identification of drought-induced genes in giant leucaena ... michael - identification of...6....

25
Identification of drought-induced genes in giant leucaena (Leucaena leucocephala). Michael Honda Department of Molecular Biosciences and Bioengineering University of Hawaii at Manoa

Upload: others

Post on 29-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Identification of drought-induced genes in giant leucaena (Leucaena leucocephala).

Michael Honda

Department of Molecular Biosciences and Bioengineering

University of Hawaii at Manoa

Page 2: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Outline

• Introduction

• Methods

• Results

• Microarray

• qRT-PCR

• Conclusion

• Questions

2

Page 3: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Leucaena leucocephala (leucaena)• Fast growing

• Tree-legume

• Native to Southern Mexico and Central America

• Tropics and sub-tropics

• Hawaii• ‘Common leucaena’ or ‘Koa haole’

• Subsp. leucocephala (a & b)

• Invasive

• ‘Giant leucaena’

• Subsp. glabrata (c & d)

• K636

• Not invasive 3

Page 4: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Giant leucaena

4

Page 5: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Uses• Agroforestry

• Agriculture

• Fuel

• Human food

• Animal fodder

5

https://www.flickr.com/photos/iita-media-library/6916352253

http://www.tropicalforages.info/key/Forages/Media/Html/Leucaena_leucocephala.htm

https://www.daf.qld.gov.au/plants/field-crops-and-pastures/research/pastures-and-grazing/growing-leucaena

http://tropical.theferns.info/image.php?id=Leucaena+leucocephala

http://thekitchenbuzzz.com/2016/09/green-salsa-with-guajes.html/

http://polyploid.net/leucaena/pages/Leucaena_leu.html

Page 6: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Leucaena in different environmental conditions

• Salt

• UV light

• Flooded soils

• Acidic soils

• Alkaline soils

• Eroded soils

• Drought

Page 7: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Drought• Global warming

• Crop loss

• Billions of $ world wide

• Reduction of global food supply

• Drought-tolerant crops

• Leucaena can tolerate prolonged drought

https://archive.epa.gov/climatechange/kids/impacts/signs/droughts.html

Page 8: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

How does leucaena tolerate prolonged drought conditions?

8

• Cope with drought stress (primary stress)

• Cope with oxidative and osmotic stress (secondary stress)

• Posses some unique traits or characteristics

• Unique genes

• Unique gene expression patterns

Page 9: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Objective

1. Identify genes that are upregulated during leucaena drought stress

a) Microarray

b) Validation of microarray by qRT-PCR

Page 10: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Methods: Microarray

https://www.slideshare.net/AustralianBioinformatics/ken-mcgrath-next-gen-sequencing-game-of-thrones-edition

https://commons.wikimedia.org/wiki/File:DNA_microarray.svg

Transcriptome sequencing and assembly, and microarray analysis on drought-treated leucaena root and shoot

Root and shoot of drought-treated leucaena

RNA

Page 11: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Methods: qRT-PCR

Scarification

Germination

Mature leucaenaseeds K636

Page 12: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Methods: qRT-PCR

15% polyethylene glycol MW = 6,000

Drought-treatment

Untreated control Water

One-month old seedlings

Page 13: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Methods: qRT-PCR

Leaf

Embryonic leaf

Stem

RootHarvest leucaena after 48 h

Total RNA extraction

Separate organs and tissues

Page 14: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Methods: qRT-PCR

2-ΔΔCT

Dnase treatment cDNA synthesis

qRT-PCRData analysis

Page 15: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Results: Microarray analysis revealed 110 gene sequences showing > 5-fold upregulation in drought-treated leucaeana compared to untreated leucaena (control).

