ideal gas: p = rt (11.1) du = c v dt (11.2) dh= c p dt (11.3)

106
IDEAL GAS: p = RT (11.1) du = c v dT (11.2) dh= c p dT (11.3) 1 st and 2 nd LAWS: Q-W = U Tds = du +pdv (11.10a) Tds = h –vdp (11.10b) 1 st + 2 nd LAWS pdv/T = c v dT/T + Rdv/v ln (T 2 /T 1 ) + R ln (v 2 /v 1 ) (11.11a) - vdp/T = c p dT/T + Rdp/p ln (T 2 /T 1 ) - R ln (p 2 /p 1 ) (11.11b) ln (T 2 /T 1 ) + R ln (v 2 /v 1 ) = c v ln(p 2 1 /p 1 2 ) + (c p -c v ) ln(p 2 /p 1 ) + c v ln(v 2 /v 1 ) + c p ln (v 2 /v 1 ) - c v ln (v 2 /v ln(p 2 /p 1 ) + c p ln (v 2 /v 1 ) (11.11c) + RT; dh = du RdT; c p dT = c v dT + RdT; c p = c v + R (1 (11.20a) (11.20b) (11.20c) Ideal Gas and s=0

Upload: ash

Post on 24-Jan-2016

45 views

Category:

Documents


0 download

DESCRIPTION

1 st and 2 nd LAWS: Q-W = U Tds = du +pdv (11.10a) Tds = h –vdp (11.10b). IDEAL GAS: p = RT (11.1) du = c v dT (11.2) dh= c p dT (11.3). h = u + RT; dh = du RdT; c p dT = c v dT + RdT; c p = c v + R (11.4). Ideal Gas and s=0. IDEAL GAS + 1 st + 2 nd LAWS - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

IDEAL GAS:p = RT (11.1)du = cvdT (11.2)dh= cpdT (11.3)

1st and 2nd LAWS:Q-W = UTds = du +pdv (11.10a) Tds = h –vdp (11.10b)

IDEAL GAS + 1st + 2nd LAWSds = du/T + pdv/T = cvdT/T + Rdv/v s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) (11.11a)ds = dh/T - vdp/T = cpdT/T + Rdp/p s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) = cv ln(p2 1/p12) + (cp-cv) ln (v2/v1)s2 – s1 = cv ln(p2/p1) + cv ln(v2/v1) + cp ln (v2/v1) - cv ln (v2/v1)s2 – s1 = cv ln(p2/p1) + cp ln (v2/v1) (11.11c)

h = u + RT; dh = du RdT; cpdT = cvdT + RdT; cp = cv + R (11.4)

(11.20a)

(11.20b)

(11.20c)

Ideal Gas and s=0

Page 2: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 3: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

5kg; s;p1=300kPaT1=60oC

5kg; s;p2=150kPa

T2= ?

Ideal Gas

Page 4: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Ideal Gas

IDEAL GAS + ADIABATIC + REVERSIBLE

Tvk-1 = T/(k-1) = c (11.12a)

Tp(1-k)/k = c (11.12b)

pvk = p/k = c (11.12c)

5kg; s;p1=300kPaT1=60oC

5kg; s;

p2=150kPa

T2= ?

isentropic

Page 5: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Tp(1-k)/k = c (11.12b)

T1(Ko)p1(1-k)/k = T2(Ko)p2

(1-k)/k

?

T1 = 333K; p1 = 300,000 Pa T2 = 273K; p2 = 150,000 Pa

Page 6: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 7: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Know: p1, T1, p2, T2

irreversibleWhat is s2-s1?

100,000 Pa273K

s1

200,000 Pa388K

s2

irreversible

Page 8: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Valid for any process between equilibrium states

dQ + dW = dE Tds = du + vdp

IDEAL GAS & cv and cp = const

s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a)

s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b)

s2-s1 = cvln(p2/p1) + cpln(v2/v1) (11.11c)

Know: p1, T1, p2, T2 & irreversibleWhat is s2-s1?

