ib physics option_electro magnetic waves

201

Click here to load reader

Upload: jessica-guy

Post on 22-Dec-2015

224 views

Category:

Documents


109 download

DESCRIPTION

Its one of the IB Physics options. All these questions are sorted out from the past papers by topic. You can use them for good practice before the exams.

TRANSCRIPT

Page 1: IB Physics Option_Electro Magnetic Waves

Option H – Optics

H1. A student is given two converging lenses, A and B, and a tube in order to make a telescope.

[2](a) Describe a simple method by which she can determine the focal length of each lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 26 – N00/430/H(3)

880-228

Page 2: IB Physics Option_Electro Magnetic Waves

(Question H1 continued)

(b) She finds the focal lengths to be as follows:

Focal length of lens A 10 cmFocal length of lens B 50 cm

Draw a diagram to show how the lenses should be arranged in the tube in order to make atelescope. Your diagram should include:

[4]

(i) labels for each lens;(ii) the focal points for each lens;(iii) the position of the eye when the telescope is in use.

[1](c) On your diagram, mark the location of the intermediate image formed in the tube.

[1](d) Is the image seen through the telescope upright or upside-down?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1](e) Approximately how long must the telescope tube be?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 27 – N00/430/H(3)

880-228 Turn over

Page 3: IB Physics Option_Electro Magnetic Waves

H2. Optical fibres allow light to be transmitted along their length with almost no loss, even if the fibreis bent.

[2](a) With the aid of the diagram below, explain how light can be transmitted along an optical

fibre even when bent.

End A

End B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](b) Explain, with the aid of a diagram, why this method will not work if the curve is too extreme.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 28 – N00/430/H(3)

880-228

Page 4: IB Physics Option_Electro Magnetic Waves

(Question H2 continued)

[1](c) State one practical use for optical fibres.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 29 – N00/430/H(3)

880-228 Turn over

Page 5: IB Physics Option_Electro Magnetic Waves

H3. In an experiment, monochromatic light of wavelength 400 nm is incident on a single slit of width1600 nm. Fringes are viewed on a screen as shown in the diagram below.

θ

singleslit

screen

single

laser

[2](a) Calculate the first two angles at which the light intensity is at a minimum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](b) Use the axes below to sketch a graph of how the intensity of the light varies as a function of

angle up to .30θ = !

angle, θ−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

Intensity

(This question continues on the following page)

– 30 – N00/430/H(3)

880-228

Page 6: IB Physics Option_Electro Magnetic Waves

(Question H3 continued)

The slit is now replaced by two slits separated by 3200 nm (centre to centre). Each slit is identicalin width to the single slit (1600 nm).

[2](c) Calculate all the angles up to at which interference maxima will occur.30!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](d) Use your answers to sketch a graph, on the axes below, of how the intensity of the light varies

as a function of angle up to .30θ = !

angle, θ−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

Intensity

– 31 – N00/430/H(3)

880-228 Turn over

Page 7: IB Physics Option_Electro Magnetic Waves

H4. A thin lens for use in spectacles is shown below.

12.5 cm

7.5 cm

The lens surfaces are ground to have a radii of curvature 7.5 cm and 12.5 cm as marked.

[1](a) Is this a converging or diverging lens?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](b) Would this type of lens be used by people who suffer from short sightedness or long

sightedness? Explain your answer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](c) Given that the lens is made out of glass with a refractive index of 1.51, calculate its focal

length.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 32 – N00/430/H(3)

880-228

Page 8: IB Physics Option_Electro Magnetic Waves

OPTION H � OPTICS

H1. This question is about the refraction of light.

The diagrams below show two different situations in which a monochromatic ray of light isincident on the boundary between two surfaces. In Diagram 1 the boundary is between air andglass and in Diagram 2 the boundary is between water and glass.

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

air

glass

normal

water

glass

normal

Diagram 1 Diagram 2

The refractive index of glass is greater than that of water.

[3](a) On each diagram sketch the reflected and refracted rays.

[1](b) The refractive index for glass is 1.5 and for water 1.3. Calculate the critical angle for the

glass-water boundary.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 21 � M01/430/H(3)

221-172 Turn over

Page 9: IB Physics Option_Electro Magnetic Waves

(Question H1 continued)

[2](c) A ray is incident at the glass-water boundary as shown on the diagram below. Sketch the

subsequent path(s) of the ray.

water

glass

normal

65o�

� �

� �

� �

� �

� �

� �

� �

� �

[2]

(d) The core of an optical fibre is made of material of refractive index 1.55. Cladding made ofmaterial of refractive index 1.54 surrounds the core.

Show that rays that cross the axis of the core at an angle greater that will not be internally8!

reflected at the core-cladding boundary.

The situation is shown in the diagram below.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . core n = 1.55

cladding n = 1.54

cladding n = 1.54

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8!

� 22 � M01/430/H(3)

221-172

Page 10: IB Physics Option_Electro Magnetic Waves

H2. This question is about diffraction.

In the diagram below (not to scale) a monochromatic beam of light of wavelength 500 nm isincident on a single slit of width 0.1 mm. After passing through the slit the light is brought to afocus (the focusing lens is not shown) on a screen placed at a distance of 1.0 m from the slit.

P

slit screen

1.0 m

0.1 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .

[3](a) On the axes below sketch a diagram showing how the intensity of the light varies at different

points along the screen. (Note that this is a sketch graph; no values are required).

intensity

P distance along screen

[3](b) Calculate the width of the central maxima.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 23 � M01/430/H(3)

221-172 Turn over

Page 11: IB Physics Option_Electro Magnetic Waves

H3. This question is about the compound microscope.

(a) The diagram below shows a convex lens, the position of the principal foci (focal points), F,of the lens, and an object which is to be viewed by the lens.

object

FF axis

[1](i) Redraw the object at an appropriate location on the principal axis such that the lens will

form a magnified, virtual image of the object.

[2](ii) Construct a ray diagram that enables the position of the image to be located.

[1](iii) Mark on the diagram a position where the eye could be placed in order to view the image.

(b) The lens above is to be used as the eyepiece of a compound microscope. The diagram belowshows the objective lens, its two principal foci (focal points), , and the object that is to beoFviewed.

object

objective lens

axis

Mark the following on the axis:

[1](i) the approximate position, X, of the image formed by the objective lens;

[1](ii) the approximate position, C, of the eyepiece lens;

[1](iii) the principal foci (focal points), F, of the eyepiece lens;

[1](iv) the approximate position, Y, of the final image.

� 24 � M01/430/H(3)

221-172

oF oF

Page 12: IB Physics Option_Electro Magnetic Waves

H4. This question is about optical resolution

Abigail looks at a particular star with her naked eye and she sees the star as a point of light. Whenshe looks at the star through a telescope she sees that there are two points of light. The star Abigailis looking at is actually two stars close together.

[3]

(a) Explain, assuming that Abigail�s eyes are functioning normally,

(i) why she is unable to distinguish the two stars with her naked eye.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](ii) how the telescope enables her to distinguish the two stars.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) The system that Abigail is observing is from the Earth and the two stars are164.2 10 m×separated by a distance of . Assuming that the average wavelength of the light112.6 10 m×emitted by the stars is 500 nm, estimate the minimum diameter of the objective lens of atelescope that will just enable the two stars to be distinguished.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 25 � M01/430/H(3)

221-172

Page 13: IB Physics Option_Electro Magnetic Waves

OPTION H � OPTICS

H1. A student uses a single converging lens of focal length 12 cm to produce a magnified virtual image.

[4]

(a) Show the approximate arrangement of object, lens and eye in order to produce this type ofimage. Add rays to the diagram, and label the

(i) object.

(ii) image.

(iii) eye.

� �

� �

� �

� �

� �

Lens

F F

[1]

(b) If the object height is 1.5 cm and linear magnification is +2.0, calculate

(i) the height of the image.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](ii) the distance from the lens to the object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 26 � N01/430/H(3)

881-172

Page 14: IB Physics Option_Electro Magnetic Waves

(Question H1 continued)

[2](c) If the lens was slowly moved away from the object, would the magnification increase or

decrease initially? Explain.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](d) Where would the image be formed if the object were placed at the focal length? Explain.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 27 � N01/430/H(3)

881-172 Turn over

Page 15: IB Physics Option_Electro Magnetic Waves

H2. Caroline is looking into a pond as shown below. A tree is located on the far side of the pond.When she looks in one particular direction, she can see the bottom of the pond as well as thereflection of the top of a tree on the far side of the pond.

[2]

(a) Add rays to the diagram to show how light arrives at her eyes from

(i) the tree top.

(ii) the bottom of the pond.

[3]

She notices that the bottom of the pond becomes clearer when she puts on Polaroid sunglasses.

(b) Explain why.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 28 � N01/430/H(3)

881-172

Page 16: IB Physics Option_Electro Magnetic Waves

H3. Light can behave both as a particle and as a wave. Outline an experiment that demonstrates

[2](a) the particle nature of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](b) the wave nature of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 29 � N01/430/H(3)

881-172 Turn over

Page 17: IB Physics Option_Electro Magnetic Waves

H4. A telescope is used to produce a photographic image of a star in the night sky. Light from a singlestar enters the lens aperture and is focussed by the lens on to the film as shown below.

light from a star 30 cm

focal length of lens = 90 cm

film

[3]

The light from the star is brought to a focus by the circular lens.

(a) Sketch and describe the appearance of the image of the star on the film as a result ofdiffraction at the lens aperture. Assume that the star is effectively a point source of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 30 � N01/430/H(3)

881-172

Page 18: IB Physics Option_Electro Magnetic Waves

(Question H4 continued)

[2](b) If the wavelength of light received from the star is 450 nm, calculate the angle at which the

first minimum of the diffraction pattern is found.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](c) Calculate the diameter in of the central maximum on the photographic film.µm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(d) The telescope is used to view a binary star (i.e. two separate stars that orbit each other). Thetwo stars are just resolved as separate images by the telescope.

(i) State the Rayleigh criterion for the stars to be just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](ii) If the stars are from the Earth, what is the separation of the stars?2010 m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 31 � N01/430/H(3)

881-172

Page 19: IB Physics Option_Electro Magnetic Waves

OPTION H — OPTICS

H1. This question is about an astronomical telescope.

(a) Light from a star is incident on a bi-convex lens, AB. The diagram below shows three rays oflight from the star incident on the lens. The image of the star is formed at the point marked *.

A

Light from star

*

X Y

B

[1](i) Explain why the light rays from the star are essentially parallel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1](ii) Complete the ray diagram by showing the path of the three rays after they have passed

through the lens.

[1](iii) Mark on the axis XY the position of the principal focus F of the lens.

(This question continues on the following page)

– 24 – N02/430/H(3)+

882-172

Page 20: IB Physics Option_Electro Magnetic Waves

(Question H1 continued)

(b) The lens, AB, in part (a) is used as the objective lens of an astronomical telescope. Thediagram below shows the relative positions of the objective and eyepiece lens, CD, and theposition of the * image formed by the objective lens when the telescope is used to view thestar.

A C

Light from star

*

X Y

B DObjective lens Eyepiece lens

[1]

(i) If the final image of the star is formed at infinity, mark on the axis XY the positions ofthe principal focus of the eyepiece lens and the principal focus of the objectiveEF OFlens.

[3](ii) Complete the ray diagram to determine the direction in which the final image is

formed.

[1](iii) Show on the above diagram where the eye should be placed in order to view the final

image.

– 25 – N02/430/H(3)+

882-172 Turn over

Page 21: IB Physics Option_Electro Magnetic Waves

H2. This question is about a diffraction grating.

The diagram below shows some of the slits of a diffraction grating upon which a parallel beam ofmonochromatic light is incident at to the grating. The light diffracted by the slits at an angle is90also shown.

)d

(a) After passing through the slits the light is brought to a focus on a screen.

[1](i) Mark on the diagram the path difference between any two adjacent rays.

[2](ii) Hence show that light diffracted at will form a principal maximum if the condition

dsin = n is satisfied where d is the separation between the slits.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 26 – N02/430/H(3)+

882-172

Page 22: IB Physics Option_Electro Magnetic Waves

(Question H2 continued)

(b) The wavelength of the incident light is 500 nm and the diffraction grating has 800 slits per mm.

[3](i) Determine the angle at which the first principal maximum is formed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Determine the number of principal maxima that will be produced on the screen oneither side of the central maximum when parallel light is incident on the grating asshown in the diagram opposite.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](iii) Using the axes below sketch a diagram to show the intensity distribution of the light on

the screen. (Note that this is a sketch graph; there is no need to add values to the axes).

Intensity

Distance Position of the centre along screen of the central maximum

– 27 – N02/430/H(3)+

882-172 Turn over

Page 23: IB Physics Option_Electro Magnetic Waves

H3. This question is about short-sightedness and its correction.

Diagram 1 shows light from a distant object incident on the pupil of one eye of a short-sightedperson.

Eye lens

Retina

0.02 m 0.02 m

AB

Diagram 1 Diagram 2

[1](a) On diagram 1 show the approximate point P where the rays will be brought to a focus.

[4]

(b) In order to correct short-sightedness in a particular person a contact lens maker has to make adiverging meniscus lens of focal length 1.00 m. The inner surface A of this lens as shown indiagram 2 has the same radius of curvature as the eye. The refractive index of the materialused to make the lens is 1.49 and the radius of curvature of the person’s eye is 0.02 m.Determine the radius of curvature of the other surface B of the lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 28 – N02/430/H(3)+

882-172

Page 24: IB Physics Option_Electro Magnetic Waves

H4. This question is about optical resolution.

Light of wavelength from two monochromatic point sources and is incident on a narrow1S 2Sslit. After passing through the slit the light is incident on a screen. Both the sources and screen area long way from the slit. The situation is shown in the diagram below.

Screen 1S

2S

Slit of width d

The diagram below shows part of the intensity distribution of the image produced on the screen bythe source .1S

intensityLight

Distance along screen

[2]

(a) Using the diagram above sketch the intensity distribution of the image produced on thescreen by the source when the images of each source are just resolved according to the2SRayleigh criterion.

[3]

(b) The two point sources each emit light of wavelength 500 nm and are at distance of 1.0 mfrom the slit. The width of the slit is 1.0 mm. Determine the separation of the sources whentheir respective images are just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 29 – N02/430/H(3)+

882-172

Page 25: IB Physics Option_Electro Magnetic Waves

Option H – Optics

H1. This question is about refraction.

[2](a) With the aid of a suitable diagram define the term refractive index as applied to an optical

material.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The diagram below shows the path followed by a ray of red light that is incident on one face of aglass prism at an angle to the normal.

— — — — — — — — — — — —

Normal

Incident beam

[3](b) (i) The red light is now replaced by blue light. On the diagram sketch the corresponding

path followed by a ray of blue light incident at the same angle .

[1](ii) State and explain whether the refractive index for red light in the glass is greater than,

equal to or less than the refractive index for blue light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 24 – M03/430/H(3)+

223-172

Page 26: IB Physics Option_Electro Magnetic Waves

H2. This question is about a concave (diverging) lens.

The diagram below shows four rays of light from an object O that are incident on a thin concave(diverging) lens. The focal points of the lens are shown labelled F. The lens is represented by thestraight line XY.

F F

X

Y

[2](a) Define the term focal point.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) On the diagram,

[4](i) complete the paths of the four rays in order to locate the position of the image formed

by the lens.

[1](ii) show where the eye must be placed in order to view the image.

