ic-ng ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd...

14
iC-NG APPLICATION NOTES May 04 1999, Page 1/14 iC-Haus GmbH Tel +49-6135-9292-0 Integrated Circuits Fax +49-6135-9292-192 Am Kuemmerling 18, 55294 Bodenheim http://www.ichaus.com Fig. 1: basic circuit with low-pass filters for complementary input signals. Fig. 2: circuit as an 8-bit sine/digital converter. APPLICATION CIRCUITS Basic circuit (incremental mode) Basic circuit (parallel-absolute mode) iC-NG can be directly connected as an 8-bit sine/digi- tal converter, where the data output in parallel-abso- lute mode is controlled by the iC’s own interrupt signal. To this end, signal output MFP must be connected to read signal NRD; parallel operation is set by SCL= 0 and SDA= 0 (or configured via EEPROM). Output value register NG(7:0) is addressed after the device has been switched on by presetting the address to "0"; a negative edge for read signal NRD accepts the contents of register NG for output to data lines D7..0. Since the signal enables for NGUPDT and MAXFREQ are also issued as presettings, any signal change automatically appears on the data lines.

Upload: phamliem

Post on 06-May-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 1/14

iC-Haus GmbH Tel +49-6135-9292-0Integrated Circuits Fax +49-6135-9292-192Am Kuemmerling 18, 55294 Bodenheim http://www.ichaus.com

Fig. 1: basic circuit with low-pass filters for complementaryinput signals.

Fig. 2: circuit as an 8-bit sine/digital converter.

APPLICATION CIRCUITS

Basic circuit (incremental mode)

Basic circuit (parallel-absolute mode)

iC-NG can be directly connected as an 8-bit sine/digi-tal converter, where the data output in parallel-abso-lute mode is controlled by the iC’s own interrupt signal.

To this end, signal output MFP must be connected toread signal NRD; parallel operation is set by SCL= 0and SDA= 0 (or configured via EEPROM). Outputvalue register NG(7:0) is addressed after the devicehas been switched on by presetting the address to "0";

a negative edge for read signal NRD accepts thecontents of register NG for output to data lines D7..0.Since the signal enables for NGUPDT and MAXFREQare also issued as presettings, any signal changeautomatically appears on the data lines.

Page 2: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 2/14

22

VREF15 iC-NGSensor case

1Vss to120 SIN24

NSIN23

PSIN+

-RS08120

1kRS03

- PSIN

1kRS04

2kRS01

2kRS02

SIN

NSIN+

Fig. 3: input circuit for voltage signals with 1Vss.

SIN24

NSIN23

PSIN22

VREF15 iC-NGSensor

11µAsscurrent output

Ground

+

-

CS0127pF

RS030

PSIN

RS040

RS01182k

RS02182k

SIN

NSIN

CS0227pF

+

-

Fig. 4: input circuit for current signals with 11µAss.

SIN24

NSIN23

PSIN22

VREF15 iC-NG

+

-

RS0110k

RS02 10k

SIN

NSIN 5kRS03

1VssV-GEN

RS065kGND

Fig. 5: input circuit for non-symmetrical voltagesignals.

Fig. 6: circuit with external offset compensation.

Possible input circuits

Input circuit with offset compensation

With iC-NG, the offset parameters are evaluated withthe amplitude of the input signal not used in the seg-ment in order to keep the intersections of the segmentjunctions stable. This concept is required to correct thesignals of phase-shifted and distorted sine/cosinesignals.

External offset compensation may be necessary forsensor applications with varying signal amplitudes; thelinearity of the converter suffers if the signal amplitudechanges once the compensation parameters havebeen set.