Page 9: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

?

s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b)

= 103[J/kg-K] ln(388/273) – 287[J/kg-K] ln(200,000/100,000)= 134 J/(kg-K)

Page 10: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 11: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Know T1, p1= p2,T2

IDEAL GASs2-s1 = ?p1 = 4.5 MPa

p2 = p1

T1 = 858K

T2 = 15Cs1

s2

Page 12: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b)

s2-s1 = 1000 ln([273+15]/858)s2-s1 = -1.09 kJ/(kg-K)

0

T

s

1

2

IDEAL GAS & cv and cp = const

s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a)

s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b)

s2-s1 = cvln(p2/p1) + cpln(v2/v1) (11.11c)

Page 13: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 14: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 15: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

Page 16: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

What equation has q in it?

Page 17: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

q = dh = cpdT

q = cp(T2-T1) q = -572kJ/kg

Page 18: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 19: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find po

Page 20: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find po From Table A-3, pg 719z =12.5 km; p/pSL = 0.1776

/ SL = 0.2361SL = 1.225 kg/m3

pSL = 101.3 kPak = 1.4

po = 28.85 kPa

Page 21: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

V from B.E. = ?V for compressible (=Mc) = ?

Page 22: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find plane speed assuming incompressible* B.E.po = p + ½ V (p, T and are for z=12.5 km)po = 28.85kPa; p = 17.99kPa; = 0.2892kg/m3

V = 274.1 m/sFind plane speed assuming compressible flow.V =Mc = M(kRT)1/2 V = 250.8 m/s ~ 9% error

Page 23: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 24: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find To and po

Page 25: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find To and po

To = 996oF

p0 = 184 psia

Page 26: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

dm/dt = VA = ?

Page 27: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find mass flow rate

dm/dt = VA = 174 lbm/secA = 2 ft2

V = Mc = M(kRT)1/2 R = Ru/Mm for air = 1717 ft2(s2-R) = 8314 m2(s2-K) For R = 1717 ft2/(s2-R) , T must be in Rankine (460 +60 = 520R)

V = 3.0(1.4*1717*520*)1/2 = 3354 ft/sec

= p/(RT) = 5[lbf/in2][32.2lbm/lbf][144in2/ft2]/(1717[ft2/(s2-R)]520R) = 0.0260 lbm/ft3

Know p, T, M

Page 28: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 29: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

M1

T1

p1

M2>M1

T2>T1

p1>p2

Q added flow

Page 30: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) (11.11a)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

s2 – s1 = cv ln(p2/p1) + cp ln (v2/v1) (11.11c)

Page 31: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

KNOW

KNOW

= p/(RT)

Page 32: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

po1 = 1.0MPa[1 + 0.2*(0.2)2]3.5 = 1.028 MPa

At location 1

po2 = 862.7kPa[1 + 0.2*(0.4)2]3.5 = 0.9632kPa

At location 2

At location 1

At location 2

To1 = 580K[1 + 0.2*(0.2)2] = 584.6K

To2 = 1727K[1 + 0.2*(0.4)2] = 1782K

Page 33: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

1004 J/kg-K 1727/580

0.8627/1.0

287 J/kg-k

s2 – s1 = 1138 J/kg-K

Page 34: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

?

s2 – s1 = 1138 J/kg-K

po1 = 1.028 MPa

po2 = 0.9632kPa

To1 = 584.6K

To2 = 1782K

Page 35: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 36: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 37: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

T1 = 1573oK; p1 = 2.0 MPaT2 = 773oK; p2 = 101 kPa

u = ?; h = ?; s = ?

Can consider ideal gas

Page 38: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Valid for any process between equilibrium states

dQ + dW = dE Tds = du + vdp

IDEAL GAS & cv and cp = const

s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a)

s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b)

=143 J/(kg-K)

s2-s1 = cvln(p2/p1) + cpln(v2/v1) (11.11c)

u = cVT (11.2)

h = cpT (11.3)

Page 39: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

increasing pressure

Page 40: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 41: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Steady, adiabatic flow of air, dm/dt = 0.5 kg/sec, through a turbine.At inlet, V1 = 0, T1 = 1300C, p1 = 2.0 mPa (abs)At outlet, V2 = 200 m/s, T2 = 500C, p2 = 101 kPa

Label state points on a Ts diagram:

Page 42: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

If isentropic: T2 = T1 (p2/p1)(k-1)/k = 670K (397C) 500CSo not isentropic!