[2](c) State and explain whether the image is real or virtual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 25 – M03/430/H(3)+

223-172 Turn over

Page 27: IB Physics Option_Electro Magnetic Waves

(Question H2 continued)

[3](d) The focal length of the lens is 50.0 cm. Determine the linear magnification of an object

placed 75.0 cm from the lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(e) Half of the lens is now covered such that only rays on one side of the principal axis areincident on the lens. Describe the effects, if any, that this will have on the linearmagnification and the appearance of the image.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 26 – M03/430/H(3)+

223-172

Page 28: IB Physics Option_Electro Magnetic Waves

H3. This question is about single slit diffraction.

The diagram below shows an experimental arrangement for observing Fraunhofer diffraction by asingle slit. After passing through the convex lens , monochromatic light from a point source P is1Lincident on a narrow, rectangular single slit. After passing through the slit the light is brought to afocus on the screen by the lens . The point source P is at the focal point of the lens .2L 1L

X

single slit screen

The point X on the screen is directly opposite the central point of the slit.

2L

P

1L

[2](a) Explain qualitatively how Huygen’s principle accounts for the phenomenon of single slit

diffraction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 27 – M03/430/H(3)+

223-172 Turn over

Page 29: IB Physics Option_Electro Magnetic Waves

(Question H3 continued)

[3]

(b) Using the axes below draw a graph to show how the intensity of the pattern varies withdistance along the screen. The point X on the screen is shown as a reference point. (This is asketch graph; you do not need to add any numerical values.)

intensity

X distance along screen

[2]

(c) In this experiment the light has a wavelength of 500 nm and the width of the centralmaximum of intensity on the screen is 10.0 mm. When light of unknown wavelength isused, the width of the central maximum of intensity is 13.0 mm. Determine the value of .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 28 – M03/430/H(3)+

223-172

Page 30: IB Physics Option_Electro Magnetic Waves

(Question H3 continued)

The lens is now removed and another point source Q emitting light of the same wavelength as P1L(500 nm) is placed 5.0 mm from P and the two sources are arranged as shown below.

Single slitThe distance between the sources and the slit is 1.50 m.

P

Q

5.0 mm1.50 m b

[1](d) (i) State the condition for the image of P and the image of Q formed on the screen to be

just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](ii) Determine the minimum width b of the slit for the two images to be just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 29 – M03/430/H(3)+

223-172

Page 31: IB Physics Option_Electro Magnetic Waves

OPTION H — OPTICS

H1. This question is about optical dispersion.

The graph below shows the variation with wavelength of the speed v of light in one type of glass.

8 1/ 10 msv −×

350 400 450 500 550 600 650 700 7501.9350

1.9400

1.9450

1.9500

1.9550

1.9600

1.9650

1.9700

/ nm

[2]

(a) Use data from the graph to determine, to the correct number of significant digits, therefractive index for blue light of wavelength 400 nm in this type of glass (free space speed oflight ).8 12.9979 10 msc −= ×

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](b) The refractive index of red light of wavelength 650 nm in this type of glass is about 1.52.

Use this fact and your answer in (a) to explain optical dispersion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 26 – N03/430/H(3)

883-172

Page 32: IB Physics Option_Electro Magnetic Waves

H2. This question is about real and apparent depth.

Jody looks straight down on to the surface of the water in a swimming pool. A small coin is lyingon the bottom of the swimming pool. The situation is represented in the diagram below.

Water surface

Bottom of the swimming pool Small coin

Direction from whichJody looks

[2](a) On the diagram above, draw appropriate rays to show the position of the image of the coin as

seen by Jody.

[1](b) Explain whether the image that Jody observes is real or virtual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The real depth d and the apparent depth a are related by the expression where n is thed na

=

refractive index of the water.

The refractive index of the water in the swimming pool is 1.3 and the coin is at a depth of 3.0 m.

[3](c) Determine the position of the image, relative to the bottom of the pool, as observed by Jody.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 27 – N03/430/H(3)

883-172 Turn over

Page 33: IB Physics Option_Electro Magnetic Waves

H3. This question is about the simple magnifying glass.

An object O is placed in front of a converging lens in the position shown in the diagram below.The principal foci of the lens are marked F.

converging lens

(a) On the diagram,

O principal axisF F

[1](i) construct rays to locate the position of the image.

[1](ii) draw in the image and label it I.

[1](iii) show on the diagram where the eye must be placed in order to view this image.

(This question continues on the following page)

– 28 – N03/430/H(3)

883-172

Page 34: IB Physics Option_Electro Magnetic Waves

(Question H3 continued)

For a particular lens, the focal length is 10.0 cm and the distance of O from the lens is such that theimage is formed at the near point of the eye. The distance of the lens from the eye is 3.0 cm.

[1](b) (i) Explain what is meant by the term near point.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4](ii) Calculate the distance of the object from the lens if the near point is 25.0 cm from the

eye.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](iii) State, and explain, where the object should be placed if the image is to be formed at the

far point.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 29 – N03/430/H(3)

883-172 Turn over

Page 35: IB Physics Option_Electro Magnetic Waves

H4. This question is about the formation of coloured fringes when white light is reflected from thinfilms.

[1](a) Name the wave phenomenon that is responsible for the formation of regions of different

colour when white light is reflected from a thin film of oil floating on water.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) A film of oil of refractive index 1.45 floats on a layer of water of refractive index 1.33 and isilluminated by white light at normal incidence.

Illumination

Air

Oil

Water

When viewed at near normal incidence a particular region of the film looks red, withan average wavelength of about 650 nm. An equation relating this dominant averagewavelength , to the minimum film thickness of the region t, is = 4nt.

[2](i) State what property n measures and explain why it enters into the equation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1](ii) Calculate the minimum film thickness.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

– 30 – N03/430/H(3)

883-172

Page 36: IB Physics Option_Electro Magnetic Waves

(Question H4 continued)

[2](iii) Describe the change to the conditions for reflection that would result if the oil film was

spread over a flat sheet of glass of refractive index 1.76, rather than floating on water.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H5. This question is about resolution.

[1](a) State the name of the wave phenomenon that limits the resolution of any optical instrument.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](b) Explain with the aid of a diagram, the Rayleigh criterion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 31 – N03/430/H(3)

883-172

Page 37: IB Physics Option_Electro Magnetic Waves

Option H � Optics

H1. This question is about refractive index and critical angle.

The diagram below shows the boundary between glass and air.

glass air

[3](a) On the diagram, draw a ray of light to illustrate what is meant by critical angle. Mark the

critical angle with the letter �c�.

A straight optic fibre has length 1.2 km and diameter 1.0 mm. Light is reflected along the fibre asshown below.

1.2 km

At each reflection, the angle of incidence is equal in value to the critical angle. The refractiveindex of the glass of the fibre is 1.5.

1.0 mm

[4](b) Deduce that the length of the light path along the optic fibre is about 1.8 km.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 26 � M04/431/H(3)+

224-178

Page 38: IB Physics Option_Electro Magnetic Waves

(Question H1 continued)

The speed of light in the fibre is .8 12.0 10 ms−×

(c) Calculate the time for a pulse of light to travel the length of the fibre when its path is

[1](i) along the axis of the fibre.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1](ii) as calculated in (b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 27 � M04/431/H(3)+

224-178 Turn over

Page 39: IB Physics Option_Electro Magnetic Waves

H2. This question is about lenses.

A parallel beam of light is incident on a convex lens of focal length 18 cm. The light is focused atpoint X as shown below.

P X

[1](a) State the value of the distance PX.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A diverging lens of focal length 24 cm is now placed 12 cm from the convex lens as shown below.

P X

12 cm

[1](b) (i) Explain why point X acts as a virtual object for the diverging lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](ii) Calculate the position of the image as produced by the diverging lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 28 � M04/431/H(3)+

224-178

Page 40: IB Physics Option_Electro Magnetic Waves

(Question H2 continued)

[2]

(c) A lens combination, such as a diverging and a convex lens, is referred to as a telephoto lens.Suggest why a telephoto lens is considered to have a longer focal length than that of a singleconvex lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H3. This question is about spherical aberration.

The diagram below shows the image of a square grid as produced by a lens that does not causespherical aberration.

[2](a) In the space below, draw a possible shape of this image, as produced by a lens that causes

spherical aberration.

[2](b) Describe one way in which spherical aberration can be reduced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 29 � M04/431/H(3)+

224-178 Turn over

Page 41: IB Physics Option_Electro Magnetic Waves

H4. This question is about optical resolution.

(a) Light from a point source is brought to a focus by a convex lens. The lens does not causespherical or chromatic aberration.

[1](i) State why the image of the point source will not be a point image.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](ii) Describe the appearance of the image.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Two light receptors at the back of the eye are apart. The distance of the receptors from the4.0 mµconvex lens at the front of the eye is 17.0 mm, as shown below.

17.0 mm

light receptoreye lens

Light of wavelength 550 nm from two point objects enters the eye. The centres of the images ofthe two objects are focused on the light receptors.

4.0 mµα

[2](b) (i) Calculate the angle in radians subtended by the two receptors at the centre of the eyeα

lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 30 � M04/431/H(3)+

224-178

Page 42: IB Physics Option_Electro Magnetic Waves

(Question H4 continued)

[2](ii) Use the Rayleigh criterion to calculate the diameter of the pupil of the eye so that the

two images are just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H5. This question is about oil films.

[3]Explain briefly the formation of coloured images when white light is reflected at a film of oil onwater.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 31 � M04/431/H(3)+

224-178

Page 43: IB Physics Option_Electro Magnetic Waves

Option H � Optics

H1. This question is about a spectrum.

[2](a) Describe what is meant by the spectrum of white light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A student used the apparatus illustrated below in order to show the spectrum of white light.

red light

prism

red

screen

white light

[3](b) Complete the diagram to show the path of blue light through the prism and to the screen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 23 � M04/432/H(3)+

224-181 Turn over

Page 44: IB Physics Option_Electro Magnetic Waves

H2. This question is about refractive index.

Light from a laser is directed at a semi-circular glass block. The light passes undeviated throughthe block and on to a screen, forming a spot at A as shown.

P A

B

Laser

The semi-circular block is rotated about the point P. The spot of light on the screen is seen tomove downwards. When the spot reaches point B, it disappears.

[1](a) Complete the diagram below to show the position of the semi-circular block when the spot is

at point B. The original position of the block is shown as a dotted line.

Laser PA

B

In a particular experiment, the distance PA is 120 cm and distance AB is 138 cm.

[3](b) Calculate the refractive index of the glass of the block.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 24 � M04/432/H(3)+

224-181

Page 45: IB Physics Option_Electro Magnetic Waves

(Question H2 continued)

The laser is changed for one emitting light of higher frequency. The experiment is then repeated.

[3](c) State and explain whether the distance AB will be greater or less than 138 cm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 25 � M04/432/H(3)+

224-181 Turn over

Page 46: IB Physics Option_Electro Magnetic Waves

H3. This question is about a telescope.

The diagram below shows two lenses arranged so as to form an astronomical telescope. The twolenses are represented as straight lines.

objective lens eye lens

Ofocal length f Efocal length f

The focal lengths of the objective lens and of the eye lens are and respectively. Light fromOf Efa distant object is shown focused in the focal plane of the objective lens. The final image is to beformed at infinity.

[2](a) Complete the ray diagram to show the formation of the final image.

[1](b) (i) State what is meant by angular magnification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(ii) Using the completed ray diagram above, derive an expression in terms of and Of Effor the angular magnification of an astronomical telescope. Assume that the finalimage is at infinity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1](c) When specifying an astronomical telescope, the diameter of the objective lens is frequently

quoted. Suggest a reason for quoting the diameter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 26 � M04/432/H(3)+

224-181

Page 47: IB Physics Option_Electro Magnetic Waves

H4. This question is about thin film interference.

Two flat glass plates are in contact along one edge and are separated by a piece of thin metal foilplaced parallel to the edge, as shown below.

metal foilglass plate

line of contactDiagram not drawn to scale

Air is trapped between the two plates. The gap between the two plates is viewed normally usingreflected light of wavelength 75.89 10 m.−×

A series of straight fringes, parallel to the line of contact of the plates is seen.

light of wavelength75.89 10 m−×

[1](a) State what can be deduced from the fact that the fringes are straight and parallel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3](b) Explain why a dark fringe is observed along the line of contact of the glass plates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) The distance between the line of contact of the plates and the edge of the metal foil is 9.0 cm.The dark fringes are each separated by a distance of 1.4 mm. Calculate the thickness of themetal foil.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

� 27 � M04/432/H(3)+

224-181 Turn over

Page 48: IB Physics Option_Electro Magnetic Waves

(Question H4 continued)

The lenses used in astronomical telescopes are frequently �bloomed�. This means that a thin filmis deposited on the lens in order to reduce the intensity of unwanted light reflected by the lens.Destructive interference occurs between the light reflected from the upper and the lower surfacesof the film. The reflections at both surfaces for one incident ray are shown in the diagram.

air

film

glass

[1](d) (i) State why complete destructive interference of all the reflected light does not occur.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2](ii) With reference to your answer in (i), suggest why the film appears to be coloured.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 28 � M04/432/H(3)+

224-181

Page 49: IB Physics Option_Electro Magnetic Waves

2205-6509

– 24 – M05/4/PHYSI/HP3/ENG/TZ1/XX+

Option H — Optics

H1. This question is about light and the electromagnetic spectrum.

(a) Outline the electromagnetic nature of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) The diagram below is a representation of the electromagnetic spectrum.

visible light

increasing frequency

In the diagram the region of visible light has been indicated.

Indicate on the diagram above the approximate position occupied by

(i) infrared waves (label this I). [1]

(ii) microwaves (label this M). [1]

(iii) gamma rays (label this G). [1]

2531

Page 50: IB Physics Option_Electro Magnetic Waves

2205-6509

– 25 –

Turn over

M05/4/PHYSI/HP3/ENG/TZ1/XX+

H2. This question is about converging lenses.

(a) The diagram shows a small object O represented by an arrow placed in front of a converging lens L. The focal points of the lens are labelled F.

F O F

L

(i) Define the focal point of a converging lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) On the diagram above, draw rays to locate the position of the image of the object formed by the lens. [3]

(iii) Explain whether the image is real or virtual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

2631

Page 51: IB Physics Option_Electro Magnetic Waves

2205-6509

– 26 – M05/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H2 continued)

(b) A convex lens of focal length 6.25 cm is used to view an ant of length 0.80 cm that is crawling on a table. The lens is held 5.0 cm above the table.

(i) Calculate the distance of the image from the lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Calculate the length of the image of the ant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2731

Page 52: IB Physics Option_Electro Magnetic Waves

2205-6509

– 27 –

Turn over

M05/4/PHYSI/HP3/ENG/TZ1/XX+

H3. This question is about a compound microscope.

A compound microscope consists of two convex lenses of focal lengths 1.20 cm (lens A) and 11.0 cm (lens B). The lenses are separated by a distance of 23.0 cm as shown below. (The diagram is not drawn to scale.)

O

1.30 cm 23.0 cm

Lens A Lens B f =1.20 cm f =11.0 cm

An object O is placed 1.30 cm from lens A. An image of O in lens A is formed a distance of 15.6 cm from A.

(a) This image forms an object for lens B. Calculate the object distance for lens B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Calculate the distance from lens B of the image as produced by the lens B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) Calculate the magnification of the microscope.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2831

Page 53: IB Physics Option_Electro Magnetic Waves

2205-6509

– 28 – M05/4/PHYSI/HP3/ENG/TZ1/XX+

H4. This question is about diffraction at a single slit.

Plane wavefronts of monochromatic light are incident on a narrow, rectangular slit whose width b is comparable to the wavelength λ of the light. After passing through the slit, the light is brought to a focus on a screen.