Page 3: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 3/14

+5V

VREF

A3

E1

E2

E3

GND

INV

NERTNER

TRI

VBVCC

A1

A2

AX

BX

ZX

NER

+

+

ZERO

NSIN

NWR

NZERO

PCOS

PSIN

PZERO

RCLKSCL SDA

SIN

24C02

D3

D4

D5

D6

D7

GND

MFP

NCOS

NER

NRD

NRES

COS

D0

D1

D2

VB VBR

VCC

VCCA

VHVHL

NER

+5Vanalog

Reset

+5Vdig

SIN+

SIN-

COS+

GND

OUT_AX

OUT_BX

OUT_ZX

ERROR

Reset

+10..30V

COS-

+5Vanalog

+5Vdig

R1527k

C1100pF

47pFC2

100pFC5

C447pF

100pFC6 C3

100pF

C121µF

4.7µFC13

iC-WE SO20W

ERROR

LOW VOLTAGE

MODE

CHAN1

CHAN2

CHAN3

T. SHUTDOWN

LVH

220µH4.7µFCVH

RVB

1

100nFC9

C114.7µF

5kR8

OP2

R4220k

R145k

R610k

10kR3

R1210k

C71µF

1kR16

C101µF

REGULATORVCCA

REGULATORVCC

REFERENCE

THERMALSHUTDOWN

TEMPERATURE

OSCILLATOR

VH SWITCHINGREGULATOR

VREFiC-WD

ERROR DETECTION

D1

5kR13

SIN

COS

ZERO

iC-NGR115k

R7220k220k

R10

R110k

220kR2

10kR5

10kR9

OP1

1µFC8

GND

VDD

EEPROM

-

-

A Bridge

B Bridge

+5Vdig

Fig. 7: MR sensor circuit with a line driver and 10%30V voltage supply.

Application circuitry for an MR sensor system

Page 4: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 4/14

VREF

SUB-D 9pole

Application field for input configuration

components not assembled

7

8

5 01

4

6

5

7

6

2

1

4

5

3 ISO_RxD

ISO_TxD

NINT0NINT1

NPSEN

NRDNWR

P1(7:0)

P2(7:0)

RES

RxD

T0T1

TxD

VCC

VCC_OUT

5V

A(7:0)

AD(7:0)

ALE

CLKGND

ISO_GND

2

0

1

3

7

A012 A1

A23GND4

SCL 6

SDA 5VDD8

GND2

IN1 OUT3

24 3

VDD

14

15

ZERO18

26NRES

NSIN23

NWR 4

NZERO17

PCOS19

PSIN22

PZERO16

RCLK13

SCL

28

SDA

27

SIN24

D3 8

D4 9

D5 10

D6 11

D7 12

GND

25

MFP 2

NCOS20

1NER

NRD 3

COS21

D0 5

D1 6

D2 7

MFPNER

NRDNWR

6

MFP

R0011k1k

R0021k

R008

AXOB ROT

Z4 B4

A4

ZX BX

AX

1kR013

D0

D1

D2

D3

D4

D5

D6

R0144.75k

CZ06 RZ06

RC07

CC07

CC01 RC01

RS06

CZ07

CZ01 RZ01

RCLK

CS04

RS04

CS02 RS02

CS05 RS05

CS06

1kR011

LATCHADDR.

80C51RS232isol.

5V Regulator

JSupply

J4

GND2

RC03

R0051k

10uFE003

SSCL

SSDANER.

MFP.

R0121k

GND

VDD

GND1

J030

E00110uF

RESET

10uFE002

NRESPSIN

CZ05

R0101k

NSINCS01

CC06

RZ07

RZ04RZ08

RZ02

CZ04

RZ05

E004100nF

PCOS

NCOS

PZERO

RC02

CC04

CC05 RC05

SIN

COS

CC03

RS03

RZ03

CZ03

NZERO

ZERO

1kR006 R004

1k

NER

NRD

R0091k 1k

R003

78xx7805X003

D7

1kR007

100nFC001

X00224C02

Ser. EEPROM

NWR

SCL

RS08

SDA

iC-NG

ZERO

COS

SIN

X001

R015100k

RS07

CS07

RS01

J029

RC06 CC02

CZ02

CS03

VREF

RC04RC08

J3

Fig. 8: demo board circuit diagram.

DEMO BOARD

An iC-NG demo board with an 8OC51 controller andinsulated serial interface is available for test purposes.The package includes a partially-equipped circuitboard, a 3.5" floppy disk with PC software (system re-quirements: processors from 80386, DOS 6.x, OS/2,

Windows 3.11, Windows NT 3.51, Windows 95 andupwards), a lead for the serial interface and operatinginstructions.

