idesa cmos physics using mastar part 2of2x

Upload: nsrknt

Post on 03-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    1/132

    Tutorial 11

    For industrial feasibility evaluation

    1

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    2/132

    DESCRIPTION

    Simulating propagation delay in inverter chain loadedwith capacitive and resistive systems

    Calculating the Static Noise Margin of 6T-SRAMcells

    Using the randomization effects in order to evaluate

    T. Skotnicki & F. Boeuf

    electrical performance of circuits.

    2

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    3/132

    Inverter Speed Evaluation, incl. RC Line

    LG

    lint

    MX

    T. Skotnicki & F. Boeuf

    3

    Inverter 1 Inverter 2 Inverter N

    Cload

    Rline

    Cload

    Rline

    Cload

    Rline

    Inverter 1 Inverter 2 Inverter N

    Cload

    Rline

    Cload

    Rline

    Cload

    Rline

    Cload

    Rline

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    4/132

    Ex-1 : Computing Inverter Delay

    including interconnectionsInput here1- the number of stage2- timing information3 the period of the input signal

    4 R and C values for the BEOL5 click compute

    T. Skotnicki & F. Boeuf4

    Inputsignal

    Signal output at stage 2

    Signal output at last stage (here 4)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    5/132

    T. Skotnicki & F. Boeuf

    5

    Delay at Vdd/2extraction

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    6/132

    Ex- 2 : Computing SRAM SNM

    Click here to start theSRAM evaluation

    T. Skotnicki & F. Boeuf6

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    7/132

    When boxes are uncheck,only 1 SNM is computed

    T. Skotnicki & F. Boeuf7

    Note : to bring the ComputeMenu, just right click here in

    the graph windows

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    8/132

    Ex- 4 : Computing SRAM SNM

    If none of the box arechecked 1 cellcalculation

    Calculation precision

    T. Skotnicki & F. Boeuf

    If at least one of the boxis checked severalcell calculation with random variation onselected parameters

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    9/132

    If Only halfcell calculation ischecked, computationtime will be divided by 2,but butterfly curve will

    always be symetric

    T. Skotnicki & F. Boeuf

    If Only halfcell calculation is notchecked, computation

    time butterfly can beassymetric

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    10/132

    Check boxes to generatevariability

    Choose the number ofgenerated SNM.

    T. Skotnicki & F. Boeuf10

    Check enable Symetrical

    curve to compute only a halfcell, or uncheck to generatethe whole cell variability

    After calculation, statisticaldata are available

    Choose the data to display

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    11/132

    Tutorial 12

    11

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    12/132

    Description

    Objective : evaluate the inverters delay as a function oflayout of transistors, interconnection length, and processvariability

    Content

    Background Elements

    Parasitic Capacitances of MOSFETs

    T. Skotnicki & F. Boeuf

    Input and Output capacitance of an Inverter chain

    Ex-1 : Influence of N/P Ratio on Inverters delay

    Ex-2 : Optimal N/P ratio in the case of a boosted PMOS transistor

    Ex-3 : Impact of process variability on the worst-case

    inverters speed Ex-4 : Influence of interconnect wire length on speed

    performance

    12

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    13/132

    Bibliography

    An Evaluation of the CMOS Technology Roadmap From the Point of View ofVariability, Interconnects, and Power Dissipation Boeuf, F.; Sellier, M.; Farcy, A.;Skotnicki, T.; Electron Devices, IEEE Transactions on Volume 55, Issue 6, June2008 Page(s):1433 1440 Digital Object Identifier 10.1109/TED.2008.921274

    Predictive Delay Evaluation on Emerging CMOS Technologies: A SimulationFramework, Manuel SELLIER, Jean-Michel PORTAL, Bertrand BOROT, SteveCOLQUHOUN, Richard FERRANT, Frdric BOEUF, Alexis FARCY QualityElectronic Design, 2008. ISQED 2008. 9th International Symposium on 17-19 March2008 Page(s):492 497

    T. Skotnicki & F. Boeuf

    Using MASTAR as a Pre-SPICE Model Generator for Early TechnologyAssessment and Circuit Simulation Frederic Boeuf, Manuel Sellier, Fabrice Payet,Bertrand Borot and Thomas Skotnicki , Jpn. J. Appl. Phys. 47 (2008) pp. 3384-3389

    CMOS Technology Roadmap Projection Including Parasitic Effects, Lan Wei,Frdric Boeuf, Thomas Skotnicki, H.-S. Philip Wong*, VLSI-TSA 2009

    13

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    14/132

    Capacitance definition

    Cgc: on-state gate-to-channel cap Cgb_off: off-state gate to substrate cap.

    Cov: overlap cap Cof: outer-fringe cap Cif: inner-fringe cap

    Cgb

    T. Skotnicki & F. Boeuf

    pcca: po y o con ac p ug cap. Cj: junction cap

    Ccorner: corner cap, from thegate overlay to S/D

    Ref.: Lan Wei, STMicroelectronics-STANFORD Univ. Collaboration pgm.& Lan Wei , VLSI TSA 2009

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    15/132

    Caps for a Single DeviceCd (on) Cg(on) Cg(off)

    Cgc Gate-to-channel

    Cgb_off Gate-to-sub

    Cov Gate overlap

    Cof Gate outerfringe

    Cif Gate inner fringe

    Cpcca Gate to plug

    T. Skotnicki & F. Boeuf

    Cgb_off and Cif are shielded by the channel inon-state

    Cgc is not seen by drain node in on-state, dueto pinch-off.

    Ccorner Corner cap Cj Junction cap

    Ref.: Lan Wei, STMicroelectronics-STANFORD Univ. Collaboration pgm.

