icrr seminar, june 25 ,2010 sidereal anisotropy of gcr

49
Sidereal anisotropy of GCR intensity Latest results of two hemisphere observations by Tibet & Ice Cube K. Munakata (Shinshu Univ., Japan) ICRR seminar, June 25 ,2010 Latest results by Tibet & Ice Cube (Introduction) North vs. South, Air shower vs. Muon, Energy defference.... UG muon observations (SK, THN) North-south asymmetry , Solar modulation in sub- TeV region. Observation & analysis method of the anisotropy Air shower observations with Tibet AS array C-G effect in the solar time, Sidereal anisotropy, best-fit model (GA+MA model). Discussions

Upload: others

Post on 07-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Sidereal anisotropy of GCR intensityLatest results of two hemisphere observations

by Tibet & Ice CubeK. Munakata (Shinshu Univ., Japan)

ICRR seminar, June 25 ,2010

• Latest results by Tibet & Ice Cube (Introduction)North vs. South, Air shower vs. Muon, Energydefference....

• UG muon observations (SK, THN)North-south asymmetry, Solar modulation in sub-TeV region.

• Observation & analysis method of the anisotropy• Air shower observations with Tibet AS array

C-G effect in the solar time, Sidereal anisotropy,best-fit model (GA+MA model).

• Discussions

Page 2: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR
Page 3: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Two-hemisphere observations byTibet & Ice Cube

intensity significance

• AS measurement (p+γ)• Emode = 7 TeV (calibrated by using Moon shadow)

• 4.5x1010 events in 1999.11-2008.12(270 Hz)

Ice Cube(Abbasi et al., arXiv:1005.2960v1, 2010)

Tibet ASγ(Amenomori et al., Science, 314, 2006)

• muon measurement (p)• Emode = 20 TeV• 4.3x109 events in 2007.6-2008.3

(220 Hz)

Page 4: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

• Ground-based detectors measure byproducts of the interaction of primary cosmic rays (mostly protons) with Earth’s atmosphere.

• AS array measures electromagnetic component in the cascade shower.

• AS array also responds to primary γ-rays, while the muon detector responds only to primary protons & nuclei.

Cosmic ray observation withAS array & muon detector

Neutron monitor

Muondetector

Air shower array

primary γ

Page 5: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

● The celestial coordinate with declination (δ) and right ascension (R.A. or α).

δ=30o

● The latitude of Yangbajing in Tibet is 30oN.

δ=90o

The zenith direction there corresponds to δ=30o.

δ=30o

With the rotation of the Earth, the zenith direction travels the δ=30o line.

● Fixed direction in the horizontal coordinate travels d=constant line.It returns to the same right ascension after 1 sidereal day (360o rotation).

δ=90o

Analysis method (1)

Page 6: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

● Possible other time variations are:- Time variation due to the atmospheric effect.- Time variation due to the solar modulation effect.- An interference between one-day and one-year period variations

● CR flux from each celestial position is compared with average of the same declinations.

produces fake one sidereal-day period variation.⇒ examine anti-sidereal anisotropy

● 360o of right ascension is scanned in one sidereal day. Time variation analysis of one sidereal day period is essential.

These background time variations are carefully evaluated and removed to extract primary CR anisotropy of 0.1% level.

Analysis method (2)

Page 7: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

(Guillian et al., PRD., 75, 2007)Observation with the Super Kamiokande

• 2.1×108 muons in 1996.1-2001.5(1.8 Hz)

• Em=10 TeV

• Downward going muons(zenith angle = 0°~90°)

Intensity map (normalized) Significance map

Page 8: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Matsushiro (MAT)

Liapootah (LPT)

1985~present

1993~2005

Two Hemisphere Network (THN)

Page 9: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

RA (º)

dec

(º)

Direction of motion of the heliosphere relative to LISM

by Tibet III (5°x5° pixel)

Sky maps by Tibet & THNAmenomori et al., Science, 314, 2006

dec

(º)

by THN(white countour) Hall et al., JGR, 104, 1998

equatorial plane

equatorial plane

Page 10: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Two Hemisphere Network (THN)

Hall et al. (JGR, 1998,1999) analyzed initial 4 years data of THN First 2D sky-map by “Gaussian analysis”

In this paper, we use the THN data updated to…• Apply a best-fitting analysis identical to that adopted by

Amenomori et al. (2007) for Tibet III data.

