ib chemistry on gibbs free energy and equilibrium constant, kc

25
ttp://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Gibbs Free Energy Change and Equilibrium

Upload: lawrence-kok

Post on 09-Jan-2017

1.060 views

Category:

Education


6 download

TRANSCRIPT

Page 1: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

http://lawrencekok.blogspot.com

Prepared by Lawrence Kok

Tutorial on Gibbs Free Energy Change and Equilibrium

Page 2: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Dynamic Equilibrium

Reversible (closed system)

Forward Rate, K1 Reverse Rate, K-1

Conc of product and reactant at equilibrium

At Equilibrium

Forward rate = Backward rateConc reactants and products remain CONSTANT/UNCHANGE

Equilibrium Constant Kc

aA(aq) + bB(aq) cC(aq) + dD(aq)

coefficient

Solid/liq not included in Kc Conc represented by [ ]

kf

Kr

ba

dc

c BADCK

r

fc k

kK

Equilibrium Constant Kc

express in

Conc vs time Rate vs time

A + B

C + D

Conc

Time

Catalyst

Factors affecting equilibrium (closed system)

TemperaturePressureConcentration

Equilibrium constant Kc ≠ Position equilibrium

forward rate constant

reverse rate constant

Page 3: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Effect of Temperature on position of equilibrium

Decrease Temp ↓ • Favour exo rxn• Equi shift to right → to increase ↑ Temp• Formation Co(H2O)6

2+ (pink)

Increase Temp ↑• Favour endo rxn• Equi shift to left ← to

reduce ↓ Temp• Formation of CoCl4

2- (blue)

CoCl42- + 6H2O ↔ Co(H2O)6

2+ + 4CI – ΔH = -ve (exo) (blue) (pink)

Increase Temp ↑ – Favour endo rxn – Absorb heat to reduce Temp again ↓Decrease Temp ↓ – Favour exo rxn – Release heat to increase Temp again ↑

Increase Temperature• Rate rxn increase ↑• Rate constant also change• Rate constant forward/reverse increase but to

diff extend• Position equi shift to endo to decrease ↓ Temp • Kc, equilibrium constant change

Click to view video

Le Chatelier’s Principle • System in dynamic equilibrium is disturbed, position of equilibrium will

shift so to cancel out the effect of change and new equilibrium can established again

Effect of Temperature on equilibrium constant, Kc

Page 4: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Le Chatelier’s Principle • System in dynamic equilibrium is disturbed, position of equilibrium will

shift so to cancel out the effect of change and new equilibrium can established again

Decrease Temp ↓• Favour exo rxn• Equi shift to left ← to

increase ↑ Temp• Formation N2O4 (colourless)

Increase Temp ↑• Favour endo rxn• Equi shift to right → to reduce

↓ Temp• Formation NO2

(brown)

N2O4 (g) ↔ 2NO2(g) ΔH = + 54kJmol-1

(colourless) (brown)

Click to view video

Effect of Temperature on position of equilibrium

Effect of Temperature on equilibrium constant, Kc

Increase Temp ↑ – Favour endo rxn – Absorb heat to reduce Temp again ↓Decrease Temp ↓ – Favour exo rxn – Release heat to increase Temp again ↑

Increase Temperature• Rate rxn increase ↑• Rate constant also change• Rate constant forward/reverse increase but to

diff extend• Position equi shift to endo to decrease ↓ Temp • Kc, equilibrium constant change

Page 5: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

N2O4 (g) ↔ 2NO2(g) ΔH = + 54kJmol-1

Temp increase ↑ – Kc increase ↑ Why?

A ↔ B ΔH = +ve

Reverse rate constant = k r

Forward rate constant = kf

Kc

ABK c

r

fc k

kK

Temp affect rate constant

Temp change

cK

Increase Temp ↑

Position equilibrium shift to right Endo side – Absorb heat Temp decrease ↓

More product , less reactant treacproductK c tan

cK

Forward rate constant, kf > reverse rate, kr

r

fc k

kK

Decrease Temp ↓

Position equilibrium shift to left Exo side – Release heat Temp increase ↑

More reactant , less product treacproductK c tan

Forward rate constant, kf < reverse rate, kr

r

fc k

kK

cK

Conclusion : Endo rxn – Temp ↑ – Kc ↑ – Product ↑

Effect of Temperature on equilibrium constant, Kc

forward rate constant

reverse rate constant

Page 6: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Temp increase ↑ – Kc decrease ↓ Why?