    & Lan Wei , VLSI TSA 2009

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    16/132

    P1

    IN1

    VDD

    CGDP1

    CGDN1

    CJDP1

    CJDN1

    OUT1

    P2

    IN2

    VDD

    CGDP2

    CGDN2

    OUT2

    INTERCO

    CGBP2

    CGSP2

    1

    4

    3

    2

    65

    34

    5

    76 1

    7

    6

    1 2

    2 43 5

    OFF-ONON-ON

    8

    8

    CGD1 xMILLER

    CGD2 NOMILLER

    Caps for an Inverter Chain

    T. Skotnicki & F. Boeuf

    N1 N2CINTERCOCGBN2

    CGSN2

    ( )

    444444444444444444 3444444444444444444 21

    4444444 34444444 21

    2

    2,2,222,2,22

    interco

    1

    1111

    75.025.075.025.0

    2

    stageinput

    GSNONGBNOFFGBNGDNGDPONGBPOFFGBPGSP

    stageoutput

    jDNjDPMillerGDNGDPL

    CCCCCCCC

    CCCCCC

    +++++++

    +++++=

    ON-ONON-OFF

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    17/132

    Capacitance for an Inverter Chain

    ( )_ _0.25 0.75tot

    dg j g off g on interconnect

    C

    C Miller C C C FO C = + + + +

    Cout (seen bydrain)

    Cin(seen bygate)

    T. Skotnicki & F. Boeuf

    ( )

    ( )

    0.25

    0.75

    ov of pcca corner j

    gc ov of pcca corner

    ov of pcca corner

    interconnect

    C C C C Miller C

    C C C C C FO

    C C C C C

    = + + + +

    + + + + + + + + +

    +

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    18/132

    With MASTAR5

    MASTAR System Layout Function Calculate by full waveform calculation FO1, FO3 are estimated by

    _ 1(3)

    1(3) _ 11

    inverter FO

    FO adjusted fF

    C

    fF =

    T. Skotnicki & F. Boeuf

    , inverter_FO1(3)

    models Different design possibilities are analyzed Wn/Wp ratios, high driving-capable PMOS

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    19/132

    Ex-1 : N/P Ratio (1)1. Open the system profile basline.xsy2. Note the ratio between NMOSs Ion and PMOSs Ion : 727/396 = 1.833. Set Wp=720nm and Wn=360nm4. Peform the calculation of teh inverters delay.5. Write down the TpFO1 value

    (1)

    (3)

    (4)

    T. Skotnicki & F. Boeuf19

    (2) (5)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    20/132

    Ex-1 : N/P Ratio (2)

    /

    360 180 0.5

    -Calculate the delay of a FO1 inverter for the following configurations- plot the delay as a function of WP/WN-Q : Explain the behavior

    T. Skotnicki & F. Boeuf20

    360 360 1

    360 720 2

    240 720 3

    180 720 4

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    21/132

    Ex-1 : N/P Ratio - Answer

    / 1 () / ()

    360 180 0.5 22.12 15.53 1.42

    360 360 1 17.86 .7 1.71

    360 720 2 17.21 6.8 2.53

    240 720 3 1.43 8.5 2.2

    180 720 4 21.87 10.11 2.164

    23

    24

    25

    )

    C at optimum speed is2.53fF

    Optimal Intrinsic delay is 6.8ps

    = x

    T. Skotnicki & F. Boeuf21

    15

    16

    17

    18

    1

    20

    21

    22

    0 1 2 3 4

    (

    Min~1.8

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    22/132

    Ex-2 : Boosting the PMOS

    T. Skotnicki & F. Boeuf22

    -Calculate the delay of a FO1 inverter forthe following configurations- plot the delay as a function of WP/WN-Q : Explain the behavior

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    23/132

    Ex-2 : N/P Ratio with Boosted pMOS

    / 1 () / ()

    360 180 0.5 14.2 .7 1.42

    360 360 1 12.1 6.8 1.7

    360 720 2 12.62 4. 2.53

    240 720 3 14.72 6.44 2.2180 720 4 16.2 7.82 2.16

    24

    But C at optimum speed is now1.79fF

    Intrinsic delay is still 6.8ps

    T. Skotnicki & F. Boeuf23

    10

    12

    14

    16

    18

    20

    22

    0 1 2 3 4

    (

    )

    Min~1.0

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    24/132

    Ex-3 : Delay and Variability

    Objective : Study the impact of technology variability on deviceperformance / speed

    Context

    Every technology feature intrinsic variations due to process variation orstochastic variations

    Transistor gate length , 3 = 12%*Lgate (ITRS)

    Stochastic variation of electrode workfunction due to random dopant

    T. Skotnicki & F. Boeuf

    uc ua ons n o y- con e ec ro e or me a c gra n or en a on uc ua on

    (in metallic electrode), ~10mV Random Fluctuation of transistors channel doping [Mizuno et al. VLSI 93]

    Junction depth variation

    This will impact the Vth and the Idsat of transistors and therefore createa statistical distribution of inverters delay

    24

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    25/132

    Ex-3 - Worst Case Process Simulation

    (1)(2)

    T. Skotnicki & F. Boeuf25

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    26/132

    Ex- 4 :Variability and Delay : A roadmap Analysis

    Q :Use the following table to analyse the scaling of invertersdelay as well as the scaling of the worst case delay (i.e delay+ 3)

    T. Skotnicki & F. Boeuf26

    After F.Boeuf et al., T-ED 2008

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    27/132

    Ex-4 : Variability and Delay

    Answer : as devices are scaled down, they are more and moresenstivite to variability sources. As a consequence, after 50nm half-pitch generation, the worst case delay is scaling slower (4%

    faster/year) than the average delay (17% faster / year)

    T. Skotnicki & F. Boeuf27

    After F.Boeuf et al., T-ED 2008

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    28/132

    Ex- 5 Impact of Wire Length on Delay

    (1)

    L,R negligeable

    T. Skotnicki & F. Boeuf28

    (2)

    8.72ps

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    29/132

    30

    35

    Assume R= 2.0 Ohm/m

    Assume C= 200 aF/m

    Ex- 5 Impact of Wire Length on DelayQ1 :Calculate the propagation delay after the stage 2 for L varying between 0 and 50m.What is the maximum wire length possible ?Q2 : How to go beyond this value ?

