icns 2017 - École de technologie supérieure

29
DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS Eric Zhang, Joe Zambrano, René Jr. Landry, Wessam Ajib ICNS 2017 April 19, 2017 Track 2: Communications, Navigation, and Surveillance Session D: Software Defined Radio (SDR) & Spectrum

Upload: others

Post on 21-Feb-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ICNS 2017 - École de technologie supérieure

DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING

SDR FOR AVIONIC APPLICATIONS

Eric Zhang, Joe Zambrano, René Jr. Landry, Wessam Ajib

ICNS 2017 April 19, 2017

Track 2: Communications, Navigation, and Surveillance

Session D: Software Defined Radio (SDR) & Spectrum

Page 2: ICNS 2017 - École de technologie supérieure

Outline

1.Introduction

2.Future of Avionic Communication

3.WBR Implementation

4.Results

5.Conclusion 2 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 3: ICNS 2017 - École de technologie supérieure

1. Introduction

ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS 3

Page 4: ICNS 2017 - École de technologie supérieure

1. Introduction Benefits of SDR for Aviation

• Minimization of SWaP-C requirements

‒ GHG emissions reduction

‒ Design, development and installation time and cost

‒ Maintenance, repair and modernization time and cost

• Reprogrammability & reconfigurability

– Seamless transition to new standards (Futureproof)

• Scalability

• Reduced number of parts

– Increased reliability 4 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 5: ICNS 2017 - École de technologie supérieure

1. Introduction Context of the Work

AVIO-505 project • “Software defined radios for highly integrated system

architecture” • Objectives:

– Integration of navigation, communication and surveillance systems under a single universal reconfigurable platform

– Demonstrate the capabilities and performance of SDR in aerospace

– Address new regulatory initiatives (NextGen)

• Partners: – Academic: ETS Montreal, Ecole Polytechnique Montreal, UQAM – Industrial: Bombardier, MDA, Marinvent Corporation

5 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 6: ICNS 2017 - École de technologie supérieure

1. Introduction Today’s Avionic Communication Systems

6 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

• Multiple dedicated antenna • Multiple rack mount avionics

• Kilometers of cables and connectors

Page 7: ICNS 2017 - École de technologie supérieure

1. Introduction Proposed Avionic Communication Systems

7 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Advantages : Less equipment and cables Hardware to software redundancy Software function reallocation Lower cost Easier maintenance

SDAR SDAR SDAR SDAR SDAR

SDAR SDAR SDAR SDAR

SDAR

Software Defined Avionic Radio

Multi-Standard Antenna

Short Cables

Reconfigurable Software Defined Radio

Fiber Optic Network

AVIO-505 Vision

Page 8: ICNS 2017 - École de technologie supérieure

2. Future of Avionic Communication

ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS 8

Page 9: ICNS 2017 - École de technologie supérieure

1. Infotainment 2. Office (in-flight) 3. Telemedicine 4. Flight security 5. Logistic & maintenance

2. Future of Avionic Communication Evolution of In-Flight Connectivity (IFC)

9 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

"Sky-to-Earth Phone Service Offered On Air Liner"

Popular Mechanics, September 1937

http://arabiansupplychain.com//pictures/gallery/Companies/300x200/Emirates_Infight.jpg

Page 10: ICNS 2017 - École de technologie supérieure

2. Future of Avionic Communication Passenger Air Transportation

10 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Commercial aviation forecast1

• Passengers/year: 8 billion 20 billion by 2036

• Projected growth rate of 5.2 %

1 The ACI World Report – December 2016 (http://www.aci.aero/News/ACI-World-Report)

Page 11: ICNS 2017 - École de technologie supérieure

2. Future of Avionic Communication NextGen

11 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 12: ICNS 2017 - École de technologie supérieure