A ↔ B ΔH = -ve

Increase Temp ↑

Position equilibrium shift to left Endo side – Absorb heat Temp decrease ↓

More Reactant , less product treacproductK c tan

cK

Forward rate constant, kf < Reverse rate, kr

r

fc k

kK

Decrease Temp ↓

Position equilibrium shift to right Exo side – Release heat Temp increase ↑

More Product , less reactant treacproductK c tan

Forward rate constant, kf > Reverse rate, kr

r

fc k

kK

cK

Conclusion : Exo rxn – Temp ↑ – Kc ↓ – Product ↓

H2(g) + I2(g) ↔ 2HI(g) ΔH = -9.6kJmol-1

Forward rate constant = kf

Reverse rate constant = k r

Effect of Temperature on equilibrium constant, Kc

Kc

ABK c

r

fc k

kK

forward rate constant

reverse rate constant

Temp affect rate constant

Temp change

cK

Page 7: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Equilibrium Constant Kc

express in

At equilibrium Rate of forward = Rate of reverse

DCkBAk rf

Forward Rate

Reverse Rate

Rate forward = kf [A] [B] Rate reverse = kr [A] [B]

BADC

kk

r

f

Change in Temp

=

r

fc k

kK

BADCK c

Equilibrium and KineticsForward Rate

Reverse Rate

At equilibrium Rate of forward = Rate of reverse

kf = forward rate constant

kr = reverse rate constant

same

BADCK c

r

fc k

kK

Ratio of product /reactant conc

Ratio of rate constant

Change rate constant, kf/kr Change in Kc

Temp increase ↑ – Kc increase ↑ Temp increase ↑ – Kc decrease ↓

A ↔ B ΔH = +ve

A ↔ B ΔH = -ve

Temp changes Kc with diff rxn?

Endothermic rxn

Exothermic rxn

kf

kr

Page 8: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Magnitude of Kc

Extend of reaction

How far rxn shift to right or left?

Not how fast

cK

Position of equilibrium

cKTemp

dependentExtend of rxn

Not how fast

Shift to left/favour

reactant

Shift to right/favour

product

cKRelationship between

Equilibrium and Energetics

cKRTG ln STHG

Enthalpy change

Entropy change

Equilibrium constant

Gibbs free energy change

HG cK

GEnergetically

Thermodynamically

Favourable/feasible

ΔGθ ln K Kc Eq mixture

ΔGθ -ve < 0

Positive ( + )

Kc > 1

Product(Right)

ΔGθ +ve > 0

Negative

( - )

Kc < 1

Reactant(left)

ΔGθ = 0 0 Kc = 1

Equilibrium

Measure work available from system

Sign predict spontaneity of rxn

Negative (-ve)

spontaneous

Positive (+ve) NOT spontaneous

veG veG

NOT

favourable

Energetically favourable

Product formation

NO product

cKRTG ln

Page 9: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Magnitude of Kc

Extend of reaction

How far rxn shift to right or left?

Not how fast

cK

Position of equilibrium

cKTemp

dependentExtend of rxn

Not how fast

Shift to left/favour

reactant

Shift to right/favour

product

cKRelationship between

Equilibrium and Energetics

cKRTG ln STHG

Enthalpy change

Entropy change

Equilibrium constant

Gibbs free energy change

HG cK

ΔGθ ln K Kc Eq mixture

ΔGθ -ve < 0

Positive ( + )

Kc > 1

Product(Right)

ΔGθ +ve > 0

Negative

( - )

Kc < 1

Reactant(left)