• Derive energy dependence of the best-fit anisotropy by comparingthe best-fit parameters from the THN observation in the sub-TeVregion and Tibet III experiment in the multi-TeV region.

Matsushiro (MAT) Liapootah (LPT)

location 36°32′N 130°01′E 42°20′S 146°28′E

V depth (m.w.e.) 220 154

count rate (Hz) 5.4 7.0

V median primary P (TV) 0.659 0.519

no. of viewing directions 17 17

Analyzed period 22 years(1985-2006)

13 years(1993-2005)

Amenomori et al., arXiv0811.0422, 2008

Page 11: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Bi-Directional Flow(BDF)

Uni-Directional Flow(UDF)

a1//

a1⊥

ϕ (α1, δ1)

a2//

α2

δ2

Reference axis(eg. Magnetic field line)

Global Anisotropy model

Page 12: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR
Page 13: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

:136 independent data

Sidereal daily variations

-0.1

0

0.1

0 6 12 18 24

(%)

MAT "V"(34.5oN)

local sidereal time (hours)

-0.1

0

0.1

0 6 12 18 24

(%)

LPT "V"(36.2oS)

local sidereal time (hours)

amplitude

phase

00:00

06:00(03:00)

12:00(06:00)

18:00(09:00)

harmonic dial for m=1 (m=2)

Page 14: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

0

0.02

0.04

0.06

0 0.02 0.04 0.06

V

SE

N

W

00:00

06:00

(%)

(%)

(a)

0

0.02

0.04

0.06

0 0.02 0.04 0.06

V

N

SE

W

00:00

06:00

(%)

(%)

(b)

-0.04

-0.02

0

0.02

-0.04 -0.02 0 0.02

V

N

S

E

W

00:00

03:00

06:00

(%)

(%)

(c)

-0.04

-0.02

0

0.02

-0.04 -0.02 0 0.02 (%)

V

N

S

E

W

(%)00:00

03:0009:00

(d)

Summation dialsLPT (1993-2005)MAT (1985-2006)

m=1

m=2

Page 15: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

N

S

-0.05

0

0.05

0 6 12 18 24

(%)

MAT "N"(57.0oN)

-0.05

0

0.05

0 6 12 18 24

(%)

LPT "N2"(4.4oN)

-0.05

0

0.05

0 6 12 18 24

(%)

MAT "V"(34.5oN)

-0.05

0

0.05

0 6 12 18 24

(%)

LPT "N"(14.7oS)

-0.05

0

0.05

0 6 12 18 24

(%)

MAT "S"(11.2oN)

-0.05

0

0.05

0 6 12 18 24

(%)

LPT "V"(36.2oS)

-0.05

0

0.05

0 6 12 18 24

(%)

local sidereal time (hours)

MAT "S2"(8.2oS)

-0.05

0

0.05

0 6 12 18 24

(%)

local sidereal time (hours)

LPT "S"(57.6oS)

Sidereal daily variations by THN

RA distributionby Tibet III

-0.3

0

0.3

0 90 180 270 360

7.5S7.5N22.5N37.5N52.5N

(%)

right ascension (degree)

Page 16: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Tibet (5 TeV)

±0.2

0 %

THN (0.5 TeV)

±0.0

7 %

• Best-fit models of GA are very similar to each other, except 1/3 amp. by THN.• This implies that the modeling with Tibet data in a single hemisphere is not

seriously biased.

a2// (%) α2// (°) δ2// (°)0.020±0.001

(0.095±0.001)96.4±2.5

(97.4±2.5)-17.1±2.5

(-22.5±2.5)

Best-fitting to THN & Tibet

a1// (%) a1⊥ (%) α1⊥ (°) δ1⊥ (°)0.016±0.001

(0.096±0.001)0.020±0.001

(0.108±0.001)182.5±2.5

(177.5±2.5)12.5±2.5

(22.5±2.5)