    (corresponding to 2005 ITRS values)

    Answer to Q1 :

    T. Skotnicki & F. Boeuf29

    0

    5

    10

    15

    20

    25

    0 5 10 15 20 25

    ()

    () () ()

    0 0 0 8.72

    1 2 2.0016 .87

    10 20 2.0015 20.28

    20 40 4.0015 31.32

    50 100 1.0014 /

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    30/132

    L=10m

    L=1m

    L=20m

    Ex- 5 Impact of Wire Length on Delay

    (Signal starts to be deformed = Lmax)

    Answer to Q1 (cont)

    T. Skotnicki & F. Boeuf30

    L=50m

    (Signal cannot propagate correctly)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    31/132

    Ex- 5 Impact of Wire Length on Delay

    Answer to Q2

    Increase Wn and Wp toachieve highertransistors drivecurrent . E.g. multiplyWn and Wp by 2.0

    T. Skotnicki & F. Boeuf31

    L=20m L=40m

    New Lmax is above 40m

    E 6 I t D l d M t l Li R i t

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    32/132

    Ex- 6 : Inverters Delay and Metal Line Resistance accrosthe Roadmap

    Q :Use the following table to analyse the scaling of invertersdelay across the ITRS roadmap, for a wire length scalingbetween 0.68x per year and 0.8x per year

    T. Skotnicki & F. Boeuf32

    Ex 6 : Inverters Delay and Metal Line

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    33/132

    Ex- 6 : Inverters Delay and Metal LineResistance accros the Roadmap

    Answer

    For 0.8x, delay is not scalingat all with the technology !

    T. Skotnicki & F. Boeuf33

    For 0.68x, delay is properly

    scaling as inverter delay with aFO1 load

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    34/132

    Bibliography

    Innovative Materials, Devices, and CMOS Technologies for Low-PowerMobile Multimedia Thomas Skotnicki, Claire Fenouillet-Beranger, ClaireGallon, Frederic Boeuf, Stephane Monfray, Fabrice Payet, Arnaud

    Pouydebasque, Melanie Szczap, Alexis Farcy, Franck Arnaud, Sylvain

    Clerc, Manuel Sellier, Augustin Cathignol, Jean-Pierre Schoellkopf, ErnestoPerea, Richard Ferrant, and Herv Mingam, Trans. On Elec. Dev. InvitedPaper, Volume: 55, Issue: 1, page(s): 96-130 (2008)

    An Evaluation of the CMOS Technology Roadmap From the Point of

    T. Skotnicki & F. Boeuf

    View of Variability, Interconnects, and Power Dissipation Boeuf, F.;Sellier, M.; Farcy, A.; Skotnicki, T.; Electron Devices, IEEE Transactions onVolume 55, Issue 6, June 2008 Page(s):1433 1440 Digital ObjectIdentifier 10.1109/TED.2008.921274

    Is a Power Optimized Roadmap Realistic for High Performance

    Applications? Frederic Boeuf and Thomas Skotnicki, In Extented Abstractsof SSDM 2007 (JSAP CAT AP071239), pp. 258-259

    34

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    35/132

    Tutorial 13 :

    35

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    36/132

    DESCRIPTION

    Starting from a relatively old device profile, we will carryout a series of modifications to end up with a scaled-down up-to-date device. The following analysis and

    modifications will be considered: Pocket implants

    SCE and DIBL

    T. Skotnicki & F. Boeuf

    Junction depth reduction

    36

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    37/132

    Ex. 1:

    STARTING DEVICE PROFILEAnalysis of problems

    T. Skotnicki & F. Boeuf

    IDESA Start

    37

    St ti d i fil (IDESA St t)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    38/132

    Starting device profile (IDESA Start)

    T. Skotnicki & F. Boeuf

    38

    St ti d i fil l i

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    39/132

    Note that the channel doping is constant (2e17 cm-2) The threshold voltage drops rapidly down

    Already at Lgate=137nm, Vthsatoff reads at no more than

    150mV that corresponds to Ioff=10nA/m For many applications this is already difficult to tolerate

    Not to mension that such long Lgate would have a detrimental

    Starting device profile analysis

    T. Skotnicki & F. Boeuf

    effect on the density of integration

    Remember that this IDESA Start profile corresponds(except for Lgate) to a LOP 65nm CMOS, where the gateshould read at 65nm or below

    The first point we will analyse is thus how to make the gateshorter without lowering the Vthsatoff?

    39

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    40/132

    Ex. 2USE OF POCKET IMPLANTS

    %a commonly used technique enabling

    T. Skotnicki & F. Boeuf

    40

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    41/132

    USE OF POCKET IMPLANTS

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    42/132

    USE OF POCKET IMPLANTS

    Pocket im lantation conditions

    T. Skotnicki & F. Boeuf

    42

    Gain in Lgate minimum thanks to pockets

    POCKETS analysis

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    43/132

    Note that instead of the same Vthsat, the Ioff (leakage is not the same aswithout pockets.

    This is because of relaxation in the Subthreshold Slope

    POCKETS analysis

    SS SubthresholdSlope

    Log(Id)

    +

    +++=

    d

    ds

    el

    dep

    el

    j

    el

    ox

    ox

    Si

    ox

    dep V

    L

    T

    L

    X

    L

    T

    C

    C

    q

    kTS 21

    4

    311)10ln(

    T. Skotnicki & F. Boeuf

    The major source of this relaxation in SS comes from the Cdep/Cox term =[eps(Si)/eps(Ox)]x(Tox/Tdep) term

    Pockets increase the doping that leads to a decrease in

    ( )SBdB

    Sidep V

    qNT +=

    2

    That leads to an increase in SS (68 without pockets and 91 with)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    44/132

    Ex. 3HOW TO REDUCE Lgate,min FURTHER?

    %REDUCTION OF SCE and DIBL

    (note that in the last example with pockets,E= V D BL= V w

    T. Skotnicki & F. Boeuf 44

    before, i.e. without pockets they wereSCE=26mV and DIBL=40mV. This means thatapplication of pockets was not totally capable

    of cancelling the relaxation in ElectrostaticIntegrity of the device that is caused by thereduction of the gate from 137 nm to 53 nm)

    UNDERSTANDING SCE and DIBLUNDERSTANDING SCE and DIBL

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    45/132

    UNDERSTANDING SCE and DIBLUNDERSTANDING SCE and DIBL

    -

    Long channel

    -short

    SCE Short Channel EffectSCE

    Bothe SCE and DIBLlower the barrier thatappears to the electronswishing to move fromsource to drain, andtherefore both lead tomore leaka e current Ioff

