Plesiochronous Communication

Does only marginally deal with fast variations in data delay

Page 11: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

11

Synchronous Pipelined Datapath

Page 12: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

12

Anisochronous Interconnect

Page 13: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

13

The Timing Uncertainty

Page 14: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Positive and Negative Clock Skew

14

Page 15: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Data Structure with feedback

15

Page 16: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Clock Subsystem

Page 17: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Skew and Jitter in Synchronous Clock distribution

17

Page 18: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

18

Clocked Elements 1 – Master-Slave latch

Page 19: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

19

Clocked Elements 2 – Pulsed-Clock latch

Page 20: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

20

Clocked Elements 3 – Sense-Amp Flip-Flop

Page 21: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor
Page 22: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

22

Clock Generation

Low frequency: Buffer input clock and drive to all registers

High frequency Buffer delay introduces large skew relative to

input clocks Makes it difficult to sample input data

Distributing a very fast clock on a PCB is hard

Page 23: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

23

Zero-Delay Buffer

If the periodic clock is delayed by Tc, it is indistinguishable from the original clock

Build feedback system to guarantee this delay

Phase-Locked Loop (PLL)

Delay-Locked Loop (DLL)

Page 24: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

24

Phase-Locked Loop (PLL)

System

Linear Model

Page 25: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Why PLL ?

The PLL has been widely used in consumer, computer and communication aspects.

Phase Locked-Loop

Frequency synthesis

Clock/Data Recovery

Clock De-skewing Demodulator ………

….

Page 26: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

26

PLL-Based Synchronization

Page 27: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Charge Pump PLL (analog)

27

Page 28: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

DPLL Architecture (mixed mode)

28

Page 29: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

PFD Circuit

29

Page 30: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

DCO Circuit

30

Page 31: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

31

Page 32: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

All Digital –PLL (ADPLL)

32

Page 33: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Detailed Block Diagram of ADPLL

33

Page 34: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

PLL Versions The advantage and disadvantage of different types of PLL

LPLL

DPLL

ADPLL

Design methodology

Design cycle

Noise rejection

Output frequency

Oscillator resolution

power

Lock cycle

Area

Analog Mixed mode Digital

Slow Slow Fast

Poor Poor Good

High High Low

High High Low

Slow Slow Quick

Large Large Small

Large Large Design dependent

Page 35: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

35

Delay Locked Loop

Delays input clock rather than creating a new clock with an oscillator

Cannot perform frequency multiplication More stable and easier to design

1st order rather than 2nd State variable is now time (T)

Locks when loop delay is exactly Tc

Deviations of ∆T from locked value

Page 36: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

36

Delay-Locked Loop (DLL)

System

Linear Model

Page 37: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

37

Delayed Locked Loop (DLL)

DLL

( )( )

cp

err 2pd

pd

I s IK

s π= =

Φ

Page 38: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

38

Page 39: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

39

Page 40: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

40

DLL Loop Dynamics

Closed loop transfer function of DLL

This is a first order system

τ indicates time constant (inverse of bandwidth) Choose at least 10Tc for continuous time approx.

( ) ( )( )

out

in

11

T sH s

T s sτ∆

= =∆ +

1 c

pd I vcdl cp vcdl

CTK K K I K

τ = =

Page 41: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

All Digital Multiphase Delay-Locked Loop (AD-MDLL)

41

Page 42: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

ADMDLL Architecture

42

Page 43: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

43

Phase Alignment

If the DDR clock is aligned to the transmitted clock, it must be shifted by 90º before sampling

Use PLL

Page 44: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

44

Mesochronous Clocking

As speeds increase, it is difficult to keep clock and data aligned Mismatches in trace lengths Mismatches in propagation speeds Different in clock vs. data drivers

Mesochronous: clock and data have same frequency but unknown phase Use PLL/DLL to realign clock to each data

channel

Page 45: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

45

Phase Calibration Loop

Special phase detector compares clock & data phase

Page 46: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Clock Distribution

Page 47: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Clock Tree Distribution

Page 48: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

Central Clock Spine Distribution

Page 49: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

49

Clocking Architectures

DLL

( )( )

cp

err 2pd

pd

I s IK

s π= =

Φ

Page 50: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

50

Clock Distribution

On a small chip, the clock distribution network is just a wire And possibly an inverter for clkb