2. Future of Avionic Communication WBR for Future Avionic Communication

• Reduce constant equipment replacement. • Reconfigure different protocols and communication systems • Reducing SWap-C requirements • Robust bidirectional link A/S, A/A and A/G • Data communication for the A/S link via SatCom system • Suitable for Airborne Network and cognitive radio

applications • Useful for IFC services

12 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

A/S

A/A

A/S

A/G

A/G

Space Segment

Air Segment

Terrestrial Segment

GS

GS

Page 13: ICNS 2017 - École de technologie supérieure

3. WBR Implementation

ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS 13

Page 14: ICNS 2017 - École de technologie supérieure

3. WBR Implementation Adaptive Coding and Modulation (ACM)

• Adaptive compensation based on environmental

and RF conditions

• Maintains a BER better than 10-5

• Implemented modulations: PSK and QAM

• Reed-Solomon Coding

14 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 15: ICNS 2017 - École de technologie supérieure

3. WBR Implementation Adaptive Coding and Modulation (ACM)

15 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 16: ICNS 2017 - École de technologie supérieure

3. WBR Implementation ACM Algorithm

16 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Modulation RS Code Effective Symbol Rate (bit/symbol)

BPSK RS(255,191) 0.75 RS(255,223) 0.88

QPSK RS(255,191) 1.50 RS(255,223) 1.75

8-PSK RS(255,191) 2.25 RS(255,223) 2.62

16-QAM RS(255,191) 3.00 RS(255,223) 3.50

WBR’s MODCOD combinations

BPSKRS(255,191)

BPSKRS(255,223)

SNR < 7 dB

SNR < 8.5 dB

YES

NO

QPSKRS(255,191)

NO

YES YES

SNR < 13.5 dB

QPSKRS(255,223)

NO

YESPacket Loss > 5%YES

NO

Packet Loss > 5%

NO

SNR < 16 dB

8-PSKRS(255,191)

NO

YES YESPacket Loss > 5%

NO

SNR < 20 dB

8-PSKRS(255,223)

NO

YESPacket Loss > 5%YES

NO

SNR < 22 dB

16-QAMRS(255,191)

NO

YES YESPacket Loss > 5%

NO

SNR < 27 dB

16-QAMRS(255,223)

NO

YESPacket Loss > 5%YES

NO

YESPacket Loss > 5%

NO

Page 17: ICNS 2017 - École de technologie supérieure

3. WBR Implementation SNR Estimation

17 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 18: ICNS 2017 - École de technologie supérieure

3. WBR Implementation WBR TX & RX

18 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

a) Transmitter

b) Receiver

AGCFLLRRC Filter

BPSK Constellation Receiver

QPSK Constellation Receiver

8PSK Constellation Receiver

16QAM Constellation

Receiver

BPSK Differential Decoder

QPSK Differential Decoder

8PSK Differential Decoder

16QAM Differential Decoder

Modulation Selector

Switch

Switch

Switch

Switch

Packet Synchronizer

Reed-Solomon Decoder

SNR Estimator

SNR Estimator

SNR Estimator

SNR Estimator

Data Sink

Data Source Reed-Solomon Encoder Preamble Padder

BPSK Constellation Mapper

QPSK Constellation Mapper

8PSK Constellation Mapper

16QAM Constellation Mapper

BPSK Differential Encoder

RRC FilterModulation Selector

QPSK Differential Encoder

8PSK Differential Encoder

16QAM Differential Encoder

Switch

Switch

Switch

Switch

Page 19: ICNS 2017 - École de technologie supérieure

3. WBR Implementation SDR Platform

19 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Nutaq’s PicoSDR2x2E

• Radio420X FMC (RF

transceiver module)

• Selectable bandwidth

(1.5 MHz-28 MHz)

• 12-bit ADC & 12-bit DAC @

40MS/s

• Based on a Virtex-6 FPGA

• Embedded processor (Intel

i7 Gen2 CPU)