    T. Skotnicki & F. Boeuf

    - SCE

    DIBL

    Vds

    DIBL Drain Induced Barrier Lowering

    channel

    SCE DIBL & RSCE IMPACT ON Vth L

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    46/132

    RSCESCE0.3

    0.4

    VD=0.1V RSCESCE

    0.3

    0.4

    RSCESCE0.3

    0.4

    VD=0.1V

    DIBLSCERSCEVV Lthth += ,

    SCE, DIBL & RSCE IMPACT ON Vth-L:

    T. Skotnicki & F. Boeuf T.Skotnicki

    DIBLVth

    (V

    0.1

    0.2

    010010 1000

    L (nm)

    th

    VD=VDDDIBLVth

    (V

    0.1

    0.2

    010010 1000

    L (nm)

    th

    DIBLVth

    (V

    0.1

    0.2

    010010 1000

    L (nm)

    th

    VD=VDD

    SCE & DIBL DEPEND ON RATIOS,

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    47/132

    RATHER THAN ON VALUES OF PARAMETERS :

    DIBLSCEVV Lthth = ,

    deelox TTX _2

    EIL

    SCE

    DIBL

    Vth,L

    REF.: T. Skotnicki, invited paperESSDERC 2000, pp. 19-33, edit.Frontier Group

    T. Skotnicki & F. Boeuf T.Skotnicki

    delelelox LLL 2.

    =

    DS

    el

    dep

    el

    elox

    el

    j

    ox

    Si VLT

    LT

    LXDIBL _

    2

    2

    180.0

    +=

    B

    DSidep

    qNT

    2=

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    48/132

    Ex. 4REDUCTION OF SCE and DIBL

    %Via reduction of junction depth Xj

    T. Skotnicki & F. Boeuf

    48

    REDUCTION OF JUNCTION DEPTH

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    49/132

    REDUCTION OF JUNCTION DEPTH

    Improved SCE and DIBL thanks to reduced Xj

    T. Skotnicki & F. Boeuf

    49

    Gain in Lgate minimumthanks to Xj reduction

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    50/132

    Tutorial 14 :Hi h-K /Metal Gate Stack

    50

    DESCRIPTION

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    51/132

    DESCRIPTION

    Cancellation of polydepletion

    Gate oxide reduction

    Readjustment of pockets

    New Lgate,minimum Gate leakage

    In r i n f HK i l ri

    T. Skotnicki & F. Boeuf

    51

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    52/132

    Ex. 1REDUCTION OF SCE and DIBL

    %Via reduction of Oxide Thickness

    T. Skotnicki & F. Boeuf

    52

    (note that the effective gate dielectricthickness is a summ of the physical gatedielectric thickness, of the polydepletion

    and of the so called Dark space - seenext slide)

    POLYDEPLETION & DARK SPACE:

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    53/132

    SiO2

    3D electrons

    N+Poly-gate Si-P-substrate

    3D electronsin the gate

    SiO2

    3D electrons

    N+Poly-gate Si-P-substrate

    3D electronsin the gate

    spacedarkSi

    SiOpolydep

    Si

    SiOphysoxelox TTTT ___ 22

    ++=

    T. Skotnicki & F. Boeuf T.Skotnicki

    2D electronsin the channel

    Darkspacein the channel

    Polydepletion

    Darkspacein the gate

    2D electronsin the gate inaccumulation

    2D electrons

    in the gate indepletion

    2D electronsin the channel

    Darkspacein the channel

    Polydepletion

    Darkspacein the gate

    2D electronsin the gate inaccumulation

    2D electrons

    in the gate indepletion

    IMPLICATIONS OF Tox REDUCTION

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    54/132

    ( ) ( )

    ox

    oxox

    ox

    SBdBSi

    F

    ox

    ssSmth

    TC

    where

    C

    VqN

    C

    qNV

    =

    ++++=

    22,

    T. Skotnicki & F. Boeuf

    54

    Note thatreduction of Tox not only leads to reduced SCEand DIBL but also to a reduction in long-

    channel thresholod voltage that therefore needsto be compensated by increased doping orreadjusted gate work function.

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    55/132

    IMPLICATIONS OF Tox REDUCTION

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    56/132

    T. Skotnicki & F. Boeuf

    56

    Same Vth is maintained due to readjustmentof the gate workfunction

    Reduced alsoleads to gate

    leakage

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    57/132

    Ex. 2

    READJUST POCKETS and TRADE ALLIMPROVEMENTS in SCE and DIBL

    T. Skotnicki & F. Boeuf

    57

    Lgate,minimum

    NEW IMPROVED TECHNOLOGY !

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    58/132

    Ioff is back to

    T. Skotnicki & F. Boeuf

    58

    Pocket implantationconditions readjusted

    But Lgate isX4 shorter !!!

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    59/132

    Ex. 3

    PROBLEM OF Igate%

    T. Skotnicki & F. Boeuf

    59

    (note that once we have thinned Tox from 1.8nm to 1.2nm, theIgate leakage increased from 1.18e-1nA/m to 8.33e+2nA/m thusexceeding the channel leakage Ioff=1.02e+1nA/m. This situation

    is not tolerable !)

    MASTAR Igate MODEL (very good :

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    60/132

    1.E+031.E+05

    1.E+07

    A/cm2)

    2.2 nm2 nm1.8 nm1.6 nm1.4 nm1.2 nm

    Ig[A/cm2] =1.44e5*(Exp(-4.02*Ug[V]^2+13.05*Ug[V])*Exp(-1.17*Tox[])Sim. Data

    T. Skotnicki & F. Boeuf

    1.E-07

    1.E-051.E-031.E-01

    .