Page 5: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 5/14

serialVoltage supply

free area forclock divider free

Controller

Indicators (free)

5V Regulator (free)

plug-in field for input circuitry

reset iC-NG

clock frequ.

µC reset

Power-on LED

free forEEPROM

interface

Fig. 9: iC-NG demo board, component side.

iC-NG Winkeldekodierer Sinus/Digital V1.8 NG:00 00 00 3E TPOS:00 00 00 00 AX:0 A4:I NGUPDT :O,I RES :256 ROT :O SIC :O CSIN :12.0pF BX:0 B4:I POSKOMP:O,O HYS :R100% ADAP :O SLCNTEN :O CZERO:12.0pF ZX:0 Z4:I MAXFREQ:O,I ZCONF :O NGLJ :O COUNTEN :O FREQ :O AB:0 RO:I STEPINP:O,O OUTSEL:O LATINT:O CBZ :O TACHO:D7 ERRV :O,O ACCMOD:O LATERR:O CLC :O G O Funktionsanpassung(FA) SEG1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG2 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG3 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG4 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG5 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG6 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG7 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SEG8 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 3E 00 00 00 FA D7 C0 1F 30 00 00 05 FF F8 F8 F8 10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F1 HELP F2 SAVE F3 LOAD F4 READ F5 OREAD F6 ADR F7 PULS F8 FIT F10 QUIT

On-screen mask

Demo Board PCB

Demo board control programThe user interface depicts the iC’s internal registers.By selecting the letters printed in bold in the inputmask, individual registers can be directly accessedand altered. Data transfer to the demo board and toiC-NG runs in the background.Complete sets of data can be stored on floppy or harddisk and can be used to transfer information to

EEPROM programming units, for example. Variousspecial functions are also available; among otherthings, these permit the cyclic readout and on-screendisplay of certain iC-NG registers, the continuousmeasurement of pulses or segments, or the approxi-mate, automatic determination of parameters whichadapt the converter for distorted signals.

Page 6: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 6/14

GENERAL

Generating trigger signalsOption 1 (incremental mode)

Through external wiring, a zero signal can be preset(static) and the display at pin ZX/D2 influenced usingrelevant programming. To this end, the zero signalinput is configured so that iC-NG contains "ZERO = 1".This is made possible by pin NZERO being connectedto GND and by pin PZERO being connected to ahigher potential, such as +5V, for example. OutputZERO remains open.For each sine cycle, iC-NG now generates a zeropulse at ZX/D2 which can be used to trigger theoscilloscope. The position of the zero pulse can beprogrammed via ZCONF (address 9) and shifted insteps of 45°.

Generating trigger signalsOption 2 (parallel-absolute mode)

A trigger signal at pin MFP can be generated for anydesired stage of interpolation by comparing the targetmarker of register TPOS with the NG output value.

To do so, the 32-bit output value and target positioncomparison are limited to the 8 bits of the interpolationsteps (counter depth OUTSEL(1:0)= 00, address 9).The desired target position and trigger point are writtenunder address 0 (TPOS 7:0, zero after a reset).Position comparison POSCOMP must be enabled(EN1= 1, address 11); the change in output value viaNGUPDT the pin MFP would otherwise signal must bedisabled (EN0= 0, address 11). Following this, pinMFP now issues a trigger signal each time the targetposition is reached.

Basic correlation between the resolution, input andoutput and necessary clock frequencies

The minimum clock frequency required is determinedby the 2-fold input frequency multiplied by the internalresolution of the converter (high accuracy error).

We recommend that the clock frequency be set so thatthis is equivalent to the 8-fold value of the input fre-quency multiplied by the internal resolution of theconverter, which of course depends on how high thepermissible maximum error of rotation may be.

The maximum output frequency in parallel-absolutemode at port D0 and in incremental mode at port

D7/AXB is equivalent to half the clock frequency.

Attention must be paid to the fact that higher reso-lutions are used in special cases where RES(6:5) isnot equal to "00".

Example 1: resolution of 200, 500Hz input signalfclk = 500Hz x 8 x 200 = ca. 800kHz. Taking thediagram for the oscillator frequency characteristic,R(RCLK) has ca. 47kS.