χ2/d.o.f. =1.72(χ2/d.o.f. =2.44)

Model anisotropy

Best-fit parameters

(Amenomori et al., arXiv0811.0422, 2008)

Page 17: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Energy dependence of amplitudein space

0.0001

0.001

0.01

0.1 1 10 100

Uni.(UG muon)Uni.(Tibet AS)

Bi.(UG muon)Bi.(TibetAS)

ampl

itude

E (TeV)

Hall et al., JGR, 103, 1998 &104, 1999

Page 18: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

The Heliosphere

Page 19: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

(SO: 365 c/y)

Sept.

Dec.

Mar.

Jun.

12

9

6

3

0

21

18

15

Cosmic-Ray Flow

0.01

0.1

1

0.01 0.1 1 10 100

solar(muon)solar(TibetIII)

sidereal(muon)sidereal(TibetIII)

am

plit

ude (

%)

E (TeV)

Compton-Getting効果

MAT~0.6 TeV

SO SI

Solar modulation of solar and sidereal diurnal anisotropy

(SI: 366 c/y)

Page 20: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

同時刻集計 in 太陽時(SO)・恒星時(SI)名古屋V (60 GV) 三郷V (145 GV)

坂下V (331 GV) 松代V (659 GV)[%]

Page 21: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

W. I. Axford(Planetary and Space Sci., 13, 1965)

SOSI

Page 22: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Solar cycle dependence of0.6 TeV GCR anisotropy

(by Matsushiro UG-µ detector in 1985-2008)

CG effect(solar min.) quiet

active

Compton-Getting

Solar daily variation

SI(366 c/y)

SO(365 c/y)

AS(364 c/y

Munakata et al., ApJ, 712, 2010

Page 23: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Solaractivity

SO

SI

~15:00 LT

γmax=+0.74∆tCR=+26 months

(400 km/s solar wind travels ~180 AU)

Page 24: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

SO

SI

γmax=+0.57∆tCR=+14 months

~03:00 LT

Solaractivity

Page 25: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

SI daily variation

Page 26: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

(Abdo et al., 2009)

(×3)

Steady increase of amplitude?No significant correlation with the solar activity

seen by Matsushiro

SI

Page 27: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

0

0.05

0.1

1985 1990 1995 2000 2005 2010

Matsushiro UG-µTibet AS

amplitude (%)

year

~1/3 attenuation by the solar modulation

only ~1/6 amplitude changing with the solar cycle

Small solar cycle variation (if any)

Page 28: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

By

MHD model heliosphere

100200

300 AU

z

xNPNP

Positive Negative

Washimi et al., ApJL, 670, 2007

Page 29: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Tibet III AS Array

• 37000 m2 detection area• Total 789 detectors• Mode Energy ~ 3 TeV• Trigger Rate ~ 1.7 kHz

Google map

@Yangbajing (八羊井)Tibet, China

90°53′ E, 30°11′ N4,300 m a.s.l. (606 g/cm2)

Page 30: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

E-W Method (method I)K.Nagashima et al., Nuovo Cimento Soc. Ital Fis. 12C, 695(1989)

The time derivative of R(t) can be obtained• Can correct common variations

including the atmospheric effect.• Sacrifices statistical significance.

Page 31: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Zenith

On -source

Off -sourceOff -source

Ion, Non on

on

NI

off

off

N

I

Equal

Ioff, Noff

I(i,j) : Relative Intensity

In the m-time slot

(ROOT MINUIT http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/)

Obtain I(i,j) giving minimum χ2

M. Amenomori, et al., ApJ. 633, 1005 (2005)

Equi-Zenith Angle Method (method II)

+3%

−3%Azimuth anisotropy

Normalize the average of I(i, j) in eachdeclination band to 1

m : time (5°=20minutes)n : zenith angle (4°)l : azimuth angle (4°/sin(n))

i : right ascension (5°)j : declination (5°)

Obtain 2D map of I(i, j)

Gives R(t) itself in stead of time derivative• No sacrifice of statistical significance.• Azimuth anisotropy must be corrected

in advance.