Page 20: ICNS 2017 - École de technologie supérieure

4. Results

ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS 20

Page 21: ICNS 2017 - École de technologie supérieure

4. Results BER of the Implemented WBR

21 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4010

-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE

R

RS(255,223) DBPSKRS(255,191) DBPSKUncoded DBPSKRS(255,223) DQPSKRS(255,191) DQPSKUncoded DQPSKRS(255,223) D8PSKRS(255,191) D8PSKUncoded D8PSKRS(255,223) D-16QAMRS(255,191) D-16QAMUncoded D-16QAM

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4010

-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE

R

Page 22: ICNS 2017 - École de technologie supérieure

4. Results RT Logic Channel Simulator

22 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 23: ICNS 2017 - École de technologie supérieure

4. Results A/G Link Scenario

23 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 24: ICNS 2017 - École de technologie supérieure

4. Results Scenario parameters

24 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 25: ICNS 2017 - École de technologie supérieure

4. Results Results of A/G Link Scenario

25 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 26: ICNS 2017 - École de technologie supérieure

5. Conclusion

ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS 26

Page 27: ICNS 2017 - École de technologie supérieure

5. Conclusion Conclusion

• WBR integrated in a SDR platform with other avionic communication systems

• Areas to be improved: 1) better SNR estimation 2) CPU optimizations 3) hardware imperfections compensation

• Flight tests are underway • Remains a great solution to investigate for

future avionic communication needs

27 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 28: ICNS 2017 - École de technologie supérieure

References

[1] EUROCONTROL and the U.S. Federal Aviation Administration (FAA), Nov. 2007, “Action Plan 17: Future Communications Study”, Final Conclusions and Recommendations Report.

[2] Brown, Andy, Jane Flenn, Catherine Menon, Oct. 2010, “Issues and considerations for a modular safety certification approach in a Service-Oriented Architecture”, Manchester, UK, 5th IET International Conference on System Safety.

[3] Norman White, John, 1994, “History of Inflight Entertainment”, New York, USA, Airline Passenger Experience Association (APEX), http://c.ymcdn. com/sites/connect.apex.aero/resource/resmgr/IFE-Resources_docs/History_of_IFE_version_2_JNW.pdf

[4] Zambrano, Joe, Omar Yeste, René Jr. Landry, Sept. 2013, “Reconfigurable Software Defined Wide-band Radio for SatCom in Aeronautical Applications”, Montreal, Canada, SAE 2013 Aero Tech Congress & Conference.

[5] Jacob, Ponnu, Rajendra Prasad Sirigina, A. S. Madhukumar, Vinod Achutavarrier Prasad, May 2016, “Cognitive Radio for Aeronautical Communications : A Survey”, IEEE Access (Volume: 4).

[6] Zambrano, Joe, Eric Zhang, Omar Yeste-Ojeda, René Jr. Landry and Victor Gheorghian, Sept. 2016, “Development and Implementation of a New Architecture for Robust Satellite Data Unit with Software Defined Radio for Airborne Network”, Sacramento, U.S.A, Digital Avionics Systems Conference (DASC).

[7] Pauluzzi, David R., Norman C. Beaulieu, August 2002, “A comparison of SNR estimation techniques for the AWGN channel”, IEEE Transactions on Communications, Vol.48, No.10, pp.1681-1691.

[8] Harris, Fred, Elettra Venosa, Xiaofei Chen, Chris Dick, Sept. 2012, “Band edge filters perform non data-aided carrier and timing synchronization of software defined radio QAM receivers”, Taipei, Taiwan, 15th International Symposium on Wireless Personal Multimedia Communications (WPMC).

28 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Page 29: ICNS 2017 - École de technologie supérieure

Questions?

29 ICNS 2017 DESIGN AND IMPLEMENTATION OF A WIDEBAND RADIO USING SDR FOR AVIONIC APPLICATIONS

Contact us:

[email protected] [email protected]

[email protected] [email protected]