At 500Hz input frequency, the pulse frequencies forAX and BX are 25kHz and 50kHz for AXB.

This high clock frequency means that up to 100kHzpulse frequency are possible for AX and BX and200kHz for AXB. Calculating backwards, the highestpossible input frequency is thus 2kHz. If this frequencyis exceeded, this is signalled at error message outputNER (which must be enabled).

Example 2: resolution of 8, 100kHz input signalfclk = 100kHz x 8 x 8 = ca. 6.4MHz. Taking thediagram for the oscillator frequency characteristic,R(RCLK) has ca. 5kS, if 5MHz clock frequency areselected.

Output frequencies of up to 1.25MHz are possible forAX and BX. In this instance, the highest input fre-quency possible without an error message beinggenerated is ca. 300kHz.

NotesClock frequencies which exceed 800kHz significantlyincrease the level of system noise (jitter). The(resistive) hysteresis appears to be reduced, pulsepositions are shifted and come temporally slightlyearlier. Capacitive hysteresis also reacts sensitively tosystem noise.

Despite this, the system still functions if very high clockfrequencies of 3MHz, for example, are selected. AXBpulse frequencies of up to 800kHz are possible.

Higher signal amplitudes improve the output signal;3Vss are recommended. Looping in the programmablegain amplifier (PGA) can influence the quality of thesignal (address 8, ADAP= 1). If the converter adapt-ation function is used, the clock frequency should notbe changed once the adaptation parameters havebeen set.

Page 7: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 7/14

Table for operating frequencies

Clock frequency fclk 800 kHz 1.6 MHz 3.2 MHz

Resistor R(RCLK) for clock oscillator ca. 47 kS ca. 27 kS ca. 9 kS

Max. output frequency (an output change requires 2 clock pulses) 400 kHz 800 kHz 1.6 MHz

Max. AXB pulse frequencyMax. AX resp. BX pulse frequency

200 kHz100 kHz

400 kHz200 kHz

800 kHz400 kHz

RES 200

Max. input frequency 2 kHz 4 kHz 8 kHz

Recommendations (4-fold over-sampling at fmax)

max. input frequency resulting AXB pulse frequency (AXB shows 100 pulses)resulting AX resp. BX pulse frequency

< 500 Hz< 50 kHz< 25 kHz

< 1 kHz< 100 kHz< 50 kHz

< 2 kHz< 200 kHz< 100 kHz

Example: possible moving speed with a scale where the length of acycle is 500 µm at a resolution of 2.5 µm

0.25 m/s< 1 m/s

0.5 m/s< 2 m/s

1 m/s< 4 m/s

RES 8

Max. input frequency 50 kHz 100 kHz 200 kHz

Recommendations (4-fold over-sampling at fmax)

max. input frequency < 12.5 kHz < 25 kHz < 50 kHz

Period counter, parallel or SSI output mode(2 clock pulses per change required)

Max. input frequency 200 kHz 400 kHz 800 kHz

Example:possible moving speed with a scale where the length of acycle is 500 µm (resolution of 500 µm, resolution of 2.5µm is valid with low speed only)

< 100 m/s < 200 m/s < 400 m/s

Page 8: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 8/14

OFFS = (-0.33 .. 0.33) × COS

GAIN = 0.5 .. 2

45E

0EVREF

1

OFFS

e2 × Ftan(n)

PGA Komparator

+

-

FA

A × COS(n)

1. Segment

A × SIN(n)

e2

e1 G × e1

Fig. 10: schematic circuit diagram of the converteranalog section.

1. 2. 3. 4. 5. 6. 7. 8. Segment

SIN

VREF

0E 45E 90E 135E 180E 225E 270E 315E 360E

+SIN +COS -COS +SIN -SIN -COS +COS -SIN

COS

G1 G3 G5 G7 G8G6G4G2

O1 O3 O5 O7 O8O6O4O2

Fig. 11: effects of parameters OFFSET and GAIN.

CORRECTING SIGNALS AND ADAPTING FUNCTIONS

Compensation possibilities1. Different signal amplitudes for sine and cosineThe PGA permits various signal amplitudes to becompensated for. It is, however, prudent to compen-sate externally if it is not permissible to enlarge thedynamic error (settling times when changing segment).