Z W φ

b X

slit

Q

Y

P

screen

The line XY, normal to the plane of the slit, is drawn from the centre of the slit to the screen and the points P and Q are the first points of minimum intensity as measured from point Y.

The diagram also shows two rays of light incident on the screen at point P. Ray ZP leaves one edge of the slit and ray XP leaves the centre of the slit.

The angle φ is small.

(a) On the diagram, label the half angular width θ of the central maximum of the diffraction pattern. [1]

(b) State and explain an expression, in terms of λ for the path difference ZW between the rays ZP and XP.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2931

Page 54: IB Physics Option_Electro Magnetic Waves

2205-6509

– 29 –

Turn over

M05/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H4 continued)

(c) Hence deduce that the half angular width θ is given by the expression

θλ=b

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(d) In a particular demonstration of single slit diffraction, λ = 450 nm, b = 0.15 mm and the screen is a long way from the slits.

Calculate the angular width of the central maximum of the diffraction pattern on the screen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

3031

Page 55: IB Physics Option_Electro Magnetic Waves

2205-6509

– 30 – M05/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H4 continued)

Using light of the same wavelength as above (450 nm), an arrangement is set up to demonstrate diffraction by a double slit. Each slit has the same width as that above (0.15 mm) and the slit separation is d. The graph below shows the variation with the angle of diffraction ψ of the intensity I of the diffraction pattern on the screen.

I / arbitary units

– 10 – 5 0 5 ψ = × −3 0 10 3. / ψ = × −3 0 10 3. rad 10

From the graph it can be seen that a maximum is missing at the angle ψ = × −3 0 10 3. rad.

(e) Calculate the slit separation d.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3131

Page 56: IB Physics Option_Electro Magnetic Waves

2205-6515

– 26 – M05/4/PHYSI/HP3/ENG/TZ2/XX+

Option H — Optics

H1. This question is about refraction and critical angle.

The diagram below shows a stick that is partially immersed in water.

stick

water surface

P

observer

(a) On the diagram above,

(i) draw rays to locate the position of the image of the end P of the stick. [2]

(ii) draw the apparent shape of the stick as seen by the observer. [1]

(b) On the diagram below, draw the path of a ray of light that comes from end P of the stick and is incident on the water surface at the critical angle. On your diagram, label with a letter C, the critical angle for this ray of light. [2]

stick

water surface

P

(This question continues on the following page)

2632

Page 57: IB Physics Option_Electro Magnetic Waves

2205-6515

– 27 –

Turn over

M05/4/PHYSI/HP3/ENG/TZ2/XX+

(Question H1 continued)

(c) A fish is swimming at a depth of 2.0 m below the water surface. Determine the radius of the circular field of view that the fish has of the “world” above the water surface. (Refractive index of water = 1.3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

2732

Page 58: IB Physics Option_Electro Magnetic Waves

2205-6515

– 28 – M05/4/PHYSI/HP3/ENG/TZ2/XX+

H2. This question is about an astronomical telescope.

(a) Define the focal point of a convex (converging) lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

The diagram below shows two rays of light from a distant star incident on the objective lens of an astronomical telescope. The paths of the rays are also shown after they pass through the objective lens and are incident on the eyepiece lens of the telescope.

objective lens eyepiece lens

light from a distant star FO

The principal focus of the objective lens is FO .

(b) On the diagram above, mark

(i) the position of principal focus of the eyepiece lens (label this FE). [1]

(ii) the position of the image of the star formed by the objective lens (label this I). [1]

(c) State where the final image is formed when the telescope is in normal adjustment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(d) Complete the diagram above to show the direction in which the final image of the star is formed for the telescope in normal adjustment. [2]

(This question continues on the following page)

2832

Page 59: IB Physics Option_Electro Magnetic Waves

2205-6515

– 29 –

Turn over

M05/4/PHYSI/HP3/ENG/TZ2/XX+

(Question H2 continued)

The eye ring of an astronomical telescope is a device that is placed outside the eyepiece lens of the telescope at the position where the image of the objective lens is formed by the eyepiece lens. The diameter of the eye ring is the same as the diameter of the image of the objective lens. This ensures that all the light passing through the telescope passes through the eye ring.

(e) A particular astronomical telescope has an objective lens of focal length 98.0 cm and an eyepiece lens of focal length 2.00 cm (i.e. f0 98.0cm= , fe cm= 2 00. ). Determine the position of the eye ring.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

2932

Page 60: IB Physics Option_Electro Magnetic Waves

2205-6515

– 30 – M05/4/PHYSI/HP3/ENG/TZ2/XX+

H3. This question is about optical resolution.

The two point sources shown in the diagram below (not to scale) emit light of the same frequency. The light is incident on a rectangular, narrow slit and after passing through the slit, is brought to a focus on the screen.

A

B

light sources

slit

screen

Source B is covered.

(a) Using the axes below, draw a sketch graph to show how the intensity I of the light from A varies with distance along the screen. Label the curve you have drawn A. [2]

I

distance along the screen

Source B is now uncovered. The images of A and B on the screen are just resolved.

(b) Using the same axes as in (a), draw a sketch graph to show how the intensity I of the light from B varies with distance along the screen. Label this curve B. [1]

(This question continues on the following page)

3032

Page 61: IB Physics Option_Electro Magnetic Waves

2205-6515

– 31 –

Turn over

M05/4/PHYSI/HP3/ENG/TZ2/XX+

(Question H3 continued)

The bright star Sirius A is accompanied by a much fainter star, Sirius B. The mean distance of the stars from Earth is 8 1 1016. × m. Under ideal atmospheric conditions, a telescope with an objective lens of diameter 25 cm can just resolve the stars as two separate images.

(c) Assuming that the average wavelength emitted by the stars is 500 nm, estimate the apparent, linear separation of the two stars.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3132

Page 62: IB Physics Option_Electro Magnetic Waves

2205-6515

– 32 – M05/4/PHYSI/HP3/ENG/TZ2/XX+

H4. Monochromatic parallel light is incident on two slits of equal width and close together. After passing through the slits, the light is brought to a focus on a screen. The diagram below shows the intensity distribution of the light on the screen.

I

A B distance along the screen

(a) Light from the same source is incident on many slits of the same width as the widths of the slits above. Draw on the above diagram, a possible new intensity distribution of the light on the screen between the points A and B on the screen. [2]

A parallel beam of light of wavelength 450 nm is incident at right angles on a diffraction grating. The slit spacing of the diffraction grating is 1 25 10 6. × − m.

(b) Determine the angle between the central maximum and first order principal maximum formed by the grating.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3232

Page 63: IB Physics Option_Electro Magnetic Waves

8805-6503

– 26 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

Option H — Optics

H1. This question is about electromagnetic waves.

(a) Outline the electromagnetic nature of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Suggest why it is better to specify the regions of the electromagnetic spectrum in terms of a frequency range rather than a wavelength range.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2631

Page 64: IB Physics Option_Electro Magnetic Waves

8805-6503

– 26 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

Option H — Optics

H1. This question is about electromagnetic waves.

(a) Outline the electromagnetic nature of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Suggest why it is better to specify the regions of the electromagnetic spectrum in terms of a frequency range rather than a wavelength range.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2631

Page 65: IB Physics Option_Electro Magnetic Waves

8805-6503

– 27 –

Turn over

N05/4/PHYSI/HP3/ENG/TZ0/XX+

H2. This question is about refractive index.

An observer looks vertically downward on to a small object. A rectangular glass block is placed on the object, as shown below.

observer

glass block

8.0 cm

object

(a) On the diagram, draw two rays to show the apparent position of the object. [2]

The refractive index of the glass of the block is 1.48 and the thickness of the block is 8.0 cm.

(b) Determine the apparent position of the object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) Suggest why your answer in (b) is correct only when the object is viewed from vertically above it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2731

Page 66: IB Physics Option_Electro Magnetic Waves

8805-6503

– 27 –

Turn over

N05/4/PHYSI/HP3/ENG/TZ0/XX+

H2. This question is about refractive index.

An observer looks vertically downward on to a small object. A rectangular glass block is placed on the object, as shown below.

observer

glass block

8.0 cm

object

(a) On the diagram, draw two rays to show the apparent position of the object. [2]

The refractive index of the glass of the block is 1.48 and the thickness of the block is 8.0 cm.

(b) Determine the apparent position of the object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) Suggest why your answer in (b) is correct only when the object is viewed from vertically above it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2731

Page 67: IB Physics Option_Electro Magnetic Waves

8805-6503

– 28 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

H3. This question is about a combination of lenses.

The diagram below shows rays of light incident on a thin converging (convex) lens of focal length 25 cm. The rays are parallel to the principal axis of the lens.

scale: 1 cm represents 5 cm

(a) Using a scale of 1 cm to represent 5 cm, draw the rays on the diagram above, after passing through the lens. [1]

A thin diverging (concave) lens of focal length 30 cm is placed 10 cm from the converging lens on the opposite side to the light incident on the converging lens (to the right of the converging lens). The principal axes of the two lenses coincide.

(b) (i) On the diagram above, draw the position of the diverging lens as a straight-line. Label this line with the letter D. [1]

(ii) Calculate the position where the rays cross the principal axis after passing through the diverging lens. On the diagram above, mark this position with the letter I.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(iii) On the diagram above, draw the rays of light emerging from the diverging lens to the point where they cross the principal axis at I. [1]

(This question continues on the following page)

2831

Page 68: IB Physics Option_Electro Magnetic Waves

8805-6503

– 28 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

H3. This question is about a combination of lenses.

The diagram below shows rays of light incident on a thin converging (convex) lens of focal length 25 cm. The rays are parallel to the principal axis of the lens.

scale: 1 cm represents 5 cm

(a) Using a scale of 1 cm to represent 5 cm, draw the rays on the diagram above, after passing through the lens. [1]

A thin diverging (concave) lens of focal length 30 cm is placed 10 cm from the converging lens on the opposite side to the light incident on the converging lens (to the right of the converging lens). The principal axes of the two lenses coincide.

(b) (i) On the diagram above, draw the position of the diverging lens as a straight-line. Label this line with the letter D. [1]

(ii) Calculate the position where the rays cross the principal axis after passing through the diverging lens. On the diagram above, mark this position with the letter I.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(iii) On the diagram above, draw the rays of light emerging from the diverging lens to the point where they cross the principal axis at I. [1]

(This question continues on the following page)

2831

Page 69: IB Physics Option_Electro Magnetic Waves

8805-6503

– 29 –

Turn over

N05/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H3 continued)

(c) Extend the rays drawn in (b) (iii) until they meet the incident parallel rays. Estimate the effective focal length of the lens combination.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) Suggest how the effective focal length of the lens combination may be made longer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2931

Page 70: IB Physics Option_Electro Magnetic Waves

8805-6503

– 29 –

Turn over

N05/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H3 continued)

(c) Extend the rays drawn in (b) (iii) until they meet the incident parallel rays. Estimate the effective focal length of the lens combination.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) Suggest how the effective focal length of the lens combination may be made longer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2931

Page 71: IB Physics Option_Electro Magnetic Waves

8805-6503

– 30 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

H4. This question is about resolution.

(a) State the Rayleigh criterion for the images of two point sources to be just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

A man is walking along a straight path at night towards two light sources as shown below.

lightsources

path man

not drawn to scale

When the man is 150 m from the sources, the images of the two sources are just resolved by his eye. The wavelength of the light from each source is 590 nm and the diameter of the aperture of his eye is 5.0 mm.

(b) Estimate the distance between the two sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3031

Page 72: IB Physics Option_Electro Magnetic Waves

8805-6503

– 30 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

H4. This question is about resolution.

(a) State the Rayleigh criterion for the images of two point sources to be just resolved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

A man is walking along a straight path at night towards two light sources as shown below.

lightsources

path man

not drawn to scale

When the man is 150 m from the sources, the images of the two sources are just resolved by his eye. The wavelength of the light from each source is 590 nm and the diameter of the aperture of his eye is 5.0 mm.

(b) Estimate the distance between the two sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3031

Page 73: IB Physics Option_Electro Magnetic Waves

8805-6503

– 31 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

H5. This question is about thin film interference.

Monochromatic light is incident on a thin film of transparent plastic as shown below.

C

monochromatic A B light film

The plastic film is in air.

Light is partially reflected at both surface A and surface B of the film.

(a) State the phase change that occurs when light is reflected from

(i) surface A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) surface B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

The light incident on the plastic has a wavelength of 620 nm. The refractive index of the plastic is 1.4.

(b) Calculate the minimum thickness of the film for the light reflected from surface A and surface B to undergo destructive interference.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3131

Page 74: IB Physics Option_Electro Magnetic Waves

8805-6503

– 31 – N05/4/PHYSI/HP3/ENG/TZ0/XX+

H5. This question is about thin film interference.

Monochromatic light is incident on a thin film of transparent plastic as shown below.

C

monochromatic A B light film

The plastic film is in air.

Light is partially reflected at both surface A and surface B of the film.

(a) State the phase change that occurs when light is reflected from

(i) surface A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) surface B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

The light incident on the plastic has a wavelength of 620 nm. The refractive index of the plastic is 1.4.

(b) Calculate the minimum thickness of the film for the light reflected from surface A and surface B to undergo destructive interference.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3131

Page 75: IB Physics Option_Electro Magnetic Waves

2206-6509

– 20 – M06/4/PHYSI/HP3/ENG/TZ1/XX+

Option h — Optics

h1. This question is about image formation by lenses.

The diagram below shows the positions of two convex lenses L1 and L2 used in an optical instrument. F1 and F2 are the principal foci of L1 and L2 respectively. The object O is viewed through the two lenses.

L1 L2

O

F1 F1 F2

I1

The diagram also shows two rays from the object O to the position of the image I1 produced in the lens L1.

(a) (i) Mark the position of the other principal focus of lens L2. Label this position F2. [1]

(ii) The image I1 acts as an object for the lens L2. Draw two construction rays to locate the position of the image I2 formed by lens L2. Label this image I2. [3]

(This question continues on the following page)

2025

Page 76: IB Physics Option_Electro Magnetic Waves

2206-6509

– 21 –

Turn over

M06/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H1 continued)

(b) State and explain whether the image I2 is real or virtual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(c) State the name of this optical instrument.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(d) State

(i) thechange,ifany,inthepositionsofthelensessothatthefinalimagein(a)(ii)isformedatinfinity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) whytheimage,formedatinfinity,ismagnified.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2125

Page 77: IB Physics Option_Electro Magnetic Waves

2206-6509

– 22 – M06/4/PHYSI/HP3/ENG/TZ1/XX+

h2. Thisquestionisaboutrefractionandtotalinternalreflection.

(a) Light travels from one optical medium to another. State the conditions necessary for total internalreflectiontooccurattheboundarybetweenthetwomedia.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Lightisincidentonasmallscratchinthesurfaceofanopticalfibreofrefractiveindex1.5.The angle between a ray of incident light and the surface of the scratch is 68 as shown below.

opticfibrerefractive index 1.5

(i) Calculate the angle of refraction of the ray at the surface of the scratch.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) On the diagram, draw a sketch of the path of the ray as it emerges from the surface of the scratch. [1]

(This question continues on the following page)

68

2225

Page 78: IB Physics Option_Electro Magnetic Waves

2206-6509

– 23 –

Turn over

M06/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H2 continued)

(c) By reference to (b) (ii), suggest and explain onereasonwhy,inpractice,opticalfibreshave an outer covering.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) State and explain tworeasonswhylasersareusedaslightsourcesforopticalfibres.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

2325

Page 79: IB Physics Option_Electro Magnetic Waves

2206-6509

– 24 – M06/4/PHYSI/HP3/ENG/TZ1/XX+

h3. This question is about two-source interference.