    0 0.2 0.4 0.6 0.8 1 1.2 1.4Ugate (V)

    Ig

    1 nm0.8 nm0.6 nm0.4 nmMASTAR

    analytical model

    Simulation data : Hauser, NCSU, UQUANT model

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    61/132

    Gate leakage must not exceed the channel leakage

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    62/132

    Huge reduction in Igoff, from 8.33e2 nA/m to1.96e0 nA/m thanks to HK

    T. Skotnicki & F. Boeuf

    62

    If EOT=constant is

    selected, MASTARwill automaticallycalculate the reqiredTIF (Technology

    ImprovementFactor=Igate,SiO2/Igate,H-K) from thesettings given by theuser

    CONCLUSIONS (DEVICE SCALING & HK / Metal G)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    63/132

    The final device profile we have achieved presentslargely shorter gate (reduced X4)

    All other parameters (SCE, DIBL, SS, Ioff, Igate,off, etc)

    are however at their maximal tolerable values This prevents further scaling down

    Also Variability and Speed of the technology suffer from

    T. Skotnicki & F. Boeuf63

    these border-line values

    Therefore other solutions, breakthrough like, will have tobe considered to pursue scaling

    We will first explain Variability and Impact of DIBL on

    performance, and next Consider more robust device structures enabling further

    scaling

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    64/132

    Tutorial 15 :

    64

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    65/132

    Ex. 1

    Derivation of the threshold voltagefluctuation model

    T. Skotnicki & F. Boeuf

    65

    its discussion

    Vth random dopant # fluctuations

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    66/132

    T. Skotnicki & F. BoeufT.

    Skotnicki

    After: T. Skotnicki et al. Innovativematerials, devices and CMOStechnologies for low-power mobilemultimedia, pp. 96-130, IEEETED, Jan. 2008

    Vth random dopant # fluctuations

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    67/132

    20

    30

    deviation(mV

    )with pockets

    without pockets

    0.12 m0.17 m0.25 m0.5 m

    STRONG CHANNEL DOPING (e.g. POCKETS)

    ENHANCES Vth FLUCTUATIONS

    => UNDOPED CHANNEL WITH MID-GAP GATE(ON THIN FILM SOI/SON) MAY BE A REMEDY

    T. Skotnicki & F. Boeuf

    T.

    Skotnicki

    0 2 4 6 8

    0

    10

    1 1/ ( / )WL m

    VthStandard

    REF.: T. Cochet, T. Skotnicki et al., ESSDERC99

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    68/132

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    69/132

    Fluctuations IMPACT ONLOGIC and on SRAM

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    70/132

    SNM w/o process spread

    MicroelectronicsJournal 36 (2005)789800Huifang Qin

    LWA

    LWT

    NqV vtox

    ox

    dcs

    th

    112

    0

    4 3

    0

    =

    T. Skotnicki & F. Boeuf

    SNM with process spread

    Courtesy Prof. A. Asenov

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    71/132

    The statistical distribution of Vt is narrow with Nominal MOSFETs

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    72/132

    T. Skotnicki & F. Boeuf72

    39 mV

    The statistical distribution of Vt is large with Scaled Down MOSFETs

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    73/132

    T. Skotnicki & F. Boeuf73

    74 mV

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    74/132

    Tutorial 16 :

    74

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    75/132

    Ex. 1

    Analysis of SRAM SNM (Static NoiseMargine) in function of Vdd (supply

    T. Skotnicki & F. Boeuf

    75

    LP IS DIFFICULT

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    76/132

    VDD=1.1V1.0

    1.2

    VDD=1.1V1.0

    1.2

    VDD=0.9V1.0

    1.2

    VDD=0.9V1.0

    1.2

    VDD=0.7V1.0

    1.2

    VDD=0.7V1.0

    1.2

    The SNM (Static Noise Margine) vanishes when lowering the Vdd,Thus preventing correct voltage scaling ! As a result the Vdd hasbeen stagnating in LP technologies around 1.1V (see next slide).

    T. Skotnicki & F. Boeuf

    0.0

    0.2

    0.4

    0.6

    .

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Vin (resp. Vout)

    Vout(resp.

    Vin)

    0.0

    0.2

    0.4

    0.6

    .

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Vin (resp. Vout)

    Vout(resp.

    Vin)

    0.0

    0.2

    0.4

    0.6

    .

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Vin (resp. Vout)

    Vout(resp.

    Vin)

    0.0

    0.2

    0.4

    0.6

    .

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Vin (resp. Vout)

    Vout(resp.

    Vin)

    0.0

    0.2

    0.4

    0.6

    .

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Vin (resp. Vout)

    Vout(re

    sp.

    Vin)

    0.0

    0.2

    0.4

    0.6

    .

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Vin (resp. Vout)

    Vout(re

    sp.

    Vin)

    After: T. Skotnicki et al. Innovative materials, devices and CMOS technologies for low-power mobile multimedia, pp. 96-130, IEEE TED, Jan. 2008

    VARIABILITY IS BEHIND THE VDD CLUMSY SCALINGAND THUS BEHIND THE POWER CRISIS

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    77/132

    Evolution of VDD (LSTP)

    3

    3,5

    44,5

    5

    5V plateau

    10 years of constant-field scaling

    from 5V to 1.2V (x 0.7 per node)

    T. Skotnicki & F. Boeuf

    T.

    Skotnicki

    0

    0,5

    1

    1,5

    2

    2,5

    1980 1992 1995 1998 2000 2002 2004 2007 2010 2015

    Year of production (ITRS)

    Volt

    1.2V plateau

    120 90 65 32250350700 45

    1.1V

    500 180

    ~1V plateau ???

    CALCULATING THE EFFECT OF VANISHING SNM WITH MASTAR (1)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    78/132

    T. Skotnicki & F. Boeuf78

    CALCULATING THE EFFECT OF VANISHING SNM WITH MASTAR (2)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    79/132

    T. Skotnicki & F. Boeuf79

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    80/132

    Ex. 2

    Analysis of SRAM SNM (Static NoiseMargine) in function of the cell size

    T. Skotnicki & F. Boeuf

    80

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    81/132

    CALCULATING THE EFFECT OF VANISHING SNM WITH MASTAR (1)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    82/132

    T. Skotnicki & F. Boeuf82

    Nominal

    dimensions

    CALCULATING THE EFFECT OF VANISHING SNM WITH MASTAR (2)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    83/132

    T. Skotnicki & F. Boeuf

    All

    dimensionsScaled byX0.7

    CALCULATING THE EFFECT OF VANISHING SNM WITH MASTAR (3)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    84/132

    T. Skotnicki & F. Boeuf

    All

    dimensionsscaled againby X0.7

    SOLUTION FOR ENABLING FURTHER SCALING

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    85/132

    LWA

    LWT

    NqV vtox

    ox

    dcs

    th

    112

    0

    4 3

    0

    =

    If L and W are scaled X0.7 for

    Vth CONST

    T. Skotnicki & F. Boeuf

    each CMOS generation, theAvt has also to be improved

    X0.7 in order to maintain the

    voltage fluctuation constant

    Avt ~ X0.7 or -30% per node

    Avt reduction is very difficult with Bulk

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    86/132

    Conflict with electrostatics whenL shrink

    Conflict when Area shrink

    Conflict with cell-leakage

    T. Skotnicki & F. Boeuf

    P. Stolk at al., T-ED 1998 (NXP)

    Two solutions appear:

    1) Tox conflict with cell leakage can be alleviated when using HK

    dielectrics

    2) N conflict with electrostatics can be removed when going to FDSOI

    or FinFET

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    87/132

    Ex. 3

    Analysis of Vmin (SRAM sustainingvoltage) comparison between doped

    T. Skotnicki & F. Boeuf

    87

    (FDSOI)

    SRAM: Minimum Operating Voltage

    SRAM: Minimum Operating Voltage

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    88/132

    2005 2007 2010 2013 2016 2019Tolerable Die Fail 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

    Memory Size(Mbits) 8 16 32 64 128 256

    Tolerable Bit Fail 1.25E-11 6.25E-12 3.13E-12 1.56E-12 7.81E-13 3.91E-13

    Required SNM/SNM 6.8 6.85 6.95 7 7.15 7.25

    T. Skotnicki & F. Boeuf

    Vmin reduction

    Ref : Denis Flandre UCL Louvain La Neuve BE

    LESS VARIABILITY W. SOI - EXPLANATION:

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    89/132

    Ref.: Denis Flandre, UCL Louvain-La-Neuve, BE

    T. Skotnicki & F. Boeuf

    Vt(SOI)/ Vt(Bulk)

    =(NaSOI/NaBulk)1/4

    =(1/100)1/4

    1/3

    X100 reduction in doping corresponds to X3 reduction in Vth or in Avt !!!

    5

    6

    Variability and LP SRAM:

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    90/132

    BULK

    Avt ~ 3.3Vdd,nom=0.9V

    0

    1

    2

    3

    4

    0 1 2 3 4 5 6 7 8

    (.)

    ()

    World record by LETI !

    O. Weber et al. IEDM 2008 (LETI)

    Data : F. Buf

    T. Skotnicki & F. Boeuf

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    0.85

    0.

    0.5

    1

    1 1.2 1.4 1.6 1.8 2

    ()

    (.)

    FDSOI

    Vmin~0.6VBulk

    Vmin~0.75V

    FDSOI/UTBOXAvt ~ 1.4

    Vdd,nom=0.9V

    Bulk: Avt = 2FDSOI: Avt = 1.4

    CONTINUITY OF SRAM SIZE SCALING:

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    91/132

    T. Skotnicki & F. Boeuf

    F. Buf, 2009 VLSI SC

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    92/132

    Tutorial 17 :

    92

    EffectiveEffective CurrentCurrent ((IeffIeff) as) as metricmetric of speedof speed(performance)(performance)SWITCHING TRAJECTORY WHEN CHARGING /DISCHARGING THE LOAD

    I

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    93/132

    VDD

    4

    3

    2

    5

    2

    0

    34

    5

    1 2

    2

    0

    IDN VGS=VDD2

    Ion is NOT a speed indicator

    ddload

    eff

    VC

    Ispeedswitching

    T. Skotnicki & F. Boeuf

    IN OUT

    CL

    7

    Vdd

    Ref.: M.H. Na et al., IEDM 2002, p.121.

    VDSVDD/2

    VGS=VDD/2

    0

    VDD

    IeffIS A GOOD SPEED INDICATOR

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    ==+

    ===

    2;;

    22

    1 ddDddGddD

    ddGeff

    VVVVIVV

    VVII

    Example of CHARGING

    HOW DOES DIBL IMPACT PERFORMANCE (Ieff)

    Long channel

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    94/132

    -

    -

    SCE Short Channel EffectSCE

    T. Skotnicki & F. Boeuf 94

    - SCE

    DIBL

    Vds

    DIBL Drain Induced Barrier Lowering

    channel

    same Ionsame I

    PERFORMANCE (IEFF)PERFORMANCE (IEFF) dependsdepends on DIBLon DIBL NEW !!!NEW !!!

    Vth

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    95/132

    same Ionsame IoFF IDVddTechno w/o

    DIBL

    Techno w.DIBL

    V /2

    Vth

    Vth-DIBL

    T. Skotnicki & F. Boeuf

    VdVdd/2 Vdd

    Ieff w.DIBL< Ieff w/o DIBL

    Vd

    Technow/o DIBL

    Technow. DIBL

    = dthgdD VVVVI

    2

    1

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    96/132

    Ex. 1

    Compare Ieff (speed) between twotechnologies having same Ion and Ioff

    T. Skotnicki & F. Boeuf 96

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    97/132

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    98/132

    Tutorial 18 :- g mo y c anne s

    98

    DESCRIPTION

    Better mobility and higher limiting velocity lead

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    99/132

    Better mobility and higher limiting velocity leadto an increase in the transistor Ion current

    However, lower density of states in the inversion

    layer (larger Dark Space) leads to reducedinversion density, and realaxed SS, SCE and

    T. Skotnicki & F. Boeuf

    Also the higher dielectric constant of III-Vmaterials lead to an increase in SS, SCE andDIBL

    Only making a sum of these constructive anddestructive effects permits to assess the realinterest of III-V channel materials

    99

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    100/132

    How do & Dark Space impact

    DIBL and SS in III Vs (1)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    101/132

    DIBL and SS in III-Vs (1)

    DS

    depinvjSi VL

    T

    L

    T

    L

    XDIBL

    +=

    2

    2

    180.0

    Tinv=Tox+DS.ox/s

    B

    DSidep

    qNT

    2=

    T. Skotnicki & F. Boeuf

    eee

    ( )

    +

    +++=

    d

    DS

    el

    dep

    el

    j

    el

    inv

    ox

    Si

    dep

    inv

    ox

    Si V

    L

    T

    L

    X

    L

    T

    T

    T

    q

    kTSS 1

    4

    31110ln

    How do & Dark Space impact

    DIBL and SS in III Vs (2)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    102/132

    250

    300

    350

    400

    )

    +3 (+25%)+6.5 (+5%) ()

    11 0

    12 0

    13 0

    )

    (+%)

    +.