Page 43: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

What is power produced by turbine?

dW/dt + dQ/dt = (dm/dt) [(h2 + (V2)2

/2 + gz2) - (h1 + (V1)2 /2 + gz1)]

0

z2 = z1

h2 – h1 = cp (T2 – T1)

Steady, adiabatic flow of air, dm/dt = 0.5 kg/sec, through a turbine. At inlet, V1 = 0, T1 = 1300C, p1 = 2.0 mPa (abs); At outlet, V2 = 200 m/s, T2 = 500C, p2 = 101 kPa

Page 44: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 45: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Can speed of car at 60 mph and 120 mph be considered incompressible?

M = ? < 0.3 the answer is yes!

[0 - 1]/0 = ?< 5% then we consider incompressible

Page 46: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

0 = 1{ 1 + [(k-1)/2]M12}1/(k-1)

M1 = V1/c1

c1 = (kRT1)1/2

[0 - 1]/0 = 0.3%M = 0.0782

V1 = 60 mph = 26.8 m/s; R = 287 J/(kg-K); 1 = p1/(RT1) = 1.201 kg.m3;

Page 47: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

0 = 1{ 1 + [(k-1)/2]M12}1/(k-1)

M1 = V2/c1

c1 = (kRT1)1/2

[0 - 1]/0 = 1.21%M = 0.156

V1 = 120 mph = 53.6 m/s; R = 287 J/(kg-K); 1 = p1/(RT1) = 1.201 kg.m3;

Page 48: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 49: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Know p0, p and T and are asked to find

V of aircraft.

Page 50: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Know p0, p and T and are asked to find V of aircraft.

M = V/c so V = Mc

c = (kRT)1/2

po/p = (1 + [(k-1)/2] M2)k/(k-1)

Page 51: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 52: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Know p0, p and M and are asked to find

maximum temperature and pressure on aircraft.

Page 53: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

po/p = {1 + [(k-1)/2]M2}k/(k-1)

To/T = 1 + [(k-1)/2]M2

Maximum pressure and temperature will be local isentropic stagnation conditions.

Page 54: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Know p0, p and T and are asked to find M and V of aircraft.

Page 55: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Otto Cycle Diesel cycle

pv diagrams for the internal combustion engine

Page 56: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

0 0 0

1-2 doing work on system + work2-3 & 3-4 system doing work - work

0

Net W, , is negative so net Q, , is positive

pv = c

Page 57: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

(TdS = Q)rev.

s2-s1 = cvln(T2/T1) + Rln(v2/v1)s2-s1 = cpln(T2/T1) - Rln(p2/p1)

Page 58: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a) ; Constant v, T = Toexp(s-so)/cv

s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b); Constant p, T = Toexp(s-so)/cp

Because cp>cv for all gasses, slope of const p <constant v

Page 59: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2-s1 = cvln(T2/T1) + Rln(v2/v1); s2-s1 = cpln(T2/T1) - Rln(p2/p1)

s2-s1=0

s2-s1=0

Page 60: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

V from B.E. = ?V for compressible (=Mc) = ?

Page 61: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find plane speed assuming incompressible* B.E.po = p + ½ V (p, T and are for z=12.5 km)po = 28.85kPa; p = 17.99kPa; = 0.2892kg/m3

V = 274.1 m/sFind plane speed assuming compressible flow.V =Mc = M(kRT)1/2 V = 250.8 m/s ~ 9% error

Page 62: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 63: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find To and po

Page 64: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find To and po

To = 996oF

p0 = 184 psia

Page 65: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

dm/dt = VA = ?