A double slit is illuminated normally with coherent light. The interference pattern is observed on a screen. The apparatus is shown below.

not to scale

coherent light s

screen

The width of both slits in the double slit arrangement is increased without altering the separation s.

Describe and explain the effect, if any, of this change on

(a) the number of fringes observed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) the intensity of the fringes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

2425

Page 80: IB Physics Option_Electro Magnetic Waves

2206-6509

– 25 – M06/4/PHYSI/HP3/ENG/TZ1/XX+

h4. Thisquestionisaboutthinfilminterference.

Athinfilmofcolourlessoilfloatsonwater.Lightisreflectedfromtheupperandthelowersurfacesofthefilmasshownbelow.

observer

ray A ray B

air

oil d

water

The refractive index for light in the oil is greater than the refractive index for light in the air. The refractive index for light in the oil is less than the refractive index for light in the water.

The light has wavelength λ in the oil.

(a) State, in terms of λ, a value for the thickness d that causes rays A and B to interfere destructively when viewed as shown. Assume that the incident light is approximately normaltothefilm.Explainyouranswer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Whitelightisnowincidentontheoilfilm.Explainwhy,foronethicknessd of the oil film,thefilmappearstohaveapurple(magenta)colour.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2525

Page 81: IB Physics Option_Electro Magnetic Waves

8806-6503

– 2� –

Turn over

N06/4/PHYSI/HP3/ENG/TZ0/XX+

Option h — Optics

h1. This question is about dispersion and refractive index.

(a) State and explain what is meant by the dispersion of white light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) A narrow beam of light is incident from glass on a boundary between glass and air as shown below.

glass

air

The beam consists of a mixture of red and blue light.

(i) On the diagram above, draw labelled rays to show the path of the red and blue light in air. [2]

(ii) The refractive index of glass for the red light is 1.52. Calculate the maximum angle of incidence on the glass air boundary for the red light to pass into the air.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(iii) Explain whether the blue light would pass into the air for the angle calculated in (ii).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2732

Page 82: IB Physics Option_Electro Magnetic Waves

8806-6503

– 28 – N06/4/PHYSI/HP3/ENG/TZ0/XX+

h2. This question is about an astronomical telescope.

(a) AngularmagnificationMofalensorsystemoflensesmaybedefinedusingtheexpression

M i

o

= θθ

.

Explain what is represented by the angles θi and θo.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) The diagram below represents the objective lens and the eyepiece lens of an astronomical telescopeinnormaladjustment(finalimageformedatinfinity).ThepointFO is in the focal plane of the objective lens.

Two parallel rays from a distant point source are shown incident on the objective lens.

objective lens eyepiece lens

FO

On the diagram above

(i) draw the positions of the principal foci of the eyepiece lens (label these points FE ). [1]

(ii) constructraystolocatethepositionofthefinalimage. [3]

(iii) draw the position of the eye (label this with the letter E). [1]

(iv) label the angles θi and θo. [1]

(This question continues on the following page)

2832

Page 83: IB Physics Option_Electro Magnetic Waves

8806-6503

– 2� –

Turn over

N06/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H2 continued)

(c) Atelescopeisusedtoviewadistantflat,squareshapedobjectonwhichacrosshasbeendrawn. The outline of the object is shown below.

Describe the appearance of the image of the object, including the cross, due to the lens having

(i) spherical aberration only.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) chromatic aberration only.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2932

Page 84: IB Physics Option_Electro Magnetic Waves

8806-6503

– 30 – N06/4/PHYSI/HP3/ENG/TZ0/XX+

h3. This question is about resolution.

Monochromatic light from two identical point sources is incident on a narrow slit as shown below (not to scale). After passing through the slit, the light is brought to a focus on a screen.

point sources

slit screen

The images of the two sources on the screen are just resolved according to the Rayleigh criterion.

(This question continues on the following page)

3032

Page 85: IB Physics Option_Electro Magnetic Waves

8806-6503

– 31 –

Turn over

N06/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H3 continued)

The diagram below shows the intensity distribution on the screen of the light from one of the point sources.

intensity / arbitrary units

distance along screen / arbitrary units

(a) On the diagram above, draw the intensity distribution on the screen of the light due to the second source. [2]

(b) The planet Pluto is 4.5×1012 m from Earth and the diameter of Pluto is 2.3×106 m. The average wavelength of the light received by the Earth from Pluto is 500 nm.

Deduce, whether the human eye should be able to see Pluto as a disc or only as a point source of light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3132

Page 86: IB Physics Option_Electro Magnetic Waves

8806-6503

– 32 – N06/4/PHYSI/HP3/ENG/TZ0/XX+

h4. Thisquestionisaboutawedgefilm.

In an experiment to measure the thickness d of a piece of adhesive tape, the tape is used to separatetwoflatplatesofglassasshownbelow.Thisformsawedgeshapedairfilm.

microscope

half-silvered mirror monochromatic light λ = 480 nm

glass plate d

adhesive tape

5.0×10–2 m glass plate

Abeamofmonochromaticlightisincidentonthewedgefilm.Thelightthatisreflectedatrightangles to the wedge, is viewed using the microscope. A system of parallel fringes of equal spacingisobservedinthefieldofviewofthemicroscope.

(a) Outline how the fringe system is formed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) The spacing between the fringes is 1.2×10–4 m. The distance from where the two plates of glass touch and the edge of the adhesive tape is 5.0×10–2 m. The wavelength of the light is 480 nm. Estimate the thickness d of the adhesive tape.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3232

Page 87: IB Physics Option_Electro Magnetic Waves

2207-6509

– 26 – M07/4/PHYSI/HP3/ENG/TZ1/XX+

Option h — Optics

h1. This question is about refraction and dispersion.

(a) State what is meant by dispersion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) A thin beam of white light is incident on one surface of a glass prism as shown below.

On the diagram above, draw lines to show the approximate paths of the red and of the blue light as it passes through the prism and back into the air. [3]

(c) State and explain, with reference to your diagram, whether the refractive index of glass for blue light is greater or less than that for red light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(This question continues on the following page)

2631

Page 88: IB Physics Option_Electro Magnetic Waves

2207-6509

– 27 –

Turn over

M07/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H1 continued)

(d) Asecondsimilarprismisplacedclosetothefirstprismin(b)asshownbelow.

Suggest the appearance and the direction of the light that emerges from the second prism.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2731

Page 89: IB Physics Option_Electro Magnetic Waves

2207-6509

– 28 – M07/4/PHYSI/HP3/ENG/TZ1/XX+

h2. This question is about lenses.

ThediagrambelowshowsathinconverginglensandanobjectO.

O

F F

The principal foci of the lens are at F.

(a) Constructraystolocatethepositionoftheimageoftheobject. [3]

(b) Describe fully the nature of the image formed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2831

Page 90: IB Physics Option_Electro Magnetic Waves

2207-6509

– 29 –

Turn over

M07/4/PHYSI/HP3/ENG/TZ1/XX+

(Question H2 continued)

(c) Thediagrambelowshowstherelativepositionsoftheobjectivelensandeyepiecelensusedinacompoundmicroscopeinnormaladjustment.

objectivelens eyepiecelens

O

AnobjectOisplacedinfrontoftheobjectivelens.

On the diagram above, draw the approximate positions of

(i) theprincipalfocioftheobjectivelens(labelthesewiththeletterA),

(ii) theimageformedbytheobjectivelens(labelthiswiththeletterB),

(iii) the principal foci of the eyepiece lens (label these with the letter C),

(iv) thepositionofthefinalimage(labelthiswiththeletterD). [4]

(d) Suggestwhy, for largemagnifications, a compoundmicroscope is used, rather than asingle lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2931

Page 91: IB Physics Option_Electro Magnetic Waves

2207-6509

– 30 – M07/4/PHYSI/HP3/ENG/TZ1/XX+

h3. This question is about a diffraction grating.

Light of wavelength 590 nm is incident normally on a diffraction grating, as shown below.

grating 6.0×105 lines per metre

light wavelength

590 nm

firstorder

zero order

firstorder

The grating has 6.0 ×105 lines per metre.

(a) Determine the total number of orders of diffracted light, including the zero order, that can be observed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(b) The incident light is replaced by a beam of light consisting of two wavelengths, 590 nm and 589 nm.

State two observable differences between a first order spectrum and a second orderspectrum of the diffracted light.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3031

Page 92: IB Physics Option_Electro Magnetic Waves

2207-6509

– 31 – M07/4/PHYSI/HP3/ENG/TZ1/XX+

h4. Thisquestionisaboutthinfilms.

Athinfilmofoilisfloatingonsomewater.Whitelightisreflectedfromtheoilfilm.A series of coloured fringes is seen.

(a) State the name of the wave phenomenon that gives rise to the formation of the coloured fringes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Describe why the oil film appears to change colour when viewed from different angles of incidence.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3131

Page 93: IB Physics Option_Electro Magnetic Waves

2207-6515

– 24 – M07/4/PHYSI/HP3/ENG/TZ2/XX

Option h — Optics

h1. This question is about refractive index.

(a) A small object rests at the bottom of a swimming pool of depth d. Viewed from directly above, the object appears to be 5.0 m below the surface of the water.

eye not to scale

d

small object

(i) On the diagram above, draw rays to locate the image of the object as seen from above. [2]

(ii) The refractive index of water = 1.3.

Determine the depth d of the swimming pool.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2429

Page 94: IB Physics Option_Electro Magnetic Waves

2207-6515

– 25 –

Turn over

M07/4/PHYSI/HP3/ENG/TZ2/XX

(Question H1 continued)

(b) A diver views the surface of the water from point O as shown in the diagram below.

eye O

object not to scale

(i) On the diagram above, draw two rays to locate the image of the object as seen by the diver at O. [3]

(ii) Explain why the surface of the water needs to be undisturbed for the image to be seen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2529

Page 95: IB Physics Option_Electro Magnetic Waves

2207-6515

– 26 – M07/4/PHYSI/HP3/ENG/TZ2/XX

h2. This question is about image formation by a converging lens.

An object P is placed close to a converging lens as shown in the diagram below. The principal foci F of the lens are marked.

F P F

lens

(a) On the diagram above, draw rays to locate the position of the image formed by the lens. Label this image with the letter I. [3]

(b) The near point of an observer’s eye is 25.0 cm from the eye. The lens in the diagram is positioned 4.0 cm from the lens in the observer’s eye so as to form an image of the object P at the near point. The focal length of the lens is 8.0 cm.

(i) Define the term near point.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Determine the distance from the object to the lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(This question continues on the following page)

2629

Page 96: IB Physics Option_Electro Magnetic Waves

2207-6515

– 27 –

Turn over

M07/4/PHYSI/HP3/ENG/TZ2/XX

(Question H2 continued)

(c) (i) Lenses are subject to chromatic aberration and spherical aberration.

Describe and explain chromatic aberration and spherical aberration.

Chromatic aberration: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spherical aberration: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(ii) Suggest how the effects of spherical aberration can be reduced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2729

Page 97: IB Physics Option_Electro Magnetic Waves

2207-6515

– 28 – M07/4/PHYSI/HP3/ENG/TZ2/XX

h3. This question is about diffraction and resolution.

Blue light of wavelength 450 nm from a star passes through a telescope with a circular aperture of 0.25 m and forms an image on a photographic plate 0.75 m from the focussing lens.

(a) (i) In the space provided below, draw a labelled sketch to show the diffraction fringe pattern produced on the photographic plate. [2]

(ii) Calculate the diameter of the central maximum on the photographic plate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2829

Page 98: IB Physics Option_Electro Magnetic Waves

2207-6515

– 29 – M07/4/PHYSI/HP3/ENG/TZ2/XX

(Question H3 continued)

(b) The telescope in (a) is now pointed at two stars.

The maximum separation of the stars is d and they are both 1.5 1017 m from the telescope.

(i) Determine the separation d of the stars such that the images of the stars are just resolved in light of wavelength 450 nm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Over a period of time the separation of the stars varies from 2d to 2d.

Describe and explain the changes to the image produced by the telescope during this time. You should include diagrams to illustrate your answer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

2929

Page 99: IB Physics Option_Electro Magnetic Waves

8807-6503

– 21 –

Turn over

N07/4/PHYSI/HP3/ENG/TZ0/XX+

Option h — Optics

h1. This question is about refraction.

(a) Definerefractive index.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) In a certain medium, the speed of light of a particular frequency is 2.1 108 m s–1. Calculate the refractive index of the medium for this frequency.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) With reference to your answer in (b), describe what is meant by optical dispersion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

2129

Page 100: IB Physics Option_Electro Magnetic Waves

8807-6503

– 22 – N07/4/PHYSI/HP3/ENG/TZ0/XX+

h2. This question is about image formation by a plane mirror.

(a) State the twolawsofreflectionoflight.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) In the diagram below, the line labelled HF represents a person standing in front of a vertical mirror labelled M. The position of the person’s eye is labelled E.

H

E

F

M

On the diagram above draw

(i) the position of the image of the person, formed by the mirror. [2]

(ii) a ray from the foot F, and a ray from the top of the head H, to show the reflection of these rays into the eye E. [2]

(This question continues on the following page)

2229

Page 101: IB Physics Option_Electro Magnetic Waves

8807-6503

– 23 –

Turn over

N07/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H2 continued)

(c) Theheightofthepersonis1.50mandhereyeis1.35mabovethefloor.Thelengthandheightofthemirrorabovethefloorareadjustedsothatshecanjustseethewholeofherimage in the mirror.

By reference to your ray diagram in (b)(ii), deduce

(i) the minimum length of the mirror.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) theheightoftheloweredgeofthemirrorabovethefloor.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(d) The person now stands further away from the mirror. State the effect, if any, that this has to your answers in (c)(i) and (ii).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2329

Page 102: IB Physics Option_Electro Magnetic Waves

8807-6503

– 24 – N07/4/PHYSI/HP3/ENG/TZ0/XX+

h3. This question is about a compound microscope.

The diagram below shows two lenses of a compound microscope. L1 is the objective lens and L2 is the eyepiece lens.

I2

I1

L2L1

O

I1 is the image of the object O formed by the objective lens L1. The final image formed is in the plane shown by the dotted line labelled I2.

(a) On the diagram above, construct a ray or rays to determine the position of the principal focus of the eyepiece. Label this position with the letter F. [2]

(This question continues on the following page)

2429

Page 103: IB Physics Option_Electro Magnetic Waves

8807-6503

– 25 –

Turn over

N07/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H3 continued)

(b) Byusingthegrid,takemeasurementstodeterminethelinearmagnificationof

(i) the objective lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) the eyepiece.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(c) Useyouranswerto(b)todeterminethetotallinearmagnificationofthemicroscope.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2529

Page 104: IB Physics Option_Electro Magnetic Waves

8807-6503

– 26 – N07/4/PHYSI/HP3/ENG/TZ0/XX+

h4. This question is about diffraction.

Plane wavefronts of monochromatic light of wavelength λ are incident on a rectangular slit of width b. After passing through the slit, the light is brought to a focus on a screen distance D from the slit as shown below. The width of the slit is comparable to the wavelength of the incident light and bD. The point P on the screen is opposite the centre of the slit.

b

D

P

slit

screen

(This question continues on the following page)

2629

Page 105: IB Physics Option_Electro Magnetic Waves

8807-6503

– 27 –

Turn over

N07/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H4 continued)

The sketch graph below shows that the variation with angle θ of the intensity of the light on the screen.

intensity

φ θ = 0 φ θ

(a) Explain qualitatively, this intensity distribution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) The angle θ = 0φ is the angular half-width of the central maximum of the intensity

distribution and is given by the expression φ λ=b

. Derive an expression in terms of D,

λ and b for the half-width d of the central maximum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2729

Page 106: IB Physics Option_Electro Magnetic Waves

8807-6503

– 28 – N07/4/PHYSI/HP3/ENG/TZ0/XX+

(Question H4 continued)

(c) The single slit is replaced by two rectangular slits of width b. The distance between the centre of the slits is equal to 2b.