ΔGθ = 0 0 Kc = 1

Equilibrium

cKRTG ln STHG ∆Hsys ∆Ssys ∆Gsys Description

- + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp

+ - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp

+ + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp

- - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp

Relationship bet ∆G and Kc

Page 10: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

GEnergetically

Thermodynamically

Favourable/feasible

Sign predict spontaneity of rxn

veG veG

NOT

favourable

Energetically

favourable

Product formation

NO product

KRTG ln

Predicting rxn will occur? with ΔG and Kc cK

Very SMALL Kc < 1

Shift to right/favour product

Shift to left/favour

reactant

Very BIG Kc > 1 veG veG

KRTG ln

1cK 1cK

Negative (-ve)spontaneous

Positive (+ve) NOT spontaneous

Relationship bet ∆G and Kc

products

reactants

ΔGθ Kc Eq mixture

ΔGθ = + 200

9 x 10-36 Reactants

ΔGθ = + 10 2 x 1-2 Mixture

ΔGθ = 0 Kc = 1 Equilibrium

ΔGθ = - 10 5 x 101 Mixture

ΔGθ = - 200 1 x 1035 Products

shift to left

shift to right

G, Gibbs free energy

A

Mixture composition

B

100% A 100% B

∆G decreases ↓

30 % A70 % B

Equilibrium mixture

∆G < 0

∆G = 0 (Equilibrium) ↓

Free energy minimum

∆G < 0∆G < 0

∆G = 0

Free energy system is lowered on the way to equilibrium

Rxn proceed to minimum free energy ∆G = 0Sys seek lowest possible free energy

Product have lower free energy than reactant

∆G < 0 productreactant

Page 11: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

GEnergetically

Thermodynamically

Favourable/feasible

Sign predict spontaneity of rxn

veG veG

NOT

favourable

Energetically

favourable

Product formation

NO product

KRTG ln

Predicting rxn will occur? with ΔG and Kc cK

Very SMALL Kc < 1

Shift to right/favour product

Shift to left/favour

reactant

Very BIG Kc > 1 veG veG

KRTG ln

1cK 1cK

Negative (-ve)spontaneous

Positive (+ve) NOT spontaneous

Relationship bet ∆G, Q and Kc

G, Gibbs free energy

A

Mixture composition

B

100% A 100% B

∆G decreases ↓

30 % A70 % B

Equilibrium mixture

∆G < 0

∆G = 0 (Equilibrium) ↓

Free energy minimum

∆G < 0∆G < 0

∆G = 0

∆G < 0 productreactant

G, Gibbs free energy

reactant product∆G < 0A

B

∆G decreases ↓

100% A 100% B30 % A70 % B

∆G = 0 Q = K

∆G < 0 Q < K

∆G > 0

∆G < 0 Q > K

∆G > 0

A ↔ B A ↔ B

Equilibrium mixture

Page 12: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Relationship bet ∆G and Kc

G, Gibbs free energy

A

B

100% A

100% B

∆G decreases ↓

30 % A70 % B

Equilibrium mixture close to product

∆G < 0

∆G = 0 (Equilibrium) ↓

Free energy minimum

∆G < 0∆G < 0

∆G = 0

∆G < -10

Kc > 1

A ↔ B A ↔ BG, Gibbs free energy

A

B

∆G decreases ↓

∆G < -100

100% A

100% B

∆G = 0 (Equilibrium) ↓

Free energy minimum

Kc > 1Equilibrium mixture close to product

10 % A90 % B

∆G < 0

∆G < 0 ∆G = 0

∆G very –ve → Kc > 1 → (more product/close to completion)∆G –ve → Kc > 1 → (more product > reactant)

A ↔ BG, Gibbs free energy

100% A

100% B

A

B

∆G +ve → Kc < 1 → (more reactant > product)

∆G > +10

∆G = 0 (Equilibrium) ↓

Free energy minimum

Kc < 1

∆G increases ↑

70 % A30 % B

Equilibrium mixture close to reactant

∆G < 0∆G = 0

A ↔ BG, Gibbs free energy

∆G more +ve → Kc < 1 → (All reactant / no product at all)

A

∆G = 0 (Equilibrium) ↓

Free energy minimum

Kc < 1100% A

100% B

Equilibrium mixture close to reactant/ No reaction.