Page 32: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Compton-Getting effect (in solar time)

Method I Method II

SI2 variation (367 c/y) as a measure of systematic error

Page 33: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Intensity map (normalized)

Observed sidereal anisotropy(1,916 live days in Nov. 1999 ~ Dec. 2008)

right ascension (º)

decl

inat

ion

(º)

decl

inat

ion

(º)

Emode = 7 TeV

(5°x5° pixel) Heliotail

Lallement’s HDPGarnett’s HDP

Significance map

Page 34: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

6 h

12 h

18 h

0 h

3 h9 h

SiderealDiurnal

SiderealSemi-diurnal

Mt. Norikura (1973-87)

0 hP1: Nov.99~Jun.00P2: Oct.00~Jan.01P3: Dec.01~Sep.02P4: Nov.02~Mar.03P5: Dec.03~Oct.04P6: Oct.04~Nov.05P7: Dec.05~Nov.06P8: Nov.06~Feb.08P9: Mar.08~Dec.08

3 h9 h

0 h

18 h 6 h

Tibet ASγ (1999-2008)

Global Anisotropy model (1/3)

Bi-Directional Flow(BDF)

Uni-Directional Flow(UDF)

a1//

a1⊥

ϕ (α1, δ1)

a2//

α2

δ2

Reference axis(eg. Magnetic field line)

Page 35: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Best-fit parameters(Amenomori et al., proc. ICRC, 2009)

Uni-directional Bi-directionala1⊥ =0.141%, a1// =0.008% a2// =0.140%α1⊥ =37.5°, δ1⊥ =37.5° α2// =97.4°, δ2// =-22.5° (LIMF orientation)

For 5 TeV CRs… Larmor radius : RL~ 0.002 pc in 3µG fieldScattering m.f.p. : λ// ~ 3 pc

(e.g. Moskalenko et al., 2002)

Bohm factor λ// /RL~ 1500 >> 1 (~10 in the heliosphere)⇒ Perp. diffusion flux is negligible

⇒ Only diamagnetic drift can produce significant a1⊥

a1// ∼ λ// /L∼0.001 ∴L ~ 3 kpcLarge-scale?However…

a1// is not significant, but a1⊥

a1⊥∼ RL/L’ ∼0.001 ∴L’ ~ 2 pcLocal-scale structure is needed

Global Anisotropy model (2/3)Origin of Uni- & Bi-directional flows

Page 36: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Global Anisotropy model (3/3)

This model also allows us to inferthe polarity of B from ∇n

29 km/s

G cloud

Interstellar B

∇nUni-directional flow(Bx∇n)

High n

26 km/s

Low n~5 pc

Bi-directional flow(parallel diffusion)

LICLow nSun

26 km/sHeliosphere

~ 3 pc

Local Interstellar Cloud

Redfield & Linsky, ApJ, 534, 2000

Slavin, AIP proc., 1156, 2009

Page 37: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Midscale Anisotropy model (1/2)

Obs.

GABest-fitting

MAObs.- GA

(significance)

Lallement’s HDPGarnett’s HDP

Page 38: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

The heliosphere as seen outside the solar system:

Asymmetric! (Opher, 2007)

100 AU

Linde (1998)

Page 39: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Miraglo “hot” regions A & B(Abdo et al., PRL, 101, 2008)

χ2/d.o.f. = 2.69 χ2/d.o.f. = 1.97

BA

Φ

Midscale Anisotropy model (2/2)

Page 40: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Original intensity Normalized intensity

UDF

BDF

MA

+

+

=

Best-fitmodel

Page 41: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

a2// (%) α2// (°) δ2// (°)

0.134±0.002(0.133±0.002)

99.7±0.6(98.0±0.4)

-27.3±1.4(-17.5±0.8)

b1 (%) b2 (%) σ// (°) σ⊥ (°) Φ (°)

0.150±0.013 0.095±0.004 23.8±0.7 11.0±0.5 49.5±0.9

Best-fit parametersGA+MA model (with GA alone)

a1// (%) a1⊥ (%) α1⊥ (°) δ1⊥ (°)