On the axes below, draw a sketch of the of the intensity distribution on the screen. (The intensity distribution of a single slit is shown by the dotted line.) [2]

intensity

θ = 0 θ

2829

Page 107: IB Physics Option_Electro Magnetic Waves

8807-6503

– 29 – N07/4/PHYSI/HP3/ENG/TZ0/XX+

h5. Awedgeshapedfilmofairismadebyseparatingtwothin,flatglassplatesbyaspacer.

eye

monochromatic P light source

A

spacer

flatglassplates

ItisarrangedforlightfromamonochromaticsourcetobeincidentontheplatesbyreflectionfromanotherglassplateP.Thelightreflectedfromthewedgeisviewedfromaboveasshownin the diagram. A system of equally spaced, parallel fringes is observed. (The diagram is not to scale.)

(a) Statewhathappenstothephaseofthelightwavesreflectedfromtheuppersurfaceoftheplate labelled A in the diagram.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) The wavelength of the light is 560 nm. Calculate by how much the width of the wedge changes between one bright fringe and the next bright fringe.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2929

Page 108: IB Physics Option_Electro Magnetic Waves

2208-6509

–28– M08/4/PHYSI/HP3/ENG/TZ1/XX+

Option H — Optics

H1. Thisquestionisaboutrefraction.

(a) Definerefractive index.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Thediagrambelowshowsthepathofarayofredlightincidentona 45°prism.

45°

45°90°

airredlight

normal

glassprism

A B

C

ThelightundergoestotalinternalreflectionatfaceBC.

(i) Statethevalueoftheangleofincidence onfaceBC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) DeterminetheminimumrefractiveindexoftheglassoftheprismfortotalinternalreflectionoftherayatfaceBC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) Theredlightisreplacedbybluelight.Explainwhythepathofbluelightisthesameasthatoftheredlight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2832

Page 109: IB Physics Option_Electro Magnetic Waves

2208-6509

–29–

Turn over

M08/4/PHYSI/HP3/ENG/TZ1/XX+

H2. Thisquestionisaboutimageformationbyaconverginglens.

(a) Definetheprincipal focus (focal point)ofaconverginglens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Anobjectisplaced30cminfrontofaconverginglensoffocallength15cm.Theobjectismoved5.0cmclosertothelens.Determinethedisplacementoftheimage. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2932

Page 110: IB Physics Option_Electro Magnetic Waves

2208-6509

–30– M08/4/PHYSI/HP3/ENG/TZ1/XX+

H3. Thisquestionisaboutanastronomicaltelescope.

Thediagramshowstwoconverginglensesadjustedtoformanastronomicaltelescope.

objectivelens eyepiecelens

I

Theobjectivelenshasafocallengthfoandtheeyepiecelenshasafocallengthfe.TheobjectivelensformsanimageofadistantobjectatI.Thefinalimageisformedatinfinity.

(a) State,intermsoffoandfe,theseparationoftheobjectivelensandtheeyepiecelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) On the diagram, draw rays to show the formation of the image produced by theeyepiecelens. [4]

(c) (i) Defineangular magnification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) State,intermsoffoandfe,,theangularmagnificationofthetelescope.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

3032

Page 111: IB Physics Option_Electro Magnetic Waves

2208-6509

–31–

Turn over

M08/4/PHYSI/HP3/ENG/TZ1/XX+

H4. Thisquestionisaboutdiffraction.

Monochromaticlightisincidentonasingleslitofwidth1.2 10 m−4× .

incidentlight 1.2 10 m−4×

Diagramnottoscale

screen

Thegraphshowsthevariationwithangle oftheintensityofthelightonthescreen.

relativeintensity

/×10–3rad

1

0.8

0.6

0.4

0.2

0.0

–6 –4 –2 0 2 4 6

(a) Usethegraphtoestimatethewavelengthofthelight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Monochromaticlightisincidentontwoparallelslits.Afterpassingthroughtheslits,the

lightisincidentonascreen.Theseparationoftheslitsisapproximatelytwicetheslitwidth.Ontheaxesabovedrawagraphtoshowtheintensitydistributionofthelightonthescreen. [2]

3132

Page 112: IB Physics Option_Electro Magnetic Waves

2208-6509

–32– M08/4/PHYSI/HP3/ENG/TZ1/XX+

H5. Thisquestionisaboutthinfilminterference.

Thediagramshowsmonochromaticlightinair,thatisincidentonathinfilmofsiliconoxideofthicknessd.

incidentray

normal A B

air

siliconoxide

air

d

The light is incident at an angle to the normal to the surface. Light is reflected alongdirectionsAandB.

(a) StatewhylightwavesalongAandBarecoherent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Thewavelengthof the light in thesiliconoxidefilmis452nm. The light is incidentnormallyonthesurfacesothat =0.CalculatetheminimumthicknessofthefilmsuchthatlightalongAandBundergoesdestructiveinterference.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(c) Thelightincidentonthefilmisreplacedbywhitelight.Stateandexplaintheappearanceofthefilminthiscase.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3232

Page 113: IB Physics Option_Electro Magnetic Waves

2208-6515

–26– M08/4/PHYSI/HP3/ENG/TZ2XX+

Option H — Optics

H1. The table below relates to the electromagnetic spectrum. Complete the table by statingthe name of the region of the spectrum and the name of a possible source of the radiationassociatedwith thegivenfrequency. [4]

Name of associated region Frequency / Hz Possible source

gammaradiation 1018 radioactivedecay

1013

106

2631

Page 114: IB Physics Option_Electro Magnetic Waves

2208-6515

–27–

Turn over

M08/4/PHYSI/HP3/ENG/TZ2XX+

H2. Thisquestionisaboutrefraction.

(a) Thediagrambelowshowsarayofmonochromaticlightincidentontheboundarybetweentwomedia.Thedottedlineisthenormaltotheboundary.

normal

medium1

boundary

medium2

Therefractiveindexofmedium1isn1andthatofmedium2isn2andn1>n2.Therayis incidentatanangle to thenormal that is less than thecriticalangle.

(i) Explainwhatismeantbycriticalangle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Onthediagramabove,drawlinestoshowthepathsoftherayafteritisincidenton theboundary. [2]

(b) Derivearelationshipbetweenn1,n2andthecriticalangleφc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2731

Page 115: IB Physics Option_Electro Magnetic Waves

2208-6515

–28– M08/4/PHYSI/HP3/ENG/TZ2XX+

H3. Thisquestionisaboutimageformation.

(a) AconverginglensLhasprincipalfociatF.AnobjectOisplacedinfrontofthelensasshownbelow.

L

O

F Fprincipalaxis

(i) Define principal axisandprincipal foci.

Principalaxis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Principalfoci: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Onthediagramabove,constructraystolocatethepositionoftheimageformedby the lens. [2]

(iii) Explainwhethertheimageisrealorvirtual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2831

Page 116: IB Physics Option_Electro Magnetic Waves

2208-6515

–29–

Turn over

M08/4/PHYSI/HP3/ENG/TZ2XX+

(Question H3 continued)

(b) The image is formed at a distance of 25 cm from the lens. The angular magnification producedis6.0.

(i) DeterminethedistanceofobjectOfromthelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Statetheadvantageofusingthelenswiththeimageformedat thenearpointoftheeye.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2931

Page 117: IB Physics Option_Electro Magnetic Waves

2208-6515

–30– M08/4/PHYSI/HP3/ENG/TZ2XX+

H4. Thisquestionisaboutsingle-slitdiffraction.

(a) Explain,byreferencetosecondarywavelets,thediffractionoflightatasingleslit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Light from a helium-neon laser passes through a narrow slit and is incident ona screen 2.4m distance from the slit. The graph below shows the variation withintensity I of the light on the screen of distance x along the screen.

I

–10 –5 0 5 10 x /mm

(i) Thewavelengthofthelightemittedbythelaseris630nm.Usedatafromthegraphabovetodeterminethewidthoftheslit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Statetwo changestotheintensitydistributionofthecentralmaximumwhenthesingleslitisreplacedbyoneofgreaterwidth.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3031

Page 118: IB Physics Option_Electro Magnetic Waves

2208-6515

–31– M08/4/PHYSI/HP3/ENG/TZ2XX+

H5. This question is about thin film interference.

Outline the reason why, when white light is reflected from the surface of an oil film, a system ofcolouredfringesisobserved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3131

Page 119: IB Physics Option_Electro Magnetic Waves

2208-6509

–28– M08/4/PHYSI/HP3/ENG/TZ1/XX+

Option H — Optics

H1. Thisquestionisaboutrefraction.

(a) Definerefractive index.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Thediagrambelowshowsthepathofarayofredlightincidentona 45°prism.

45°

45°90°

airredlight

normal

glassprism

A B

C

ThelightundergoestotalinternalreflectionatfaceBC.

(i) Statethevalueoftheangleofincidence onfaceBC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) DeterminetheminimumrefractiveindexoftheglassoftheprismfortotalinternalreflectionoftherayatfaceBC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) Theredlightisreplacedbybluelight.Explainwhythepathofbluelightisthesameasthatoftheredlight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2832

Page 120: IB Physics Option_Electro Magnetic Waves

2208-6509

–29–

Turn over

M08/4/PHYSI/HP3/ENG/TZ1/XX+

H2. Thisquestionisaboutimageformationbyaconverginglens.

(a) Definetheprincipal focus (focal point)ofaconverginglens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Anobjectisplaced30cminfrontofaconverginglensoffocallength15cm.Theobjectismoved5.0cmclosertothelens.Determinethedisplacementoftheimage. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2932

Page 121: IB Physics Option_Electro Magnetic Waves

2208-6509

–30– M08/4/PHYSI/HP3/ENG/TZ1/XX+

H3. Thisquestionisaboutanastronomicaltelescope.

Thediagramshowstwoconverginglensesadjustedtoformanastronomicaltelescope.

objectivelens eyepiecelens

I

Theobjectivelenshasafocallengthfoandtheeyepiecelenshasafocallengthfe.TheobjectivelensformsanimageofadistantobjectatI.Thefinalimageisformedatinfinity.

(a) State,intermsoffoandfe,theseparationoftheobjectivelensandtheeyepiecelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) On the diagram, draw rays to show the formation of the image produced by theeyepiecelens. [4]

(c) (i) Defineangular magnification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) State,intermsoffoandfe,,theangularmagnificationofthetelescope.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

3032

Page 122: IB Physics Option_Electro Magnetic Waves

2208-6509

–31–

Turn over

M08/4/PHYSI/HP3/ENG/TZ1/XX+

H4. Thisquestionisaboutdiffraction.

Monochromaticlightisincidentonasingleslitofwidth1.2 10 m−4× .

incidentlight 1.2 10 m−4×

Diagramnottoscale

screen

Thegraphshowsthevariationwithangle oftheintensityofthelightonthescreen.

relativeintensity

/×10–3rad

1

0.8

0.6

0.4

0.2

0.0

–6 –4 –2 0 2 4 6

(a) Usethegraphtoestimatethewavelengthofthelight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Monochromaticlightisincidentontwoparallelslits.Afterpassingthroughtheslits,the

lightisincidentonascreen.Theseparationoftheslitsisapproximatelytwicetheslitwidth.Ontheaxesabovedrawagraphtoshowtheintensitydistributionofthelightonthescreen. [2]

3132

Page 123: IB Physics Option_Electro Magnetic Waves

2208-6509

–32– M08/4/PHYSI/HP3/ENG/TZ1/XX+

H5. Thisquestionisaboutthinfilminterference.

Thediagramshowsmonochromaticlightinair,thatisincidentonathinfilmofsiliconoxideofthicknessd.

incidentray

normal A B

air

siliconoxide

air

d

The light is incident at an angle to the normal to the surface. Light is reflected alongdirectionsAandB.

(a) StatewhylightwavesalongAandBarecoherent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Thewavelengthof the light in thesiliconoxidefilmis452nm. The light is incidentnormallyonthesurfacesothat =0.CalculatetheminimumthicknessofthefilmsuchthatlightalongAandBundergoesdestructiveinterference.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(c) Thelightincidentonthefilmisreplacedbywhitelight.Stateandexplaintheappearanceofthefilminthiscase.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3232

Page 124: IB Physics Option_Electro Magnetic Waves

2208-6515

–26– M08/4/PHYSI/HP3/ENG/TZ2XX+

Option H — Optics

H1. The table below relates to the electromagnetic spectrum. Complete the table by statingthe name of the region of the spectrum and the name of a possible source of the radiationassociatedwith thegivenfrequency. [4]

Name of associated region Frequency / Hz Possible source

gammaradiation 1018 radioactivedecay

1013

106

2631

Page 125: IB Physics Option_Electro Magnetic Waves

2208-6515

–27–

Turn over

M08/4/PHYSI/HP3/ENG/TZ2XX+

H2. Thisquestionisaboutrefraction.

(a) Thediagrambelowshowsarayofmonochromaticlightincidentontheboundarybetweentwomedia.Thedottedlineisthenormaltotheboundary.

normal

medium1

boundary

medium2

Therefractiveindexofmedium1isn1andthatofmedium2isn2andn1>n2.Therayis incidentatanangle to thenormal that is less than thecriticalangle.

(i) Explainwhatismeantbycriticalangle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Onthediagramabove,drawlinestoshowthepathsoftherayafteritisincidenton theboundary. [2]

(b) Derivearelationshipbetweenn1,n2andthecriticalangleφc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2731

Page 126: IB Physics Option_Electro Magnetic Waves

2208-6515

–28– M08/4/PHYSI/HP3/ENG/TZ2XX+

H3. Thisquestionisaboutimageformation.

(a) AconverginglensLhasprincipalfociatF.AnobjectOisplacedinfrontofthelensasshownbelow.

L

O

F Fprincipalaxis

(i) Define principal axisandprincipal foci.

Principalaxis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Principalfoci: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Onthediagramabove,constructraystolocatethepositionoftheimageformedby the lens. [2]

(iii) Explainwhethertheimageisrealorvirtual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2831

Page 127: IB Physics Option_Electro Magnetic Waves

2208-6515

–29–

Turn over

M08/4/PHYSI/HP3/ENG/TZ2XX+

(Question H3 continued)

(b) The image is formed at a distance of 25 cm from the lens. The angular magnification producedis6.0.

(i) DeterminethedistanceofobjectOfromthelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Statetheadvantageofusingthelenswiththeimageformedat thenearpointoftheeye.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2931

Page 128: IB Physics Option_Electro Magnetic Waves

2208-6515

–30– M08/4/PHYSI/HP3/ENG/TZ2XX+

H4. Thisquestionisaboutsingle-slitdiffraction.

(a) Explain,byreferencetosecondarywavelets,thediffractionoflightatasingleslit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Light from a helium-neon laser passes through a narrow slit and is incident ona screen 2.4m distance from the slit. The graph below shows the variation withintensity I of the light on the screen of distance x along the screen.

I

–10 –5 0 5 10 x /mm

(i) Thewavelengthofthelightemittedbythelaseris630nm.Usedatafromthegraphabovetodeterminethewidthoftheslit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Statetwo changestotheintensitydistributionofthecentralmaximumwhenthesingleslitisreplacedbyoneofgreaterwidth.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

3031

Page 129: IB Physics Option_Electro Magnetic Waves

2208-6515

–31– M08/4/PHYSI/HP3/ENG/TZ2XX+

H5. This question is about thin film interference.