• 2 in both root and shoot

• 71 in root only

• 37 in shoot only

Results: Microarray analysis

15

Page 16: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

5

6

7

10

10

9

13

14

0 2 4 6 8 10 12 14

Membrane-bound/signal-transduction

Protein regulation/interaction

Sorting/trafficking/transport

Metabolism

Hyp no homology

Other

Hyp

Nucleic acid regulation/interaction

1

2

4

4

4

7

8

9

0 2 4 6 8 10

Hyp

Protein regulation/interaction

Sorting/trafficking/transport

Nucleic acid regulation/interaction

Membrane-bound/signal-transduction

Hyp with no homology

Defense/stress-related

Metabolism Root

Shoot

Results: Functional annotation

Page 17: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Results: qRT-PCR of root

• 71 genes • 24 genes selected• 12 of 24 validated

• > 2-fold upregulation

17

4.1

7.2 8.4

9.312.3

18.0

25.3 32.442.4

52.453.6

83.9

1

10

100

Seri

ne

ca

rbo

xyp

ep

tid

ase

Tra

nsm

em

bra

ne

pro

tein

PR

A1

Pero

xin

β-a

myrin

syn

tha

se

9-c

is-e

poxyca

rote

no

idd

ioxyg

ena

se

Pen

tatr

icop

eptid

e r

ep

ea

t-co

nta

inin

g p

rote

in M

RL1

Fe

-S c

luste

r asse

mb

lyfa

cto

r N

AR

1

Zin

c f

ing

er

pro

tein

CC

Hd

om

ain

con

tain

ing

pro

tein

Tra

nscrip

tion

facto

rT

CP

14

Me

mb

rane

-an

cho

red

pro

tein

CO

BR

A

Ser/

Thr

pro

tein

kin

ase

AB

C tra

nspo

rte

r C

Fo

ld c

ha

nge

Root

n = 3p < 0.05

Page 18: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

2.2 2.32.3 2.4

4.0

6.7

19.025.0

25.4 30.836.7 46.2

71.7

1

10

100

Rib

onucle

ase H

TM

V r

esis

tance

pro

tein

N

Dis

ease r

esis

tance

pro

tein

TIR

-NB

-LR

Rre

cepto

r pro

tein

Rpp4

Fla

vonoid

3-O

-gala

cto

syl

transfe

rase

Me

mbra

ne p

rote

inU

PF

049

6

Zin

c fin

ger

CC

CH

dom

ain

-conta

inin

gpro

tein

Kin

esin

mo

tor

dom

ain

-conta

inin

gpro

tein

Inactive p

rote

inkin

ase

GD

SL

este

rase/lip

ase

Pa

tatin

-11 p

rote

in

Rham

nose

reducta

se

UD

P-

gly

cosyltra

nsfe

rase

Fold

change

Leaf

2.12.7 3.3 3.3 3.3

3.64.8 4.9 5.5

337.3

1

10

100

Pa

tatin

-11 p

rote

in

Dis

ease r

esis

tance

pro

tein

Inactive p

rote

in k

inase

UD

P-

gly

cosyltra

nsfe

rase

TM

V r

esis

tance

pro

tein

N

An

kyrin

repeat

con

tain

ing p

rote

in

GD

SL

este

rase/lip

ase

Me

mbra

ne p

rote

inU

PF

049

6

Gag-p

ol poly

pro

tein

Caffeoyl-C

oA

O-

me

thyltra

nsfe

rase

Fold

change

Embryonic leaf

5.4

7.710.1

10.6

11.111.3

13.3 16.6

32.950.6 54.7

1

10

100

Rham

nose

reducta

se

TIR

-NB

-LR

Rre

cepto

r pro

tein

Rpp4

Rib

onucle

ase H

Zin

c fin

ger

CC

CH

dom

ain

-con

tain

ing

pro

tein

Inactive p

rote

inkin

ase

Me

mbra

ne

pro

tein

UP

F049

6

Pa

tatin

-11

pro

tein

Fla

vonoid

3-O

-gala

cto

syl

transfe

rase

GD

SL

este

rase/lip

ase

TM

V r

esis

tance

pro

tein

N

Kin

esin

mo

tor

dom

ain

-con

tain

ing

pro

tein

Fold

change

Stem

18

• 37 genes

• 23 genes selected

• Validated (> 2-fold upregulation)