    DIBL and SS in III-Vs (2)

    T. Skotnicki & F. Boeuf

    (b)0

    50

    100

    150

    200

    10/ 100/ 2/

    (

    ()

    60

    70

    80

    0

    10 0

    (

    (+%

    ()

    (b)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    103/132

    Ex. 1

    Estimating impact of constructiveeffects on III-V MOSFET speed

    T. Skotnicki & F. Boeuf

    103

    Inspite of higher mobility, III-V may be slower !

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    104/132

    T. Skotnicki & F. Boeuf104

    X10 VsatX3

    DIBLX2

    SSX1.3

    Readjust gateworkfunctionto same Ioff

    X10

    VsatX3

    DIBLX2

    SSX1.3

    Readjust gateworkfunctionto same Ioff

    NegativeImpact

    on speed

    PositiveImpact

    on Ion

    CONCLUSIONS At low Vdd the impact of bad electrostatics is particularly

    strong

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    105/132

    g

    III-V materials present very good transport properties,but much relaxed electrostatics (DIBL and SS)

    At nominal transistor length and low Vdd, the destructiveeffects, due to electrostatics, preveil over the

    T. Skotnicki & F. Boeuf

    ,

    Consequently, the overall impact of the replacement ofSilicon by III-V materials may be negative in terms ofspeed

    Still remains true, that lagging the transistor length one

    node behind nominal permits higher speed than Bulk(see biblio, next slide), but leads to lower density ofintegration

    105

    Bibliography

    How Can High Mobility Channel Materials Boost or DegradeP f i Ad d CMOS T Sk t i ki d F B f

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    106/132

    Performance in Advanced CMOS T. Skotnicki and F. Boeuf,STMicroelectronics, France, Digest of Tech. Papers. Symposium onVLSI Technology 2010 (IEEE CAT No CFP**VTS-PRT), pp.TBD

    T. Skotnicki & F. Boeuf106

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    107/132

    Tutorial 19 :

    -

    107

    DESCRIPTION

    FDSOI especially with thin BOX shows much improvedSCE DIBL d SS

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    108/132

    SCE, DIBL and SS

    Such a FDSOI on thin BOX is also called UTBB (Ultra

    Thin Body and BOX) SOI

    T. Skotnicki & F. Boeuf

    and benchmark it against BULK using MASTAR

    We will also show how to transform the Bulk transistorcurrent model into a model valid for UTBB SOI

    Comparison of current and invertor speed (via Ieff) will becarried out with MASTAR for Bulk and UTBB SOI

    108

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    109/132

    Ex. 1

    WHY DOES UTBB SOI BETTER THANBULK IN TERMS OF ELECTROSTATICS ?

    T. Skotnicki & F. Boeuf

    109

    FDSOIFDSOI devicesdevices on SOI Waferson SOI Wafers

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    110/132

    K. Cheng et al., VLSI 2009 (IBM)

    Krivokapic et al., IEDM2002(AMD)

    M. Fujiwara et al., IEEE SOIConference 2005 ( Toshiba)

    C. Fenouillet-Beranger

    T. Skotnicki & F. Boeuf

    N.Sugii et al., IEDM 2008 (Hitachi)

    SOTB

    DST

    R.Chau et al., IEDM 2001(Intel)

    Hybrid FDSOI

    C. Fenouillet-Beranger et al., IEDM 2009(ST/LETIl)

    e a ., unpu s e(ST/LETIl)

    0.

    FDSOI BULK

    TTX

    2

    WHY DOES THE PLANAR MOSFET FAIL ?(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N3, 1998)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    111/132

    DS

    el

    dep

    el

    ox

    el

    j

    ox

    Si VL

    T

    L

    T

    L

    XDIBL

    +=

    2180.0

    T. Skotnicki & F. Boeuf

    REF.: T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Gr

    Tdep=1/2Lg

    Xj=1/2Lg

    mVV 14014

    3

    20

    1

    4

    314.2

    2

    2

    =

    +

    TTX

    2

    WHY DOES THE UTB SOI/SON DO BETTER ?(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N3, 1998)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    112/132

    DS

    el

    dep

    el

    ox

    el

    j

    ox

    Si VL

    T

    L

    T

    L

    XDIBL

    +=

    2180.0

    Xj=Tsi

    Tdep=Tsi

    T. Skotnicki & F. Boeuf

    REF.: T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Group

    mVV 7512

    1

    20

    1

    2

    114.2

    2

    2

    =

    +

    Xj=Tsi=1/3Lg

    Tdep=Tsi=1/3Lg

    BUT Tdep=1/3Lg is ONLY arough simplification. Inreality BOX thickness also

    contributes to the effectiveTdep, see next slide =>

    80

    90NMOS FDSOI

    Tox1nmVdd1V

    ElectrostaticsElectrostatics of UTB SOIof UTB SOIT. Skotnicki et al. IEEE EDL, March88 & IEDM1994

    XjTdep TTX

    2

    C.Fenouillet-Beranger, et al., SOI Conference 2003

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    113/132

    20

    30

    40

    50

    60

    70

    80

    DIBL

    (mV)

    Tox 1nm Vdd 1V

    Tsi 5nm Lg 30nm

    Lg 40nm

    dep

    Bulk

    Sij TX

    DS

    el

    dep

    el

    ox

    el

    j

    ox

    Si VL

    T

    L

    T

    L

    XDIBL

    +=

    2

    2

    180.0

    T. Skotnicki & F. Boeuf

    0

    10

    0 20 40 60 80 100 120 140 160Tbox(nm)

    Open symbol: MASTAR

    TBOX

    SiboxSidep +

    box

    el

    el

    box

    el

    box

    T

    L

    L

    T

    L

    Ttgh

    +

    += 09.01150.1121.0

    UTB DS

    el

    boxSi

    el

    ox

    el

    Si

    ox

    Si VL

    TT

    L

    T

    L

    TDIBL

    +

    +=

    2

    2

    180.0

    For Tbox in therange of 10-50nm, 0.3

    COMPARE BULK LAST POINT (HK and pockets) WITH FDSOI

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    114/132

    Bulk our last

    T. Skotnicki & F. Boeuf

    114

    Note huge DIBL !We will pass to FDSOI making thefollowing changes (next slide):

    1) Replace Xj by Tsi (suppose 6nm)2) Replace Tdep by Tsi+0.3Tbox

    (suppose Tbox=10nm)

    optimized point(HK and pockets)

    WE CAN MIMIC FDSOI MODIFYING BULK PARAMETERS:

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    115/132

    Tsi is set to 6nm, thus

    T. Skotnicki & F. Boeuf

    115

    Note improvement in DIBL !