Outline the reason why, when white light is reflected from the surface of an oil film, a system ofcolouredfringesisobserved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

3131

Page 130: IB Physics Option_Electro Magnetic Waves

2209-6509

–16– M09/4/PHYSI/HP3/ENG/TZ1/XX+

Option G — Electromagnetic waves

G1. Thisquestionisaboutthecolourofthesky.

Outlinewhytheskyappearsblueduringthedayandredduringasunset.

Bluesky: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Redsky: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

[2]

G2. Thisquestionisaboutimageformationinaconvexlens.

(a) Definenear point.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) A small object is placed in front of a converging lens that will act as a magnifier.ThefocalpointsofthelensarelabeledwiththeletterF.

converging lens

objectF F

Onthediagramconstructraystolocatetheimageoftheobject. [2]

(This question continues on the following page)

1 6 4 0

Page 131: IB Physics Option_Electro Magnetic Waves

2209-6509

–17–

Turn over

M09/4/PHYSI/HP3/ENG/TZ1/XX+

(Question G2 continued)

(c) Aparticularlenshasafocallengthof9.0cmandtheimageisformedatthenearpointwhichis25cmfromthelens.

Assumingthattheeyeisveryclosetothelensdeterminethe

(i) distanceoftheobjectfromthelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) angularmagnificationofthelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(d) Theangularmagnificationofthelensincreaseswithdecreasingfocallength.

Stateonedisadvantageofusingveryshortfocallengthlenses.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1 7 4 0

Page 132: IB Physics Option_Electro Magnetic Waves

2209-6509

–18– M09/4/PHYSI/HP3/ENG/TZ1/XX+

G3. Thisquestionisaboutinterference.

Monochromatic,coherentlightisincidentontwonarrowparallelslitswhosewidthsaresmallcomparedtotheirseparation.Afterpassingthroughtheslitsthelightisbroughttoafocusonascreenproducinginterferencefringes.PointXisthemidpointoftheslits.

screen

light

X

slit

slit

Theangularpositionofapointonthescreenisdeterminedbytheangleθ .

(a) (i) Explainwhytheintensityoflightatθ = 0 willbeamaximum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) The wavelength of light is 6 80 10 7. × − m and the separation of the slits is1 13 10 4. × − m .Showthatforthefirstordermaximumθ =6 02 10 3. × − rad .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

1 8 4 0

Page 133: IB Physics Option_Electro Magnetic Waves

2209-6509

–19–

Turn over

M09/4/PHYSI/HP3/ENG/TZ1/XX+

(Question G3 continued)

(iii) Ontheaxesbelowdrawagraphtoshowhowtheintensityoflightobservedonthescreenvarieswithangleθ .(Youdonothavetoputnumbersontheverticalaxis.) [3]

Intensity

0 θ /×10–3rad–20 –15 –10 –5 0 5 10 15 20

(b) Thetwoslitsarereplacedbyalargenumberofslitswhosewidthsandseparationarethesameasin(a).

Statethechanges,ifany,intheintensitypatternyoudrewin(a)(iii)withreferenceto

(i) thevalueoftheintensityatθ = 0 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) theangularpositionofthepointsofmaximumintensity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(iii) theangularwidthofthefringes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1 9 4 0

Page 134: IB Physics Option_Electro Magnetic Waves

2209-6509

–20– M09/4/PHYSI/HP3/ENG/TZ1/XX+

G4. ThisquestionisaboutX-rayspectraandX-raydiffraction.

(a) Electronsareacceleratedfromrestbyapotentialdifference.TheystrikeametaltargetandtheresultingX-rayspectrumisshownbelow.

Intensity

0

0 2.0 4.0 6.0 8.0 10.0

λ/ 10 m-10×

(i) Stateandexplainwhatmaybededucedabouttheenergylevelsoftheatomsofthemetalfromthefactthatthisspectrumdoesnotcontainanycharacteristiclines.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Outline the mechanism by which the photons of wavelength 2 0 10 10. × − mareproduced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(iii) Calculate the potential difference through which the electrons have beenaccelerated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2 0 4 0

Page 135: IB Physics Option_Electro Magnetic Waves

2209-6509

–21–

Turn over

M09/4/PHYSI/HP3/ENG/TZ1/XX+

(Question G4 continued)

(b) X-raysareincidentonacrystalsurfacemakinganangleθ1 withthesurface.ThescatteredX-raysmakeanangle θ2 with thesurface. In thediagrambelowthecircles, thatareseparatedbyadistanced,representlatticeionsofthecrystal.

d

12

incidentX-rays

scattered X-rays

d

Thepathdifferencebetweenthetwoscatteredraysis d (cos cos )θ θ1 2− .

(i) State and explain the condition for constructive interference between the twoscatteredraysshown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) ThewavelengthoftheX-raysis 4 20 10 10. × − m.AmaximumintheintensityofthescatteredX-raysisfirstobservedatanangleθ = 34 5. °°.Determinetheseparationoftheatomicplanesthatgiverisetothismaximum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2 1 4 0

Page 136: IB Physics Option_Electro Magnetic Waves

8809-6503

–15–

Turn over

N09/4/PHYSI/HP3/ENG/TZ0/XX+

Option G — Electromagnetic waves

G1. Thisquestionisabouttheelectromagneticspectrum.

(a) Thetransmissionfromatelevisionstationhasafrequencyof100MHz.Itisknownthattheelectromagneticwavesassociatedwith this transmissionproduceamagneticfield.Stateonereasonwhyacompassdoesnotrespondtothisfield.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Itisproposedthatinsteadofusingradiowavesfortelevisiontransmissiongamma-raysareused.

(i) Stateatypicalgamma-rayfrequency.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Suggestonedisadvantageofusinggamma-raysfortelevisiontransmission.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1 5 3 6

Page 137: IB Physics Option_Electro Magnetic Waves

8809-6503

–16– N09/4/PHYSI/HP3/ENG/TZ0/XX+

G2. Thisquestionisaboutchromaticaberrationandalens.

(a) Twoparallelraysofwhitelightareincidentonaconvexlens.

whitelight

principalaxis

whitelight

convexlens

Onthediagram,afterrefractioninthelens,drawthepathsfortheraysofredlightandbluelightpresentinthewhitelight. [2]

(b) Useyourdiagramin(a)toexplainchromaticaberration.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) Stateonewayinwhichchromaticaberrationmaybereduced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

1 6 3 6

Page 138: IB Physics Option_Electro Magnetic Waves

8809-6503

–17–

Turn over

N09/4/PHYSI/HP3/ENG/TZ0/XX+

(Question G2 continued)

(d) Anobject isplaced5.0cmfrom the lensand is illuminatedwith red light. The focallengthofthelensforredlightis8.0cm.Calculatethe

(i) positionoftheimage.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) linearmagnification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1 7 3 6

Page 139: IB Physics Option_Electro Magnetic Waves

8809-6503

–18– N09/4/PHYSI/HP3/ENG/TZ0/XX+

G3. Thisquestionisabouttwo-sourceinterference.

(a) Light from a laser is incident on two identical parallel slits whose width is smallcompared to theirseparation.

doubleslit screen

0.50mm

2.0m

(diagram not to scale)

Afterpassingthroughtheslits the light is incidentonascreen. Theseparationof theslitsis0.50mmandthedistancebetweenslitsandscreenis2.0m.Thewavelengthofthe light is700nm.

(i) Statewhyalaserisusedasthelightsource.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Determinetheseparationofpointsofmaximumintensityonthescreen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(iii) Describetheeffectthatincreasingthenumberofslitswouldhaveontheintensitypatternonthescreen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

1 8 3 6

Page 140: IB Physics Option_Electro Magnetic Waves

8809-6503

–19–

Turn over

N09/4/PHYSI/HP3/ENG/TZ0/XX+

(Question G3 continued)

(b) Theslitsin(a)arereplacedwithadiffractiongratingthathas3.5×105linespermetre.Determine the number of positions of maximum intensity that will be observed onthe screen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

1 9 3 6

Page 141: IB Physics Option_Electro Magnetic Waves

8809-6503

–20– N09/4/PHYSI/HP3/ENG/TZ0/XX+

G4. Thisquestionisaboutthinfilminterference.

A transparent thinfilm is sometimesused tocoat spectacle lensesas shown in thediagrambelow.

air,refractive coating,refractiveindex=1.00 index=1.30

glasslens,refractive index=1.53

incominglight

boundaryA boundaryB

(a) Statethephasechangewhichoccurstolightthat

(i) istransmittedatboundaryAintothefilm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) isreflectedatboundaryB.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(iii) istransmittedatboundaryAfromthefilmintotheair.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Light ofwavelength 570nm in air is incident on the coating. Determine the smallestthicknessofthecoatingrequiredsothatthereflectionisminimizedfornormalincidence.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2 0 3 6

Page 142: IB Physics Option_Electro Magnetic Waves

8809-6503

–21–

Turn over

N09/4/PHYSI/HP3/ENG/TZ0/XX+

G5. ThisquestionisaboutX-rays.

(a) Thediagrambelowisasketch thatshows theX-rayspectraproducedbyelectronsofenergy25keVandofenergy20keVstrikingamolybdenumtarget.

X-rayintensity

25keV

20keV

wavelength

Suggestwhynocharacteristicspectraareproducedbythe20keVelectrons.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Show that theminimumX-raywavelengthproducedby the25keVelectrons in (a) is0.050nm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) ThewavelengthsoftheX-raysin(a)aremeasuredbyscatteringthemfromthesurfaceofacrystalthathasacubiclatticestructure.Thespacingofthelatticeionsis0.28nm.CalculatethewavelengthoftheX-raysthatproduceafirstorderBraggangleof21.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2 1 3 6

Page 143: IB Physics Option_Electro Magnetic Waves

2210-6509

–11–

Turn over

M10/4/PHYSI/HP3/ENG/TZ1/XX+

Option G — Electromagnetic waves

G1. Thisquestionisaboutacompoundmicroscope,sphericalaberrationandchromaticaberration.

(a) An object O is placed in front of the objective lens of a compound microscope asshownbelow.

eye lensobjective lens

F FO

ThefocalpointsoftheobjectivelensareatF.Themicroscopeisinnormaladjustment. Withoutdrawingaraydiagram,labeltheapproximatepositions,ontheprincipalaxis,of

(i) theimageproducedbytheobjectivelens(labelthispositionX). [1]

(ii) thefocalpointsoftheeyelens(labelthesepointsE). [1]

(iii) thefinalimage(labelthisimageY). [1]

(b) Anobjectisviewedthroughaconvexlensthathasbeencorrectedforsphericalaberration.Foraparticularobjectdistance,theimageoftheobjectisasshownbelow.

(This question continues on the following page)

1 1 2 8

Page 144: IB Physics Option_Electro Magnetic Waves

2210-6509

–12– M10/4/PHYSI/HP3/ENG/TZ1/XX+

(Question G1 continued)

Anotherconvexlensofthesamefocallength,butnotcorrectedforsphericalaberration,isnowusedtoviewtheobject.Theobjectdistanceisunchanged.

Inthespacebelow,drawtheimageasitwouldbeseenthroughthissecondlens. Theimageasseenthroughthecorrectedlensisshownasabrokenline. [2]

(c) Explainhowchromaticaberrationariseswhenanobjectisviewedthroughasinglelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

G2. Thisquestionisaboutthescatteringoflight.

(a) Stateanapproximatewavelengthfor

(i) redlight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) bluelight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) With reference to your answers in (a), explain why the setting Sun appears reddishincolour.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

1 2 2 8

Page 145: IB Physics Option_Electro Magnetic Waves

2210-6509

–13–

Turn over

M10/4/PHYSI/HP3/ENG/TZ1/XX+

G3. Thisquestionisabouttwo-sourceinterference.

Adoubleslitisarrangedsothatitsplaneisnormaltoabeamoflaserlight,asshownbelow.

2.4 m

0.85 mm

double slit screen

laser lightwavelength

640 nm

Thewavelength of the light is 640nm. The slit separation in the double slit arrangementis0.85mm.Coherentlightemergesfromtheslitsandaninterferencepatternisobservedonascreen.Thescreenisparalleltotheplaneofthedoubleslits.Thedistancebetweentheslitsandthescreenis2.4m.

(a) (i) Statewhatismeantbycoherentlight.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Explainhowaninterferencepatternisformedonthescreen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Calculatetheseparationofthefringesintheinterferencepatternonthescreen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

1 3 2 8

Page 146: IB Physics Option_Electro Magnetic Waves

2210-6509

–14– M10/4/PHYSI/HP3/ENG/TZ1/XX+

(Question G3 continued)

(c) The interference pattern in (b) consists of a series of alternate light and dark fringes. Theintensityofthelightfromoneslitisnowreduced.Suggesttheeffectontheappearance

ofthefringes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

G4. ThisquestionisaboutX-rays.

(a) InanX-raytubehavingatungstentarget,electronsareacceleratedfromrestthroughapotentialdifferenceof45kV.

CalculatetherangeofwavelengthsthatwillbeobservedintheX-rayspectrumproducedbythisbombardment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) ExplaintheoriginsofthefeaturesofacharacteristicX-rayspectrum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

1 4 2 8

Page 147: IB Physics Option_Electro Magnetic Waves

2210-6509

–15–

Turn over

M10/4/PHYSI/HP3/ENG/TZ1/XX+

G5. Thisquestionisaboutthinfilminterference.

(a) Thediagrambelowshowsarayofmonochromaticlightincidentonathinfilminair.

thin film

E

Onthediagram,drawthepathsofraysthatwouldgiverisetointerferenceasseenbyaneyeintheregionnearE. [2]

(b) Whitelightisincidentonasoapbubble.Explainwhythesoapfilmappearscoloured.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1 5 2 8

Page 148: IB Physics Option_Electro Magnetic Waves

2210-6515

–14– M10/4/PHYSI/HP3/ENG/TZ2/XX

Option G — Electromagnetic waves

G1. Thisquestionisaboutlaserlight.

(a) Outlinehowlaserlightisproduced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) State two ways in which light emitted by a laser differs from light emitted from anordinaryfilament lamp.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1 4 3 9

Page 149: IB Physics Option_Electro Magnetic Waves

2210-6515

–15–

Turn over

M10/4/PHYSI/HP3/ENG/TZ2/XX

G2. Thisquestionisaboutacompoundmicroscope.

Thediagram(nottoscale)isofacompoundmicroscope.

objectivelens eyepiecelens

60mm

F F F′ F′ 20mm

24mm

Thefocallengthoftheobjectivelensis20mmandthatoftheeyepiecelensis60mm.Asmallobjectisplacedatadistanceof24mmfromtheobjectivelens.Themicroscopeproducesafinalvirtual imageof theobjectatadistanceof240mmfromtheeyepiece lens.

(a) (i) Determine, by calculation, the distance from the objective lens of the imageformedby theobjective lens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Explainwhytheimagein(a)(i)isreal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(iii) Determine the distance of the image formed by the objective lens from theeyepiecelens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Determinetheoverallmagnificationofthemicroscope.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1 5 3 9

Page 150: IB Physics Option_Electro Magnetic Waves

2210-6515

–16– M10/4/PHYSI/HP3/ENG/TZ2/XX

G3. Thisquestionisaboutinterference.

(a) LightfromalaserisincidentontwoverynarrowslitsAandB.

A θ

BC

(diagramnottoscale) screen

PointConthescreenisdirectlyoppositethemidpointoftheslits.