• 13 of 23 in leaf

• 10 of 23 in embryonic leaf

• 11 of 23 in stem

• 16 total validated in shootn = 3p < 0.05

Results: qRT-PCR analysis of shoot

Page 19: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Results: qRT-PCR of root and shoot

1. Zinc finger CCCH domain-containing protein

a) Validated in root (32.4-fold)

b) Validated in shoot

a) Leaf and stem (19.0 and 10.6-fold, respectively)

2. UDP-glycosyltransferase

a) Not validated in root

b) Validated in shoot

a) Leaf and embryonic leaf (71.7 and 3.3-fold, respectively)

Page 20: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Leucaena drought response model

20

Four different categories

1. Sensor and signaling proteins

2. Transcription factors

3. Degradation pathway enzymes

4. Biosynthesis and structural proteins

Page 21: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Conclusion:

• Validated microarray results

• Root and shoot

• Different parts of shoot have different expression patterns

• Important in leucaena drought response

• Important to plant breeders

• Develop drought tolerant crops

• Interesting to transform these genes in other plants

• Do gene silencing

21

Page 22: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Thank you

• Dr. Dulal Borthakur

• Dr. James Brewbaker

• Lab mates

22

Page 23: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

References1. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2013) GDSL family of serine esterases/lipases. Prog Lipid Res 43: 534-552.

2. Anderson CL, Jensen JL, Ømtoft TF (2004) Normalization of real-time quantitative reverse transcription-pcr data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245-5250.

3. Anthraper A, Dubois JD (2003) The effect of NaCl on Growth, N2 fixation (acetylene reduction), and percentage total nitrogen in Leucaena leucocephala (leguminosae) var. k-81. Am J Bot 90: 683–692.

4. Brewbaker JL (2008) Registration of ‘KX2-Hawaii’, interspecific-hybrid leucaena. J Plant Reg 2:190–193.

5. Brewbaler JL (2016) Breeding leucaena: tropical multipurpose leguminous tree. Plant Breed Rev 40:43–121.

6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and related Mimosaceae. Crop Sci 5:348–349.

7. Cavalcante ADMB, de Perez SCJGA (1995) Effects of water and salt stresses on germination of Leucaena leucocephala (Lam.) de wit seeds. Pesquisa Agropecuaria Brasileira 30:281-289.

8. dos Santos AB, Bottcher A, Kiyota E, Mayer JLS, Vicentini R, dos Santos Brito M, Creste S, Landell MGA, Mazzafera P (2015) Water stress alters lignin content and related gene expression in two sugarcane genotypes. J Agric Food Chem 63: 4708–4720.

9. Haralampidis, K., Bryan, G., Qi, X., Papadopoulou, K., Bakht, S., Melton, R., and Osbourn, A. (2001). A new class of oxidos-qualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc Natl Acad Sci USA 98: 13431–13436.

10. Huang LM, Lai CP, Chen LFO, Chan MT, Shaw JF (2015) Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Bot Stud 56: 33-44.

11. Ishihara KL, Honda MDH, Pham DT, Borthakur D. (2016) Transcriptome analysis of leucaena leucocephala and identification of highly expressed genes in roots and shoots. Transcriptonomics 4: 1000133.

12. Khan MR, Khan I, Ibrar Z, Leona J, Naza AM (2005) drought-responsive genes expressed predominantly in root tissues are enriched with homotypic cis-regulatory clusters in promoters of major cereal crops. Crop J 5: 195-206.

13. Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64: 83-108.

14. Le Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4: 112-166.

15. Lee H-A, Yeom S-I (2015) Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Brief Funct Genomics 14: 233–242.

16. Li C, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102: 12978–12983.

17. Li W, Lu J, Lu K, Yuan J, Huang J, Du H, et al. (2016) cloning and phylogenetic analysis of Brassica napus L. caffeic acid o-methyltransferase 1 gene family and its expression pattern under drought stress. PLoS ONE 11: e0165975.