2. Varying signal amplitudesVarying signal amplitudes are automatically compen-sated for when the tangent is formed.

3. Signal-independent offset voltagesExternal compensation is essential. The iC-NG offsetcorrection facility is only suitable for signals whosevoltage at a zero crossing changes with the amplitude,as it is the case with phase-shifted signals.

4. Signal-dependent offset voltagesThe programmable, amplitude-weighted zero crossingcorrection feature means amplitude-dependent offsetvoltages can be compensated for.

5. Phase errorsPhase errors, e.g. through inexact sensor placement,can be eliminated by the programmable compensationfacility.

6. Signal distortion caused by harmonicsThe iC-NG converter can also resolve distorted inputsignals without detriment to the converter’s linearity viathe programmable TAN-function adaptation feature. Ifthe form of the signal is known, it is possible to predictthe adaptation parameters, taking Fourier coefficientsas a basis for calculation, for example.

Setting correction and adaptation parameters

Step 1: correcting the gain of the PGA and the offset.

Using gain setting G1, the signal at the end of the firstsegment is adapted to the cosine signal (sin45°=cos45°). Offset O1 is then set to G1 x e1 = sin(0°).

A decisive factor for the sine-cosine intersections isthe gain adaptation performed for the 1st + 2nd

segments, 3rd + 4th segments, etc. Offset settings aloneonly affect intersections with the VREF referencevoltage.

The following order of compensation is practical:First gain, then offset.

Step 2: setting the transfer function of the TAN-D/Aconverter to the value of e1/e2 (e= input signal).

Page 9: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 9/14

0E 5E 10E 15E 20E 25E 30E 35E 40E 45E

Ftan(n)= tan(n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FA15[1]= 0

FA15[1]= 3FA15D[1]= 0

adaptedconverter function:

Ftan(n) = n / (90° - n)

Fig. 12: effect of parameters FA. Example fortriangular input signals (1st segment).

CH1

CH4

CH3

CH2

CH1..3 0.5V/DIV

TIME 1ms/DIV

CH1..4 0V

CH4 2V/DIV

Resolution RES= 8

1.) Offset 8.Segm.2.) Gain 1.Segm.

3.) Offset 2.Segm.4.) Gain 3.Segm.

5.) Offset 4.Segm.

CH1: Pin24, SIN

CH3: Pin 15, VREFCH2: Pin 21, COS

iC-NG

CH4: Pin 12, D7/AXB

8.) Gain 7.Segm.7.) Offset 6.Segm.

6.) Gain 5.Segm.

Fig. 13: the 8 steps of compensation in clockwiseoperation.

CH1..3 0.5V/DIV

TIME 1ms/DIV

CH1..4 0V

CH4 2V/DIV

Resolution RES= 8

CH1: Pin24, SIN

CH3: Pin 15, VREFCH2: Pin 21, COS

iC-NG

CH4: Pin 12, D7/AXB

CH1

CH4

CH3

CH2

S1

S2

S3

S4

S5

S6

S7

S8

Fig. 14: output signal following compensation(clockwise). S1..8 index the compensated seg-ments.

CH1..3 0.5V/DIV

TIME 1ms/DIV

CH1..4 0V

CH4 2V/DIV

Resolution RES= 8

1.) Offset 1.Segm.8.) Gain 8.Segm.

7.) Offset 7.Segm.6.) Gain 6.Segm.

5.) Offset 5.Segm.

CH1: Pin24, SIN

CH3: Pin 15, VREFCH2: Pin 21, COS

iC-NG

CH4: Pin 12, D7/AXB

2.) Gain 2.Segm.3.) Offset 3.Segm.

4.) Gain 4.Segm.

CH1

CH4

CH3

CH2

Bild nach erfolgtem Abgleich im Rechtslauf

Fig. 15: the 8 steps of compensation in counter-clockwise operation. The output signal shown herehas been compensated in clockwise operationalready.

In its basic setting (e1 = sin, e2 = cos), the PGA has again of one and an offset of zero. The tangent functionis formed in the feedback loop. For non-sinusoidalsignals, the transfer function can either be moresharply curved or straightened in the feedback loop(Fig. 12).