On practical chips, the RC delay of the wire resistance and gate load is very long Variations in this delay cause clock to get to

different elements at different times This is called clock skew

Most chips use repeaters to buffer the clock and equalize the delay Reduces but doesn’t eliminate skew

Page 51: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

51

Example

Skew comes from differences in gate and wire delay With right buffer sizing, clk1 and clk2 could ideally

arrive at the same time. But power supply noise changes buffer delays clk2 and clk3 will always see RC skew

3 mm

1.3 pF

3.1 mmgclk

clk1

0.5 mm

clk2clk3

0.4 pF 0.4 pF

Page 52: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

52

Review: Skew Impact

F1 F2

clk

clk clk

Combinational Logic

Tc

Q1 D2

Q1

D2

tskew

CL

Q1

D2

F1

clk

Q1

F2

clk

D2

clk

tskew

tsetup

tpcq

tpdq

tcd

thold

tccq

( )setup skew

sequencing overhead

hold skew

pd c pcq

cd ccq

t T t t t

t t t t

≤ − + +

≥ − +

Ideally full cycle is available for work Skew adds sequencing overhead Increases hold time too

Page 53: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

53

Solutions

Reduce clock skew Careful clock distribution network design Plenty of metal wiring resources

Analyze clock skew Only budget actual, not worst case skews Local vs. global skew budgets

Tolerate clock skew Choose circuit structures insensitive to skew

Page 54: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

54

Clock Dist. Networks

Ad hoc Grids H-tree Hybrid

Page 55: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

55

Clock Grids

Use grid on two or more levels to carry clock Make wires wide to reduce RC delay Ensures low skew between nearby points But possibly large skew across die

Page 56: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

56

Alpha Clock Grids

Page 57: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

57

H-Trees

Fractal structure Gets clock arbitrarily close to any point Matched delay along all paths

Delay variations cause skew A and B might see big skew A B

Page 58: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

58

Itanium 2 H-Tree

Four levels of buffering: Primary driver Repeater Second-level clock buffer Gater

Route around obstructions

Page 59: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

59

Hybrid Networks

Use H-tree to distribute clock to many points Tie these points together with a grid

Ex: IBM Power4, PowerPC

H-tree drives 16-64 sector buffers Buffers drive total of 1024 points All points shorted together with grid

Page 60: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor
Page 61: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

61

Self-timed and Asynchronous Design Functions of clock in synchronous design

Acts as completion signal Ensures the correct ordering of events

Truly asynchronous design Ordering of events is implicit in logic Completion is ensured by careful timing analysis

Self-timed design Completion ensured by completion signal Ordering imposed by handshaking protocol

Page 62: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

62

Synchronous Datapath

Source from : McLaughlin

Page 63: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

63

Self-Timed Pipelined Datapath

Source from : McLaughlin

Page 64: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

64

Hand-Shaking Protocol

Page 65: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

65

Event Logic – The Muller-C Element

Page 66: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

66

2-Phase Handshake Protocol

Advantage : FAST - minimal # of signaling events (important for global interconnect)

Disadvantage : edge - sensitive, has state

Page 67: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

67

Example: Self-timed FIFO

All 1s or 0s -> pipeline empty Alternating 1s and 0s -> pipeline full

Page 68: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

68

2-Phase Protocol

Page 69: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

69

Example

Page 70: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

70

Example

Page 71: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

71

Example

Page 72: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

72

Example

Page 73: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

73

4-Phase Handshake Protocol

Source from : McLaughlin

Page 74: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

74

4-Phase Handshake Protocol

Page 75: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

75

Self-Resetting Logic

Page 76: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

76

Asynchronous-Synchronous Interface

Page 77: IEE5043 Spring 2016 數位積體電路 · 1 Part 7 Special-Purpose Subsystems Lecture 25 : Clock Subsystems IEE5043 Spring 2016 數位積體電路 Digital Integrated Circuits . Professor

77

Synchronizers and Arbiters Arbiter: Circuit to decide which of 2 events occurred first Synchronizer: Arbiter with clock φ as one of the inputs Problem: Circuit HAS to make a decision in limited time

which decision is not important Caveat: It is impossible to ensure correct operation But, we can decrease the error probability at the expense of

delay