0.005±0.002(0.026±0.001)

0.145±0.002(0.151±0.001)

34.8±0.8(27.5±0.8)

39.5±0.8(46.7±0.5)

χ2/d.o.f. =1.97(χ2/d.o.f. =2.69)

GA

MA

Page 42: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Energy dependence (1/3)(The energy resolution is ~50 %)

4.0(TeV)

4.6

5.7

7.8

11.0

29.0

EmodeObs. MAGA

Page 43: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Energy dependence (2/3)

MA

GA

Page 44: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Energy dependence (3/3)

Page 45: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Milagro hot region A(Abdo et al., PRL, 101, 2008)

Tibet : +14σ (α=67.5±2.5°, δ=17.5 ±2.5°)Milagro: +15σ (α=69.4±0.7°, δ=13.8 ±0.7°)

• 2.6° wide and 7.6° long, 46° inclined from RA axis.• Inconsistent with γ-ray emission (AS compactness).• Appears like the well-collimated hadron beam.

• Difficult to interpret in terms of the proton’s propagation in LISMF• Neutron production in the gravitationally focused tail of ISM material?

Neutron decay length is cγτ ∼ 0.1 pc >> RL, but the low column density of ISM can produce only an intensity excess of 10-10 rather than 10-3.

intensity

significance

(Drury & Aharonian, arXiv:0802.4403, 2008)

10-3 excess

Crab

This also applies to a possible idea interpreting ~10-3 GA in terms of the hadronic interactions of CRs with ISM matter.

Page 46: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Deriving original anisotropywithout normalization in each declination band

• In the present map, the average intensity in each declination is normalized to unity.

• For deriving original anisotropy, the azimuth distribution must be corrected for all systematic effects at ~10-3 accuracy.

• Tibet AS-array normal is inclined for 1.3°toward south-west direction, causing a 10-2

systematic effect.• Correction seems to be still possible.

+

+

=

Normalized intensityOriginal intensity

UDF

BDF

MA

Best-fitmodel

Equi-Zenith Angle Method

Zenith

On-source

-Off-source Off-source

Page 47: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Two-hemisphere observationsTibet (7 TeV) THN (0.5 TeV)

±0.2

0 %

±0.0

7 %

• Best-fit models of GA are very similar to each other, except 1/3 amp. by THN.

Tibet (7 TeV)Ice Cube (20 TeV)

Data

GA+MA modelfor Tibet

Tibet (29 TeV)Ice Cube (20 TeV)

• Need more statistics for quantitative comparison between Tibet & Ice Cube.

Page 48: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

0.9992

1

1.0008

0 90 180 270 360

Ice CubeTibet srogt100

RA

0.9992

1

1.0008

0 90 180 270 360

Tibet srogt10GA+MA model srogt10

RA

0.9992

1

1.0008

0 90 180 270 360

Tibet srogt100GA+MA model srogt100

RA

0.9992

1

1.0008

0 90 180 270 360

IceCubeGA+MA model srogt100

RA

20 TeV

29 TeV

7 TeV

29 TeV

20 TeV

29 TeV

Page 49: ICRR seminar, June 25 ,2010 Sidereal anisotropy of GCR

Summary Sidereal anisotropy by Tibet AS and UG-muon observations (SK & THN) are

consistent with each other, implying minor contribution from γ-rays to the global anisotropy.

Sidereal anisotropy by Tibet AS and THN are consistent with each other, implying the modeling with Tibet data in a single hemisphere is not seriously biased.

THN observed a time-dependent attenuation (~1/3) of amplitude due to the solar modulation, while the anisotropy by Tibet is fairly constant.

Sidereal anisotropy by Tibet AS is well modeled in terms of GA and MA, representing modulations in the LISMF and in the heliotail, respectively.

The contribution from γ-rays to the anisotropy by Tibet should be identified and discriminated, quantitatively, e.g. Milagro’s hot region A ⇒ Tibet MD project.

For better understanding the origin of the anisotropy, the present analysis method must be improved to derive the “original” anisotropy without the normalization in each declination band.

Two hemisphere observations by Tibet and Ice Cube should be encouraged.