Page 66: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Find mass flow rate

dm/dt = VA = 174 lbm/secA = 2 ft2

V = Mc = M(kRT)1/2 R = Ru/Mm for air = 1717 ft2(s2-R) = 8314 m2(s2-K) For R = 1717 ft2/(s2-R) , T must be in Rankine (460 +60 = 520R)

V = 3.0(1.4*1717*520*)1/2 = 3354 ft/sec

= p/(RT) = 5[lbf/in2][32.2lbm/lbf][144in2/ft2]/(1717[ft2/(s2-R)]520R) = 0.0260 lbm/ft3

Know p, T, M

Page 67: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 68: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

M1

T1

p1

M2>M1

T2>T1

p1>p2

Q added flow

Page 69: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) (11.11a)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

s2 – s1 = cv ln(p2/p1) + cp ln (v2/v1) (11.11c)

Page 70: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

KNOW

KNOW

= p/(RT)

Page 71: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

po1 = 1.0MPa[1 + 0.2*(0.2)2]3.5 = 1.028 MPa

At location 1

po2 = 862.7kPa[1 + 0.2*(0.4)2]3.5 = 0.9632kPa

At location 2

At location 1

At location 2

To1 = 580K[1 + 0.2*(0.2)2] = 584.6K

To2 = 1727K[1 + 0.2*(0.4)2] = 1782K

Page 72: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

1004 J/kg-K 1727/580

0.8627/1.0

287 J/kg-k

s2 – s1 = 1138 J/kg-K

Page 73: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

?

s2 – s1 = 1138 J/kg-K

po1 = 1.028 MPa

po2 = 0.9632kPa

To1 = 584.6K

To2 = 1782K

Page 74: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 75: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 76: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 77: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

V = c*M; c=(kRT)1/2;

before shock

(pobeforeshock – poaftershock)/ pobeforeshock = 0.326 changes across shock

same across shock

Page 78: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

V = c*M; c=(kRT)1/2

k=1.4; R=286.9 N-m/kg-KT = ?

z = 3600ft = 36000*0.3048 ~ 11kmFrom Table A-3, pg 719; T = 216.8K

V = 620 m/s

Page 79: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

before shock

z ~ 11km; from Table A-3, pg 719; p/pSL=0.224; p=0.224*101.3kPa

k =1.4; M=2.1po=208 kPa

Page 80: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

(pobeforeshock – poaftershock)/ pobeforeshock = 0.326

p0 changes across shock

208 kPa = 140 kPa

Page 81: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

T0 does not change across shock.

z ~ 11km; from Table A-3, pg 719; T = 216.8oK

To =408oK

Page 82: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 83: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 84: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

p2 < p1; M2<M1; T2<T1

Page 85: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

Know p1, M1, T1

Calculate po1= 101.3kPaTo1 = 288.3K

Know p2, M2, T2

Calculate po2= 39.92kPaTo2 = 288.3K

s2 – s1 = 267 J/kg-K

Page 86: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

p2 < p1; M2<M1; T2<T1

po1 > p1 > po2 > p2

To1 = To2 s is positive

Page 87: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Suppose I asked what isso2 – so1 ?

po1= 101.3kPa; To1 = 288.3Kpo2= 39.92kPa; To2 = 288.3K

s2 – s1 = 267 J/kg-K

Page 88: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = so2 – so1 = 267 J/kg-K !!

Page 89: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) - R ln (p2/p1)

so2 – so1 = cp ln (To2/T01) - R ln (p2/p1)

cp ln (T2/T1) - R ln (p2/p1)?=?cpln(To2/T01) - R ln(p2/p1)

1004ln(1727/580) - 286ln(0.8627/1.0) = 1138 J/kg-K1004ln(1782/584.6) -287ln(0.9632/1.028) = 1136J/kg-K

s2 – s1 = s02 – s01

Page 90: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 91: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 92: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) + R ln (p2/p1) (11.11b)

DRAW s-T DIAGRAM

Page 93: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

s2 – s1 = cp ln (T2/T1) + R ln (p2/p1)

always >1

always >1

s2 – s1 = 59.6 J/kg-K

Page 94: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

If p2 > p1 then:

(a) po2 > po1 (b) po2 = po1 (c) po2 < po1 (d) po2 ? po1

Page 95: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

po2 = p2[f(M2)]po1 = p1[f(M1)]

po2/p01 = p2/p1 only if M1=M=2

Page 96: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)

Even through a shockT01= T02

p1<p2

T1<T2

po1<po2

Page 97: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 98: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 99: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 100: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 101: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 102: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 103: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 104: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 105: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)
Page 106: IDEAL GAS: p =  RT  (11.1) du = c v dT  (11.2) dh= c p dT  (11.3)