∆G > +100B

90 % A10 % B

∆G increases ↑

∆G = 0∆G < 0

reactant

reactant

reactant

reactant

productproduct

product product

Page 13: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Relationship bet ∆G and Kc

products

reactants

shift to left

shift to right

G, Gibbs free energy

A

B

100% A

100% B

∆G decreases ↓

30 % A70 % B

Equilibrium mixture

∆G < 0

∆G = 0 (Equilibrium) ↓

Free energy minimum

∆G < 0∆G < 0

∆G = 0

Free energy system is lowered on the way to equilibrium

Rxn proceed to minimum free energy ∆G = 0System seek lowest possible free energy

Product have lower free energy than reactant

∆G < -10

Kc > 1

A ↔ B A ↔ BG, Gibbs free energy

A

B

∆G decreases ↓

∆G < -100

100% A

100% B

∆G = 0 (Equilibrium) ↓

Free energy minimum

Kc > 1Equilibrium mixture

10 % A90 % B

∆G < 0

∆G < 0 ∆G = 0

∆G very –ve → Kc > 1 → (All product/close to completion)∆G –ve → Kc > 1 → (more product > reactant)

∆G

∆G = 0

∆G > 0

∆G < 0

No reaction/most reactantsKc <1

Complete rxn/Most productsKc > 1

Kc = 1 (Equilibrium)Reactants = Products

reactant reactant

ΔGθ Kc Eq mixture

ΔGθ = + 200

9 x 10-36 Reactants

ΔGθ = + 10 2 x 1-2 Mixture

ΔGθ = 0 Kc = 1 Equilibrium

ΔGθ = - 10 5 x 101 Mixture

ΔGθ = - 200 1 x 1035 Products

Page 14: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Gibbs Free Energy Change, ∆G

∆G - Temp/Pressure remain constantAssume ∆S/∆H constant with temp

Using ∆Gsys to predict spontaneity

syssyssys STHG

Easier

Unit ∆G - kJ mol-1

Only ∆S sys involved∆S surr, ∆S uni not needed

Using ∆Gsys to predict spontaneity

Easier

Method 1 Method 2

)()( reactfprofsys GGG At std condition/states

Temp - 298KPress - 1 atm

Gibbs Free Energy change formation, ∆Gf

0

At High Temp ↑

Temp dependent

syssyssys STHG

At low Temp ↓

veGSTG

HST sys

syssyssys STHG

veGHGSTH

spontaneous spontaneous

surrsysuni SSS

TH

S syssurr

syssysuni STHST

Deriving Gibbs Free Energy Change, ∆G

TH

SS syssysuni

∆S sys / ∆H sys

multi by -T

syssyssys STHG

∆Hsys ∆Ssys ∆Gsys Description

- + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at all Temp

+ - ∆G = ∆H - T ∆S ∆G = + ve Non spontaneous, all Temp

unisys STG syssyssys STHG

Only ∆H sys/∆S sys involved ∆S surr, ∆S uni not needed

Non standard condition

Gibbs Free Energy Change, ∆G

syssyssys STHG unisys STG

veGsys ∆S uni = +ve

Spontaneous SpontaneousveGsys

∆H = - ve∆S sys = +ve

∆Hsys ∆Ssys ∆Gsys Description

+ + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp

- - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp

Page 15: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Gibbs Free Energy change formation, ∆Gf

0

At High Temp ↑

Temp dependent

syssyssys STHG

At low Temp ↓

veGSTG

HST sys

syssyssys STHG

veGHGSTH

spontaneous spontaneous

∆Hsys ∆Ssys ∆Gsys Description

- + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at all Temp

+ - ∆G = ∆H - T ∆S ∆G = + ve Non spontaneous, all Temp

syssyssys STHG

∆Hsys ∆Ssys ∆Gsys Description

+ + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp

- - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp

Relationship Equilibrium and Energetics

At equilibrium∆G = 0

SHT

HST

CaCO3 (s) → CaO(s) + CO2(g)

CaCO3 (s) → CaO (s) + CO2(g) ∆Hf

0 - 1206 - 635 - 393S0 + 93 + 40 + 213

At what temp will decomposition

CaCO3 be spontaneous?