Adaptation of functions should be carried out for eachof the eight segments separately.

Example: manual adaptation procedure

The following diagrams show the first step ofadaptation in a correction process for adapting theconverter, here for distorted input signals with anadditional phase error.

The diagrams show the AXB output pulse train inincremental mode at a resolution of RES= 8, fromwhich point compensation should be started. Thevarious stages of resolution are represented by theeight edges of the 4 pulses; each edge can beindividually positioned by correcting the offset andgain.Emulating incremental mode in parallel-absolute modeby performing a cyclic readout of address 4 (outputD7/AXB) is favorable to iterative compensation.

Page 10: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 10/14

S8

S7

S6

S5

S4

S3

S2

S1

CH1..3 0.5V/DIV

TIME 1ms/DIV

CH1..4 0V

CH4 2V/DIV

Resolution RES= 8

CH1: Pin24, SIN

CH3: Pin 15, VREFCH2: Pin 21, COS

iC-NG

CH4: Pin 12, D7/AXB

CH1

CH4

CH3

CH2

Fig. 16: output following compensation (counter-clockwise).

SIN()' As @ Fsin(n % nserr) % Os

COS()' Ac @ Fcos(n % ncerr) % Oc

COS(n'0) @ O1' G1 @ SIN(n'0)

O1' G1 @ SIN(n'0)COS(n'0)

'G1@(As@0 % Os)

Ac@1 % Oc'

G1@OsAc % Oc

G1 @ SIN(n'45E)' COS(n'45E)

G1' COS(n'45E)SIN(n'45E)

.

Ac

2% Oc

As

2% Os

'Ac % 2@Oc

As % 2@Os. Ac

As

Fine tuning at higher resolutions can be performedonce the clockwise and counterclockwise steps ofcompensation have been completed. In doing so, it isimportant that the input frequency is low to avoid falsesettings being made due to dynamic errors.

Incorrectly positioned segment junctions can beadjusted clockwise by offset 1, 3, 5, 7 and by gain 2, 4,6, 8. The sequence is discretionary.

If the input signal requires, the transfer function of theTAN-D/A converter can be adapted by way of detuningin the second step of adaptation. The signal formsgiven in this example would also require that thissecond stage of adaptation be carried out.

Example: calculating adaptation parameters offsetand gain using approximation formulae.

In the following example, we assume that the ampli-tude and offset values for the sine and cosine inputsignals are known and that the phase shift is free fromerror.

Formulation:

SIN() Sine input signal at angle nAs Sine amplitudeFsin Sine-similar functionOs Sine offsetnserr Sine phase errorCOS() Cosine input signal at angle nAc Cosine amplitudeFcos Cosine-similar functionOc Cosine offsetncerr Cosine phase error

Simplifications:nserr= nserr= 0, Fsin()= sin(), Fcos()= cos()

Formulation for the offset of segment 1:

Formulation for the gain of segment 1:

The resulting approximation formulae for the individualsegments are collated on the following page.

Page 11: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 11/14

Ac % 2@Oc

As % 2@Os&384 @ G1 @ Os

Ac % Oc

As % 2@Os

Ac % 2@Oc'

1G1

&384 @ G2 @ OcAs % Os

As % 2@Os

Ac & 2@Oc384 @ G3 @ Oc

As % Os

Ac & 2@Oc

As % 2@Os'

1G3

&384 @ G4 @ OsAc & Oc

Ac & 2@Oc

As & 2@Os384 @ G5 @ Os

Ac & Oc

As & 2@Os

Ac & 2@Oc'

1G5

384 @ G6 @ OcAs & Os

As & 2@Os

Ac % 2@Oc&384 @ G7 @ Oc

As & Os

Ac % 2@Oc

As & 2@Os'

1G7

384 @ G8 @ OsAc % Oc

Segment Gain Offset

1

2

3

4

5

6

7

8

The following values must be programmed into the adaptation registers:

Gain = 255 - G * 128 , when G > 1Gain = G * 255 , when G <= 1

Offset = 255 - O , when O >= 0Offset = 127 + O , when O < 0

Page 12: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 12/14

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale

45° 90° 135° 180° 225° 270° 315° 360°1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Interne Signale (gleichgerichtet)

45° 90° 135° 180° 225° 270° 315° 360°-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale (Lissajous-Figur)

G = [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000]O = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]FA()= 0

n

Acqcos(n)

Ideal sine/cosine input signals

e1

e2

Fig. 17: ideal sine/cosine input signals (Fsin= sin, Fcos= cos, As= Ac, Os= Oc= 0, nserr= ncerr= 0)It is not necessary to alter the GAIN, OFFSET and FA parameters.