(i) Ontheaxesbelow,sketchthevariationwithangleθoftheintensityofthelightonthescreen. [2]

intensity

C θ

(ii) The separation of the slits is 0.120mm and the wavelength of the light is6.80×10–7m.Thedistancebetweentheslitsandthescreenis1.40m.Calculatetheseparationofthebrightfringesonthescreen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

1 6 3 9

Page 151: IB Physics Option_Electro Magnetic Waves

2210-6515

–17–

Turn over

M10/4/PHYSI/HP3/ENG/TZ2/XX

(Question G3 continued)

(b) SlitAiscoveredwithatransparentpieceofglass.Theeffectoftheglassistoincreasethepathlengthofthelightfromtheslittothescreenbyhalfawavelength.Itmaybeassumedthattheamountoflightabsorbedbytheglassisnegligible.Stateandexplaintheeffect(s),ifany,oftheglassonthe

(i) intensitypatternyouhavedrawnin(a)(i).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) separationofthebrightfringescalculatedin(a)(ii).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1 7 3 9

Page 152: IB Physics Option_Electro Magnetic Waves

2210-6515

–18– M10/4/PHYSI/HP3/ENG/TZ2/XX

G4. ThisquestionisaboutX-rays.

InanX-raytubeelectronsareacceleratedfromrestthroughapotentialdifferenceandstrikeametal target.

(a) OntheaxesbelowdrawandannotateatypicalX-rayspectrum. [2]

intensity

0 wavelength

(b) Identify the mechanism by which the different regions of the X-ray spectrum areproduced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(c) In a particular X-ray tube the electrons are accelerated from rest through a potentialdifferenceof24kV.TheminimumwavelengthoftheX-raysproducedis4.8×10–11m.DetermineavalueforthePlanckconstant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(d) X-raysofwavelength2.25×10–10maredirectedtowardsthesurfaceofacrystal.AstrongfirstorderreflectedX-raybeamisobservedwhentheX-raysmakeanangleof28 1. withthecrystalsurface.Determinetheseparationoftheatomicplanesinthecrystal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1 8 3 9

Page 153: IB Physics Option_Electro Magnetic Waves

8810-6503

–14– N10/4/PHYSI/HP3/ENG/TZ0/XX

Option G — Electromagnetic waves

G1. Thisquestionisaboutlasers.

(a) Withreferencetothelightwavesemittedbyalaser,statewhatismeantbytheterms

(i) monochromatic.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) coherent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

1434

Page 154: IB Physics Option_Electro Magnetic Waves

8810-6503

–15–

Turn over

N10/4/PHYSI/HP3/ENG/TZ0/XX

(Question G1 continued)

(b) Thediagram(nottoscale)showsthreeoftheenergylevelsofasubstanceusedtoproducelaserlight.

E0+2.3eV

energy

E0

excitedstate

E0+1.8eV metastablestate

groundstate

TheenergyofthegroundstateisE0.

(i) Statewhatismeantbypopulationinversion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Draw an arrow on the diagram to indicate the transition that results in apopulation inversion. Label thearrowP. [1]

(iii) Draw an arrow on the diagram to indicate the transition that results in a pulseof laser light. Label the arrow L. [1]

(iv) Deducethatthewavelengthoftheemittedlaserlightis690nm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1534

Page 155: IB Physics Option_Electro Magnetic Waves

8810-6503

–16– N10/4/PHYSI/HP3/ENG/TZ0/XX

G2. Thisquestionisaboutanastronomicaltelescope.

Thediagram(nottoscale)showsthearrangementofthetwoconvexlensesinanastronomicaltelescopeinnormaladjustment.

objectivelens eyepiecelens

lightfromdistantstar

FE

Thetelescopeisusedtoobserveadistantstar.OneofthefocalpointsoftheeyepiecelensislabelledFE.

(a) Onthediagramabove,

(i) label,withthesymbolFE,thepositionoftheotherfocalpointoftheeyepiecelens. [1]

(ii) label,withthesymbolFO,thepositionofthefocalpointoftheobjectivelensthatisinbetweenthetwolenses. [1]

(iii) constructraystolocatethefinalimageofthestar. [3]

(b) Inaparticularastronomicaltelescope,theeyepiecelenshasapowerof40dioptresandtheobjectivelensapowerof0.80dioptres.Determinetheangularmagnificationofthetelescopeinnormaladjustment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) In an astronomical telescope the objective is often made up from a diverging and aconverginglens,whereastheapertureoftheeyepiecelensisusuallyrestrictedsuchthatonlyraysclosetotheprincipalaxisareviewed.Statethereasonsforthis.

Objectivelens: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eyepiecelens: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1634

Page 156: IB Physics Option_Electro Magnetic Waves

8810-6503

–17–

Turn over

N10/4/PHYSI/HP3/ENG/TZ0/XX

G3. Thisquestionisaboutadiffractiongrating.

(a) Aparallelbeamofmonochromatic light is incidentnormallyonadiffractiongrating.After passing through the grating it is brought to a focus on a screen by a lens.The diagram shows a few of the slitsofthediffractiongrating and the path of thelight that is diffracted at an angle θ to each slit.

incidentbeam

θd

P

slits

lens screen

Thedistancebetweentheslitsisdandthewavelengthofthelightisλ.

(i) Onthediagram,constructalinethatenablesthepathdifferencebetweentheraysfromtwoadjacentslitstobeshown.LabelthepathdistanceL. [1]

(ii) Useyouranswer to (a)(i) toderive thecondition, in termsofd andθ, for theretobeamaximumof intensityat thepointPon thescreen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Foraparticulargrating,thedistancebetweenadjacentslitsis2.0́ 10–6m.Determine,forlightofwavelength520nm,themaximumtheoreticalorderofdiffraction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1734

Page 157: IB Physics Option_Electro Magnetic Waves

8810-6503

–18– N10/4/PHYSI/HP3/ENG/TZ0/XX

G4. ThisquestionisaboutX-raydiffraction.

(a) Thediagramrepresentssomeoftheatomsintwolayersofacubiccrystallattice.

Use the diagram to outline how diffraction arises from the scattering of X-rays byacrystal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) X-raysofwavelength87pmare scatteredbyacrystalwhoseatomsarearranged inacubiclattice.ThesmallestscatteringangleforwhichamaximumofthescatteredX-rayisobservedis18.Calculatethespacingbetweenadjacentatomsinthecrystal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

1834

Page 158: IB Physics Option_Electro Magnetic Waves

8810-6503

–19–

Turn over

N10/4/PHYSI/HP3/ENG/TZ0/XX

G5. Thisquestionisaboutthin-filminterference.

Thediagram(nottoscale)representsanexperimentalset-updesignedtomeasurethediameterofahumanhair.

monochromaticlight

microscopeslides

travellingmicroscope

glassplate

humanhair

Ahairisusedtoseparatetwomicroscopeslides.Amonochromaticbeamoflightisreflectedonto the two slides by the glass plate. The light is then reflected from the two slides andtransmittedthroughtheglassplateandisviewedbythetravellingmicroscope.

(a) State why the light reflected from the two microscope slides produces a system ofinterferencefringes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) The condition that a bright fringe is observed in the field of view of the travellingmicroscopeisgivenbytherelationship

2 12t m= +( )»λ

where t is the thickness of the air film formed by the wedge at the point where thebrightfringeisobserved,misanintegerandλisthewavelengthoftheincidentlight.

State thereasonfor thefactor 12 in therelationship.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(c) Inthediagram,thelengthoftheslidesis5.00cm.Thewavelengthofthemonochromaticlight is 5.92́ 10–7m. Using the travelling microscope it is observed that 50 fringesoccupya lengthof0.940cm. Showthatthediameterof thehairused to separate theslides isabout80µm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

1934

Page 159: IB Physics Option_Electro Magnetic Waves

–16– M11/4/PHYSI/HP3/ENG/TZ1/XX

Option G — Electromagnetic waves

G1. Thisquestionisaboutdispersion.

(a) Stateanapproximatevalueforthewavelengthofvisiblelight. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Describewhatismeantbydispersion. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

1648

Page 160: IB Physics Option_Electro Magnetic Waves

–17–

Turn over

M11/4/PHYSI/HP3/ENG/TZ1/XX

(Question G1 continued)

(c) Anarrowbeam,consistingofamixtureofredandbluelight,isincidentuponarectangularglassblock.Thenormaltotheincidentsurfaceisshown.

air

glass

normal incident red and blue beams

Onthediagramabove,drawlabelledlinestoshowthepathsoftheredandbluebeams,astheypassthroughtheglassblockandouttotheairontheotherside. [2]

1748

Page 161: IB Physics Option_Electro Magnetic Waves

–18– M11/4/PHYSI/HP3/ENG/TZ1/XX

G2. Thisquestionisaboutaconvexlens.

Thediagrambelow,drawn to scale, showsa smallobjectOplaced in frontof a thinconvex(converging)lens.Thefocalpointsofthelensareshown,labelledF.ThelensisrepresentedbythestraightlineXY.

F F

Y

O

X

(a) (i) Definethetermfocal point. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Onthediagramabove,constructthepathsoftworaysinordertolocatethepositionoftheimageformedbythelens.LabeltheimageI. [3]

(iii) Explainwhethertheimageisrealorvirtual. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

1848

Page 162: IB Physics Option_Electro Magnetic Waves

–19–

Turn over

M11/4/PHYSI/HP3/ENG/TZ1/XX

(Question G2 continued)

(b) Aconverginglens,offocallength5.0cm,isusedasasimplemagnifyingglasstoviewanobjectoflength0.80cm.Theobserver’seyeisveryclosetothelens.Theimageisformedatthenearpoint(25cm).

(i) Determinethedistanceoftheobjectfromthelens. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Determinethelengthoftheimage. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1948

Page 163: IB Physics Option_Electro Magnetic Waves

–20– M11/4/PHYSI/HP3/ENG/TZ1/XX

G3. Thisquestionisaboutusingadiffractiongratingtoviewtheemissionspectrumofsodium.

Light from a sodiumdischarge tube is incident normally upon a diffraction grating having8 00 105. × linespermetre.Thespectrumcontainsadoubleyellowlineofwavelengths589nmand590nm.

(a) Determine the angular separation of the two lines when viewed in the second orderspectrum. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Statewhyitismoredifficulttoobservethedoubleyellowlinewhenviewedinthefirstorderspectrum. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2048

Page 164: IB Physics Option_Electro Magnetic Waves

–21–

Turn over

M11/4/PHYSI/HP3/ENG/TZ1/XX

G4. ThisquestionisaboutX-rays.

Electronsareacceleratedthroughapotentialdifferenceof25kVandstrikeamolybdenumtarget.TheresultingX-rayspectrumisshownbelow.

intensity/relativeunits

1.0 2.0 3.00

1

2

3

4

5

0

wavelength/WAVELENGTH m/ .× −10 10

Theacceleratingpotentialdifferenceischangedto15kV.

(a) CalculatetheminimumwavelengthoftheX-raysproduced. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Onthegraphabove,sketchtheX-rayspectrumthatwouldbeproduced. [3]

2148

Page 165: IB Physics Option_Electro Magnetic Waves

–22– M11/4/PHYSI/HP3/ENG/TZ1/XX

G5. Thisquestionisaboutwedgefilminterference.

Oneflat,glassslide isplacedatanangleon topofasecond identicalslide. Theslidesareincontactalongoneshortedgeandareseparatedattheotheredgebyathinpieceofpaper,asshownbelow.

air

glass slide

paper

light

t

L (diagram not to scale)

Athinwedgeofairofvariablethickness,t ,istrappedbetweenthetwoslides.Thearrangementisviewednormallyfromabove,usinglightofwavelength590nm.Theglassplatesarecoated,sothatreflectiononlytakesplaceatthebottomsurfaceofthetopplateandthetopsurfaceofthebottomplate.

Aseriesofstraightbrightanddarkfringes,equallyseparatedandparalleltotheshortedgeoftheslides,isseen.

(a) Deducethatthethicknessoftheairwedgetthatgivesrisetoabrightfringe,isgivenby2 1

2t m= +( ) .λ [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

2248

Page 166: IB Physics Option_Electro Magnetic Waves

–23–

Turn over

M11/4/PHYSI/HP3/ENG/TZ1/XX

(Question G5 continued)

(b) The lengthof theairwedge,L, is8.2cm. Thebright fringesareeachseparatedbyadistanceof1.2mm.Calculatethethicknessofthepaper. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2348

Page 167: IB Physics Option_Electro Magnetic Waves

–16– M11/4/PHYSI/HP3/ENG/TZ2/XX

Option G — Electromagnetic waves

G1. Thisquestionisaboutpropertiesofelectromagneticwaves.

(a) Statetwopropertiesthatarecommontoallelectromagneticwaves. [2]

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Asinglelensisusedtoformamagnifiedrealimageofanobject.Explain,withreferencetothedispersionoflight,whytheimagehascolourededges. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Outlinewhyaclearskyisblueincolour. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 6 4 0

Page 168: IB Physics Option_Electro Magnetic Waves

–17–

Turn over

M11/4/PHYSI/HP3/ENG/TZ2/XX

G2. Thisquestionisaboutaconverginglens.

(a) Defineangular magnification. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) A thin converging lens of focal length 4.5cm is to be used as a magnifying glass.The observer places the lens close to her eye. The least distance of distinct visionis24cm.

(i) Showthatthedistanceoftheobjectfromthelensis3.8cm. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Determinetheangularmagnificationproducedbythelens. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

1 7 4 0

Page 169: IB Physics Option_Electro Magnetic Waves

–18– M11/4/PHYSI/HP3/ENG/TZ2/XX

(Question G2 continued)

(c) Suggest two reasons why, for high magnifications, a combination of lenses is usedrather thanasingle lens. [2]

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G3. Thisquestionisaboutinterferenceoflight.

Twocoherentnarrowbeamsoflightpassthroughtwoidenticalevacuatedtubes,asshownbelow.

evacuatedtube lens screen

Pcoherentnarrowbeamsoflight

evacuatedtube

ThetwocoherentnarrowbeamsarebroughttoafocusatpointPonascreen.

(a) Statewhatismeantbycoherence. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

1 8 4 0

Page 170: IB Physics Option_Electro Magnetic Waves

–19–

Turn over

M11/4/PHYSI/HP3/ENG/TZ2/XX

(Question G3 continued)

(b) State, with reference to the wavelength, the condition that must be satisfied for abright fringe to be formed on the screen at pointP. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Air is allowed to enter gradually into one of the evacuatedtubes. The brightness ofthe lightatpointP isseen todecreaseand then increaseagainrepeatedly.

(i) State the effect on thewavelength of the light in the evacuated tube as the airis introduced. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) SuggestwhythereisavariationinthebrightnessofthelightatpointP. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 9 4 0

Page 171: IB Physics Option_Electro Magnetic Waves

–20– M11/4/PHYSI/HP3/ENG/TZ2/XX

G4. ThisquestionisaboutX-raydiffraction.

AnX-ray tube fitted with a copper target emits radiation with a characteristic wavelengthof 1.54× 10–10m.

(a) Explainwhythecharacteristicwavelengthisdependentonthetargetmaterial. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) TheX-raybeamisincidentonasodiumchloridecrystal.TheminimumangleθatwhichtheX-raysofwavelength1.54× 10–10mreinforceconstructivelywhenscatteredfromaplaneofatomsinthecrystalis15.9�,asshownbelow.