Reactant Product∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJH sys 178)1206(1028

kJS

JS

S

SSS

sys

sys

sys

treacproductsys

16.0

160

93253)tan()(

STHG SHT

HST KT 111216.0178

Unit ∆H – kJUnit ∆S - JK-1

At equilibrium∆G = 0

Click here notes from chemwiki

∆H = +ve, ∆S = +ve → Temp ↑ High → Spontaneous∆H = -ve, ∆S = -ve → Temp ↓ Low → Spontaneous

∆Hsys ∆Ssys ∆Gsys Description

+ + ∆G = ∆H - T∆S ∆G = 0 Equilibrium at Temp, T

- - ∆G = ∆H - T∆S ∆G = 0 Equilibrium at Temp, T

∆G = 0

Page 16: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

kJGG

STHG

130)16.0(298178

Predict what happen at diff Temp

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJH sys 178)1206(1028

∆G > 0 Decomposition at

298K Non Spontaneous

CaCO3 (s) → CaO(s) + CO2(g)

CaCO3 (s) → CaO (s) + CO2(g) ∆Hf

0 - 1206 - 635 - 393S0 + 93 + 40 + 213

kJS

JS

sys

sys

16.0

16093253

Decomposition at 298K Decomposition at 1500K

Decomposition limestone CaCO3 spontaneous?

Gibbs Free Energy Change, ∆G

kJGG

STHG

62)16.0(1500178

∆H = +ve ∆S = +ve

Temp dependent

∆Hsys ∆Ssys ∆Gsys Description

+ + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp

- - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp

At Low Temp At High Temp

Unit ∆H – kJUnit ∆S - JK-1

Equilibrium, at what Temp?∆G = 0

∆G < 0 Decomposition at

1500K Spontaneous

STHG

HST

SHT

KT 111216.0178

Temp > 1112Krxn spontaneous

Temp dependentSpontaneous at

High ↑ temp

Page 17: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Predict what happen at diff Temp

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

∆G > 0 Freezing at 298K Non Spontaneous

Freezing at 298K (25C) Freezing at 263K (-10C)

Is freezing water spontaneous?

Gibbs Free Energy Change, ∆G

∆H = -ve ∆S = -ve

Temp dependent

At High Temp At Low Temp

Unit ∆H – kJUnit ∆S - JK-1

Equilibrium, at what Temp?∆G = 0

∆G < 0 Freezing at 263K (-

10C) Spontaneous

STHG

HST

SHT

)0(273022.0010.6 CKT

H2O (l) → H2O(s)

Is Freezing spontaneous?

H2O (l) → H2O(s) ∆Hf

0 - 286 - 292S0 + 70 + 48

kJH sys 010.6)286(292 kJS

JS

sys

sys

022.0

227048

kJGG

STHG

55.0)022.0(298010.6

∆Hsys ∆Ssys ∆Gsys Description

+ + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp

- - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp

Water start to freezeTemp < 0 , Spontaneous

kJGG

STHG

22.0)022.0(263010.6

Page 18: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Relationship betweenEquilibrium and Energetics

KRTG ln

HG cKG

EnergeticallyThermodynamicall

yFavourable/

feasible

Sign predict spontaneity of rxn

Negative (-ve)

spontaneous

Positive (+ve) NOT spontaneous

veG veG

NOT

favourable

Energetically

favourable

Product formation

NO product

KRTG ln

STHG

H2(g) + O2(g) → H2O2(l)

Energetically feasible ΔG / ΔH = -ve

Predicting if rxn will occur?veG veH f

Energetic favourable (-ve)

Product H2O2 more stableΔG and ΔH = -

negativeReaction wont happen!!!!!!

Kinetically unfavourable/stable

due to HIGH activation energy

H2(g) + O2(g) H2O2(l)

Energy barrier

Will rxn occur?

depends

Kinetically feasible

low activation energy

+To occur

ΔG < 0 (-ve) Activation energy LOW

Energetically favourable

Kinetically favourable

ΔGθ ln K Kc Eq mixture

ΔGθ -ve < 0

Positive ( + )

Kc > 1 Product(Right)

ΔGθ +ve > 0

Negative

( - )

Kc < 1 Reactant(left)

ΔGθ = 0 0 Kc = 1 Equilibrium

Page 19: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Energetic favourable (-ve) Graphite more stable

Relationship betweenEquilibrium and Energetics

KRTG ln

HG cKG

EnergeticallyThermodynamicall

yFavourable/

feasible

Sign predict spontaneity of rxn

Negative (-ve)

spontaneous

Positive (+ve) NOT spontaneous

veG veG

NOT

favourable

Energetically

favourable

Product formation

NO product

KRTG ln

STHG

Energetically feasible ΔG / ΔH = -ve

Predicting if rxn will occur?veG veH f

ΔG and ΔH = -negative

Reaction wont happen!!!!!!