G = [0.8182 1.2222 1.2222 0.8182 0.8182 1.2222 1.2222 0.8182]O = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]FA() = tbd.

As= 1.1, Ac= 0.9

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale (Lissajous-Figur)

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale

45° 90° 135° 180° 225° 270° 315° 360°1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Interne Signale (gleichgerichtet)

45° 90° 135° 180° 225° 270° 315° 360°

Fig. 18: input signals with amplitude errors. The FA parameters should also be adapted, especially whenresolutions of higher than RES= 8 are used.

Examples: adapting the converter to real sensor signals

The adaptation of the gain necessary at the junction from 1st to 2nd segment, from 3rd to 4th segment, etc. leadsto alterations in the pulse width of the interpolation steps (see signal AXB) which follow a changeover ofsegment, especially at higher input frequencies. This dynamic error is caused by settling times and becomesmore noticeable the larger the differences in gain are. Vice versa, it follows that good sine/cosine sensor signalsalso generate considerably better incremental converter output signals.

Page 13: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 13/14

G = [0.7522 1.3294 1.0000 1.0000 1.3294 0.7522 1.0000 1.0000]O = [0.0836 -0.1209 0.0909 0.0909 -0.1209 0.0836 -0.1111 -0.1111]FA()= tbd.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale (Lissajous-Figur)

Os= +0.1, Oc= -0.1

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale

45° 90° 135° 180° 225° 270° 315° 360°1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Interne Signale (gleichgerichtet)

45° 90° 135° 180° 225° 270° 315° 360°

Fig. 19: input signals with offset errors.

G = [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000]O = [0.2505 0.2505 -0.2505 -0.2505 0.2505 0.2505 -0.2505 -0.2505]FA()= tbd.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale (Lissajous-Figur)

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale

45° 90° 135° 180° 225° 270° 315° 360°

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Interne Signale (gleichgerichtet)

45° 90° 135° 180° 225° 270° 315° 360°

n serr= +15°, n cerr= -15°

Fig. 20: input signals with phase errors.

Page 14: iC-NG ·  · 2014-02-21cc05 rc05 sin cos cc03 rs03 rz03 cz03 nzero zero 1k r006 r004 1k ner nrd r009 1k 1k r003 78xx x003 7805 d7 1k r007 100nf c001 x002 24c02 ser. eeprom nwr scl

iC-NGAPPLICATION NOTES

May 04 1999, Page 14/14

Fsin()= 1*sin(n) + 0.2*sin(2*n ) + 0.03*sin(3*n ) + 0.015*cos(n ) + 0.01*cos(2*n ) + 0.02*cos(3*n)Fcos()= 1*cos(n) + 0.2*cos(2*n ) + 0.03*cos(3*n ) + 0.015*sin(n) + 0.01*sin(2*n ) + 0.02*sin(3*n)

G = [0.5751 1.7388 1.0135 0.9867 1.7757 0.5632 1.0076 0.9924]O = [0.0270 -0.0453 0.0264 -0.0252 0.0453 -0.0259 0.0463 -0.0465]FA()= tbd.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale (Lissajous-Figur)

Signals with superimposed harmonics

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eingangssignale

45° 90° 135° 180° 225° 270° 315° 360°

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Interne Signale (gleichgerichtet)

45° 90° 135° 180° 225° 270° 315° 360°

Fig. 21: input signals with superimposed harmonics.

An algorithm for predicting adaptation parameters can be provided on request. Methods of calculation can alsobe used to check if the setup ranges of the adaptation parameters are sufficient for a given sensor signal. If noformula is available for the sensor signals, sampled oscilloscope signals can also be taken as a basis forcalculation.