    Tdep=9nm (=Tsi+Tbox

    =6nm+0.3x10nm) is obtained byartificially increasing the doping Nbulkand readjusting Workfunction

    USING BUTTON TECHNOLOGY FLAVORS !

    For convenience of use, all these and other changes

    i i t i i i th FDSOI b h i ith th B lk

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    116/132

    aiming at mimicing the FDSOI behavior with the Bulk

    models, are already programmed in MASTAR

    The modifications are sligthly more complex (see next

    T. Skotnicki & F. Boeuf

    116

    s e an ca rate on exper menta ata

    Nevertheless, pushing the button SOI gives results

    similar to what we have obtained manipulating the Bulk

    model manually

    See next slide

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    117/132

    FDSOI USING BUTTON TECHNOLOGY FLAVORS !

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    118/132

    T. Skotnicki & F. Boeuf

    118

    Bulk

    FDSOIBy press button SOI

    FDSOIBy manual parameter manipulation

    E

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    119/132

    Ex. 2

    INVERTOR SPEED COMPARISON BULKAND FDSOI

    T. Skotnicki & F. Boeuf

    119

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    120/132

    E 3

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    121/132

    Ex. 3

    INVERTOR SPEED FDSOI with ForwardBody Bias

    T. Skotnicki & F. Boeuf

    121

    FinFETs INCOMPATIBILITY W. BODY-BIASwhereas FDSOI with thin BOX is !

    FDSOI = 2D FinFET w.COMMON GATE

    FinFET w.

    SEPARATE GATESLOST ADVANTAGEIN DIBL !

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    122/132

    ate

    drain

    Thin Silicon film

    IN DIBL !

    drain

    Lg

    T. Skotnicki & F. Boeuf

    source

    Body-BiasAs on Bulk

    Body-BiasSince

    GATE=BACK-BODY

    source

    Lg

    Body-Bias

    SinceGate(N+1)=Body(N)

    And NO ROOM for CONTACTS

    Fin1 2 3 4

    SPEED IMPROVEMENT WITH FDSOI and ForwardBody Bias !

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    123/132

    FDSOI 340

    T. Skotnicki & F. Boeuf

    123

    FDSOI (directly afterpush button SOI and adjusting Tsi)

    FDSOIAdjusted tosame Ioff as Bulk

    BULK

    +82% in Ieffmeans +82%

    in speed

    ddload

    eff

    VC

    Ispeedswitching

    FDSOIAdjusted tosame Ioff

    FDSOIw. FBB

    .

    BULK

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    124/132

    Tutorial 20 :

    - n

    124

    DESCRIPTION

    DG structures (eg FinFET) show much improved SCE,DIBL and SS

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    125/132

    We will explain why DG/FinFET shows better

    electrostatics

    T. Skotnicki & F. Boeuf

    current model into a model valid for DG/FinFET

    Comparison of current and invertor speed (via Ieff) will becarried out with MASTAR for Bulk and DG/FinFET

    125

    DOUBLE GATE DEVICES:

    Gate

    Gate

    Gate

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    126/132

    Source DrainSource DrainSource Drain

    n+

    SOURCE

    GATE

    DRAIN

    n+ n+

    SOURCE

    GATE

    DRAIN

    n+

    Tied gates(number of

    channel > 2)

    Tied Gates side-wallconduction: DELTA,

    T. Skotnicki & F. Boeuf

    126

    STISi-substrate STISi-substrateTRIGATE, ,

    Tied gates planarconduction: DGSON

    Independentlyswitched gates

    planar conductionVertical

    conduction

    SOURCE

    FinFET - STATE OF THE ART

    FinFETDrain

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    127/132

    Source

    T. Skotnicki & F. Boeuf

    CPP FinPitchIBM Allience ,Albany 2010

    FinFET structure in a dense array withCPP=80nm and Fin pitch = 50nm

    DSdepoxjSi V

    TTXDIBL

    +=

    2

    1800

    WHY DOES THE Double-Gate DO BETTER ?(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N3, 1998)

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    128/132

    DS

    elelelox

    VLLL

    DIBL

    +=2

    180.0

    Xj=1/2Tsi

    T. Skotnicki & F. Boeuf

    REF.: T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Group

    mVV 3214

    1

    20

    1

    12

    314.2

    2

    2

    =

    +

    Tdep=1/2Tsi

    Xj=1/6Lg

    Tdep=1/6Lg

    TECHNOLOGY FLAVORS-TRANSLATION TO MASTAR:

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    129/132

    T. Skotnicki & F. Boeuf

    Ex 1

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    130/132

    Ex. 1

    INVERTOR SPEED COMPARISON BULKAND DG/FinFET

    T. Skotnicki & F. Boeuf

    130

    SPEED IMPROVEMENT WITH FinFET !

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    131/132

    275186.5

    T. Skotnicki & F. Boeuf

    131

    +47% in Ieff

    means +47%in speed whenpassing from

    BULK toFinET !!

    ddload

    eff

    VC

    Ispeedswitching

    FinFET (directly after

    push button DG )

    FinFET

    Adjusted tosame Ioff

    FinFET

    Adjusted tosameIoff

    CONCLUSIONS (FDSOI & DG/FinFET)

    FDSOI as well as DG structures (eg FinFET) show muchimproved SCE, DIBL and SS

  • 8/13/2019 IDESA CMOS Physics Using MASTAR Part 2of2x

    132/132

    These features lead to very strong performance

    improvement, aspecially at low Vdd (Low Powerapplications)

    T. Skotnicki & F. Boeuf

    132

    Without Body Bias, FinFET gives larger improvement

    than FDSOI due to better electrostatics

    But FinFET is not compatible with Body Bias, whereasFDSOI is and provides better Body Factor than Bulk

    Therefore with Forward Body Bias, FDSOI gives evenbetter speed than FinFET !