18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2(Delta Deltac(t)) method. Methods 25: 402-408.

19. Ma J, Liu F, Wang Q, Wang K, Jones DC, Zhang B (2016) Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci Rep 6:21535.

Page 24: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

20. Miller KD, Guyon V, Evansi JNS, Shuttleworth WA, Taylor LP (1999) Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-o-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J Biol Chem 274: 34011-34019.

21. Mislevy P, Blue WG, Roessler CE (1989) productivity of clay tailings from phosphate mining. I Biomass crops. J Environ Qual 18: 95-100.

22. Moawad H, Bohlool BB (1984) Competition among rhizobium spp. for nodulation of Leucaena leucocephala in two tropical soils. Appl Environ Microbiol. 48: 5-9.

23. Mushaka A, Maruzane D (1998) Performance of some multipurpose tree species: the forestry commission experience. Trans Zimb Sci Assoc 72: 10-14 (Supplement)

24. Nasrollahi V, Mirzaie-asl A, Piri K, Nazeri S, Mehrabi R (2014) The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra) Phytochem 103: 32-37.

25. Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, et al. (2012) CCCH-Type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS ONE 7: e40120.https://doi.org/10.1371/journal.pone.0040120.

26. Resentini F, Felipo-Benavent A, Colombo L, Blazquez MA, Alabadi D, Masiero S (2015) TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol Plant 8: 482–485.

27. Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO and Benfeya PN (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17: 1749–1763.

28. Sanginga N, Mulongoy K, Ayanaba A (1989) Nitrogen fixation of field-inoculated Leucaena leucocephala (Lam.) de Wit estimated by the 15N and the difference methods. Plant Soil 117: 269-274.

29. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative gpi-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15: 1115-1127.

30. Shelton HM, Brewbaker JL (1994) Leucaena leucocephala - the most widely used forage tree legume. CAB Intl, London, pp 15–29.

31. Soedarjo M, and Borthakur D (1996) Simple procedures to remove mimosine from young leaves, pods and seeds of Leucaena leucocephala Used as Food. Int J Food Sci Tech 31: 97-103.

32. Tan X, Yan S, Tan R, Zhang Z, Wang Z, Chen J (2014) Characterization and expression of a GDSL-like lipase gene from Brassica napus in Nicotiana benthamiana. Prot J 33: 18-23.

33. Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015). Stomatal closure is induced by hydraulic signals and maintained by aba in drought-stressed grapevine. Sci Rep 5: 12449.

34. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opinion Plant Biol 9: 1-7.

35. Van Der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JDG (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signaling components. Plant J 29: 439–451.

36. Van der Weele CM, Spollen WG, Sharp RE, Baskin TI (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot 51: 1555–1562.

37. Wang D, Guo Y, Wu C, Yang G, Li Y, et al. (2008) Genome-wide analysis of ccch zinc finger family in arabidopsis and rice. BMC Genomics 9: 44.

38. Wang M-Y, Zhao P-M, Cheng H-Q, et al. (2013) The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162: 1669-1680.

39. Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J (2013) Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197: 139–150.

40. Zayed MZ, Zaki MA, Ahmad FB, Ho W-S, Pang S-L (2014) Comparison of mimosine content and nutritive values of Neolamarckia cadamba and Leucaena leucocephala with Medicago sativa as forage. I J Sci Tech Res 3: 146-150.

41. Zeevaart JAD, Creelman RA (1988) Metabolism and Physiology of abscisic acid. Annu. Rev Plant Physiol Plant Mol Biol 39: 439-473.

Page 25: Identification of drought-induced genes in giant leucaena ... Michael - Identification of...6. Brewbaker JL, Hylin JW (1965) Variations in mimosine content among leucaena species and

Mahalo!

Questions?