X-raybeam θ

d θ

(i) Calculatethedistancedbetweenneighbouringplanesofatoms. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

2 0 4 0

Page 172: IB Physics Option_Electro Magnetic Waves

–21–

Turn over

M11/4/PHYSI/HP3/ENG/TZ2/XX

(Question G4 continued)

(ii) Determine any other values of θ at which maximum intensity occurs for theX-raybeamscatteredfromthecrystal. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Statewhyit ispreferable tomeasuremore thanoneangleθ inorder todetermine thespacingoftheplanesofatoms. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1 4 0

Page 173: IB Physics Option_Electro Magnetic Waves

–16– N11/4/PHYSI/HP3/ENG/TZ0/XX

Option G — Electromagnetic waves

G1. Thisquestionisabouttheelectromagneticspectrum.

(a) Outlinethenatureofelectromagneticwaves. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Explainwhytheozonelayerabsorbsultraviolet(UV)radiation. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G2. Thisquestionisaboutthecompoundmicroscope.

(a) A convex lens used as a magnifying glass has a focal length of fe. Derive anexpression for the angularmagnificationwhen the image is at thenearpointD. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

1 6 4 0

Page 174: IB Physics Option_Electro Magnetic Waves

–17–

Turn over

N11/4/PHYSI/HP3/ENG/TZ0/XX

(Question G2 continued)

(b) Theconvexlensin(a)isusedastheeyepieceofacompoundmicroscope.

objectivelens eyepiecelens

object

fo fo fe fe

An object is placed 1.5cm from the objective lens. The focal length fo of theobjective lens is 1.0cm.

(i) Drawrayson thediagramtoshowtheformationof the intermediate image. [2]

(ii) Calculate thedistanceof the intermediate imagefromtheobjective lens. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

1 7 4 0

Page 175: IB Physics Option_Electro Magnetic Waves

–18– N11/4/PHYSI/HP3/ENG/TZ0/XX

(Question G2 continued)

(c) Lenses used in the compound microscope are subject to spherical aberration andchromaticaberration.

Explainwhatismeantby

(i) sphericalaberration. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) chromaticaberration. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 8 4 0

Page 176: IB Physics Option_Electro Magnetic Waves

–19–

Turn over

N11/4/PHYSI/HP3/ENG/TZ0/XX

G3. Thisquestionisabouttwo-sourceinterference.

Coherentlightisincidentatrightanglestoadoubleslit.Aninterferencepatternisobservedonadistantscreen.

(not to scale)

coherentlight

doubleslit screen

(a) The width of both slits is nowincreased without altering their separation. Stateandexplaintheeffect, ifany,ofthis increaseontheintensityof thebrightfringesandtheappearanceofthedarkfringes. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Thenumberofslitsisnowincreased.Stateandexplaintheeffect,ifany,thishasontheappearanceofthebrightfringes. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 9 4 0

Page 177: IB Physics Option_Electro Magnetic Waves

–20– N11/4/PHYSI/HP3/ENG/TZ0/XX

G4. Thisquestionisaboutwedgefilms.

Thediagramshowstwothinglassplatesusedtoformathinairwedge.

monochromaticlight

thinglassplates

Abeamofmonochromaticlightisincidentontheairwedge.Thereflectedlightisobservedthroughamicroscopeandapatternofequallyspacedparallelfringesisobserved.

(a) Outlinehowthefringesareformed. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) State and explain how the fringe separation changes if the angle of the wedge isincreasedslightly. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0 4 0

Page 178: IB Physics Option_Electro Magnetic Waves

–21–

Turn over

N11/4/PHYSI/HP3/ENG/TZ0/XX

G5. ThisquestionisaboutX-rays.

The diagram shows the X-ray spectrum produced by the collision of electrons with amolybdenumtarget.

intensity

wavelength

(a) Explaintheformationofthecharacteristicspectra. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Theacceleratingpotentialis50kV.

CalculatetheminimumwavelengthofX-raysproduced. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1 4 0

Page 179: IB Physics Option_Electro Magnetic Waves

–18– M12/4/PHYSI/HP3/ENG/TZ1/XX

1848

Option G — Electromagnetic waves

G1. Thisquestionisaboutamagnifyingglass.

(a) (i) Definetheangular magnificationofamagnifyingglass. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Deriveanequationfor theangularmagnificationofamagnifyingglasswith theimageatinfinity. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 180: IB Physics Option_Electro Magnetic Waves

–19–

Turn over

M12/4/PHYSI/HP3/ENG/TZ1/XX

1948

(Question G1 continued)

(b) Anobjectispositioned8.00cmfromamagnifyingglassoffocallength15.0cm.

(i) Calculatethepositionoftheimage. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculatethelinearmagnification. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Theimageisuprightandmagnified.Stateafurtherpropertyoftheimage. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 181: IB Physics Option_Electro Magnetic Waves

–20– M12/4/PHYSI/HP3/ENG/TZ1/XX

2048

G2. Thisquestionisaboutlasersanddiffractiongratings.

(a) (i) Statetwowaysthatlaserlightdiffersfromlightemittedbyanordinaryfilamentlamp. [2]

1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outlinethemainmechanismsintheproductionoflaserlight. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 182: IB Physics Option_Electro Magnetic Waves

–21–

Turn over

M12/4/PHYSI/HP3/ENG/TZ1/XX

2148

(Question G2 continued)

(b) (i) Describe the pattern produced on a screen by a red laser beam incident on adiffractiongrating. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Laser light of wavelength 632nm is incident on a diffraction grating having600linespermm.Determinetheangularseparationbetweenthefirstandsecondordermaxima. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 183: IB Physics Option_Electro Magnetic Waves

–22– M12/4/PHYSI/HP3/ENG/TZ1/XX

2248

G3. ThisquestionisaboutproductionanddiffractionofX-rays.

(a) ThediagramshowssomeofthemaincomponentsofanX-raytube.

electronbeam

cathode

X-raybeam

anode/target

(i) Drawacorrectlyconnectedpowersupplyonthediagram. [1]

(ii) TheenergyspectrumoftheX-raysshowscharacteristiclines.Explaintheoriginoftheselines. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 184: IB Physics Option_Electro Magnetic Waves

–23–

Turn over

M12/4/PHYSI/HP3/ENG/TZ1/XX

2348

(Question G3 continued)

(iii) DeducetheminimumwavelengthofX-raysproducedwhenabeamofelectronsofenergy25.0keVisincidentonthetargetoftheX-raytube. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 185: IB Physics Option_Electro Magnetic Waves

–24– M12/4/PHYSI/HP3/ENG/TZ1/XX

2448

(Question G3 continued)

(b) ThediagramshowsX-raysscatteringinacrystal.

d

crystalplanes

incidentbeamofX-rays

θ θ

scatteredbeam

(i) For certain scattering angles θ a very intense scattered beam is detected.Explainthisobservation. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) X-raysofwavelength4.00×10–11mproducethefirstmaximumwithascatteringangleof26.4�.Calculatethespacingofthecrystalplanesd. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 186: IB Physics Option_Electro Magnetic Waves

–14– M12/4/PHYSI/HP3/ENG/TZ2/XX

Option G — Electromagnetic waves

G1. Thisquestionisaboutthenatureofelectromagneticwaves.

(a) Outlinewhatismeantbyanelectromagneticwave. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Statetwocasesinwhichelectronsmayproduceelectromagneticwaves. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1444

Page 187: IB Physics Option_Electro Magnetic Waves

–15–

Turn over

M12/4/PHYSI/HP3/ENG/TZ2/XX

G2. Thisquestionisaboutanastronomicaltelescope.

A particular astronomical telescope is being used to observe theMoon. The ray diagramshowsthepositionPoftheintermediateimageoftheMoonformedbytheobjectivelens.

raysfromtheMoon

θ

90cm

P

objectivelens eyepiecelens (nottoscale)

Thetelescopeisinnormaladjustment.

(a) Onthediagramabove,

(i) labelwiththeletterFthetwofocalpointsoftheeyepiecelens. [1]

(ii) drawraystodeterminethelocationofthefinalimageoftheMoon. [3]

(This question continues on the following page)

1544

Page 188: IB Physics Option_Electro Magnetic Waves

–16– M12/4/PHYSI/HP3/ENG/TZ2/XX

(Question G2 continued)

(b) ThediameteroftheMoonsubtendsanangleof8.7×10–3radattheunaidedeye.

(i) DeterminethediameteroftheimageoftheMoonformedbytheobjectivelens. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Thefocallengthoftheeyepieceis30cm.Calculatetheanglethatthefinalimageof theMoonsubtendsat theeyepiece. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1644

Page 189: IB Physics Option_Electro Magnetic Waves

–17–

Turn over

M12/4/PHYSI/HP3/ENG/TZ2/XX

G3. Thisquestionisabouttwo-sourceinterference.

(a) Lightfromamonochromaticsourceisincidentatrightanglestotwoslits.Afterpassingthroughtheslits the light is incidentonadistantscreen. PointM is themid-pointofthe screen.

monochromaticlightsource

θ

Q

M

(nottoscale) slits screen

The separation of the slits is large compared to their width. A pattern of light anddarkfringesisobservedonthescreen.

(i) StatethephenomenonthatenableslighttoreachpointMonthescreen. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) On the axes below, sketch the intensity of light as observed on the screen as afunctionoftheangleθ .(Youdonothavetoputanynumbersontheaxes.) [3]

intensity

θ 0 M

(This question continues on the following page)

1744

Page 190: IB Physics Option_Electro Magnetic Waves

–18– M12/4/PHYSI/HP3/ENG/TZ2/XX

(Question G3 continued)

(iii) Thedistanceofthescreenfromtheslitsis1.8mandtheslitseparationis0.12mm.Thewavelengthofthelightis650nm.PointQonthescreenshowsthepositionofthefirstdarkfringe.

CalculatethedistanceMQ. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Suggestwhy,eventhoughtherearedarkfringesinthepattern,noenergyislost. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1844

Page 191: IB Physics Option_Electro Magnetic Waves

–19–

Turn over

M12/4/PHYSI/HP3/ENG/TZ2/XX

G4. ThisquestionisaboutX-raydiffraction.

X-rays are incident on a single crystal of quartz. The diagram shows two adjacent atomicplanesandX-raysthatareincidentatanangleθ tothecrystalplanes.

θ

θ d

d

(a) Anintensescatteredbeamisobservedforcertainvaluesoftheangleθ .Explain,withreferencetothediagram,thisobservation. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The smallest angle for which an intense scattered beam is observed is 11.2θ = �.The wavelength of the X-rays is 8.24×10–10m.

Calculatethedistancedbetweentheatomicplanes. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1944

Page 192: IB Physics Option_Electro Magnetic Waves

–20– M12/4/PHYSI/HP3/ENG/TZ2/XX

G5. Thisquestionisaboutthin-filminterference.

Apieceofglassofrefractiveindex1.62iscoveredwithathinfilmofmagnesiumfluorideofthicknesst andrefractiveindex1.38.Thediagramshowsarayofmonochromaticlightincidentonthefilmatanangleθ tothenormal.

normal X Y θ

t magnesiumfluoride,n=1.38

glass,n=1.62

XisarayreflectedfromthesurfaceofthefilmandYisreflectedfromthesurfaceoftheglass.

(a) Showthatwhenθ =0theconditionfordestructiveinterferencebetweenraysXandYis

122 ( )t m λ= +

wheremisanintegerandλisthewavelengthoflightinthemagnesiumfluoridefilm. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

2044

Page 193: IB Physics Option_Electro Magnetic Waves

–21–

Turn over

M12/4/PHYSI/HP3/ENG/TZ2/XX

(Question G5 continued)

(b) Lightofwavelength640nminairisincidentnormallyontheglasssurface.

(i) Showthatthewavelengthoflightinthemagnesiumfluoridefilmis464nm. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate theminimumthicknessof thefilmforwhichnolightwillbereflectedbackintotheair. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2144

Page 194: IB Physics Option_Electro Magnetic Waves

–20– N12/4/PHYSI/HP3/ENG/TZ0/XX

Option G — Electromagnetic waves

G1. Thisquestionisaboutinterferenceoflightattwoparallelslits.

(a) Statetheconditionnecessarytoobserveinterferencebetweentwolightsources. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Thediagrambelowshowsanarrangementforobservingadoubleslitinterferencepattern.A parallel beam of coherent light of wavelength 410nm is incident on two parallelnarrowslitsseparatedby0.30mm.Ascreenisplaced1.60mbeyondtheslits.

incidentlight0.30mm

1.60m

doubleslit screen (nottoscale)

Calculatethefringespacingonthescreen. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

2048

Page 195: IB Physics Option_Electro Magnetic Waves

–21–

Turn over

N12/4/PHYSI/HP3/ENG/TZ0/XX

(Question G1 continued)

(c) Theslitsin(b)arereplacedbyalargenumberofslitsofthesamewidthandseparationasthedoubleslit.Describetheeffectsthatthischangewillhaveontheappearanceofthefringesonthescreen. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2148

Page 196: IB Physics Option_Electro Magnetic Waves

–22– N12/4/PHYSI/HP3/ENG/TZ0/XX

G2. Thisquestionisaboutthesimplemagnifyingglassandthecompoundmicroscope.

(a) Define,fortheunaidedeye,thetermnear point. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Aconverginglensisusedasamagnifyingglass.Onthediagramdrawraystoconstructtheimageoftheobject,o. [3]

o

f f

converginglens

(This question continues on the following page)

2248

Page 197: IB Physics Option_Electro Magnetic Waves

–23–

Turn over

N12/4/PHYSI/HP3/ENG/TZ0/XX

(Question G2 continued)

(c) Thelenshasafocallengthf.Whentheimageisformedatthenearpoint,thedistanceuoftheobjectfromthelensisgivenby

f DuD f

=+

whereDisthenearpointdistance.

DeducethattheangularmagnificationMisgivenby

1 DMf

= + . [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

2348

Page 198: IB Physics Option_Electro Magnetic Waves

–24– N12/4/PHYSI/HP3/ENG/TZ0/XX

(Question G2 continued)

(d) A compound microscope consists of an eyepiece lens of focal length 6.0cm and anobjectivelensoffocallength2.8cm.Anobjectisplaced3.4cmfromtheobjectivelensandthefinalimageoftheobjectisformedbythemicroscopeatthenearpoint.

Determinethe

(i) angularmagnificationoftheeyepiece.Takethenearpointdistancetobe25cm. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) distancefromtheobjectivelensoftheintermediateimageformedbythislens. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) overallmagnificationofthecompoundmicroscope. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2448

Page 199: IB Physics Option_Electro Magnetic Waves

–25–

Turn over

N12/4/PHYSI/HP3/ENG/TZ0/XX

G3. Thisquestionisaboutthescatteringoflight.

Explain,withreferencetothescatteringoflight,whytheskyappearsredatsunset. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2548

Page 200: IB Physics Option_Electro Magnetic Waves

–26– N12/4/PHYSI/HP3/ENG/TZ0/XX

G4. ThisquestionisaboutX-rays.

(a) X-raysareproducedinanX-raytube.

(i) StateandexplainhowthecontinuousandcharacteristicX-rayspectraareproduced. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) OutlinehowtheintensityoftheX-raysproducediscontrolled. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

2648

Page 201: IB Physics Option_Electro Magnetic Waves

–27–

Turn over

N12/4/PHYSI/HP3/ENG/TZ0/XX

(Question G4 continued)

(b) (i) SomeX-raysareproducedbyanacceleratingpotentialof25kV. Showthat theminimumwavelengthoftheseX-raysis5.0×10–11m. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) X-raysofwavelength5.0×10–11mareincidentonacrystal.Anintensescatteredbeamisobservedatanangleof19�toasetoflatticeplanesinthecrystal.

incidentX-rays

scattered X-rays

19� 19�

d

d

Calculatethelatticespacingdoftheseplanes. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2748