Kinetically unfavourable/stable

due to HIGH activation energy

Energy barrier

Will rxn occur?

depends

Kinetically feasible

low activation energy

+To occur

ΔG < 0 (-ve) Activation energy LOW

Energetically favourable

Kinetically favourable

ΔGθ ln K Kc Eq mixture

ΔGθ -ve < 0

Positive ( + )

Kc > 1 Product(Right)

ΔGθ +ve > 0

Negative

( - )

Kc < 1 Reactant(left)

ΔGθ = 0 0 Kc = 1 Equilibrium

Diamond(s) → Graphite(s)

Diamond forever

Diamond(s) Graphite(s)

Page 20: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Click here to view free energy

Predicting Spontaneity of Rxn

Thermodynamic, ΔG Equilibrium, Kc

1cK

1cK

KRTG lnG

veG

cK

1cK

Energetically favourable

0G

Predicting rxn will occur?

N2(g) + 3H2(g) ↔ 2NH3(g)

H2O(l) ↔ H+(aq)+ OH-

(aq)

Shift toward reactantsEnergeticallyunfavourable Non spontaneous

Mixturereactant/product

Equilibrium

veG Spontaneous Shift toward product

79G

33G610G

14101 cK

5105cK

Fe(s) + 3O2(g) ↔ 2Fe2O3(s)

261101cK

Shift toward reactants

Energeticallyunfavourable

Shift toward product

Energetically favourable

Energetically favourable

Kinetically unfavourable/(stable)Rate too slow due to HIGH activation energy

Rusting Process

Energy barrier

Shift toward product

Reaction too slow

Click here for notes

Page 21: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

IB Questions

Esterification produce ethyl ethanoate. ΔG = -4.38kJmol-1 Cal Kc

CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l)

Kc = 5.9

cKRTG lnRTGK c

ln

29831.84380ln

cK

Kc at 1338K is 0.0118. Cal Kc at 1473K

A + B ↔ C + D kJH 3.177

Qualitative(Le Chatelier Principle)

Quantitatively Formula

14731

13381

31.8177300

0118.0ln 2K

K2 = 0.051Temp increase ↑ – Kc increase ↑

Endothermic rxn

A + B ↔ C + D

Kc at 1000K and 1200K is 2.44 and 3.74. Cal ΔH.

?H

211

2 11lnTTR

HKK

12001

10001

31.844.274.3ln H

ΔH = 21.3kJmol-1

2

?cK

?cK

Temp decrease ↓ again

Temp increase ↑

Shift to right → - absorb heat

211

2 11lnTTR

HKK

NO oxidized to NO2. Kc = 1.7 x 1012. Cal ∆G at 298K

1

3 4

2NO + O2 ↔ NO2

?G

cKRTG ln

11

12

7.6969772

)107.1ln(298314.8

kJmolJmolG

G

Page 22: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Van’t Hoff Equation

cKRTG ln

Relationship bet Temp and Kc

STHG

STHKRT ln

RS

RTHK c

ln

cRTHK c

ln

Heat absorbed, ΔH +veTemp increase ↑ – Kc increase ↑

Heat released, ΔH –veTemp increase ↑ – Kc decrease ↓

Gibbs free energy change Equilibrium constant

Enthalpy change

Entropy change

N2O4 (g) ↔ 2NO2(g) ΔH = + 54kJmol-1

Temp increase ↑ – Kc increase ↑

H2(g) + I2(g) ↔ 2HI(g) ΔH = -9.6kJmol-1

Temp increase ↑ – Kc decrease ↓

cTR

HK

1ln

Endothermic rxn

cRTHK

ln

Temp increase ↑ – Kc increase ↑

Exothermic rxn

cRTHK

ln

cTR

HK

1ln

Temp increase ↑ – Kc decrease ↓

Temp/K

250 400 650 1000

Kc 800 160 50 24

ΔH= +ve ΔH= -ve

Temp/K

350 400 507 550

Kc 3.89 47.9 1700 6030

Gibbs free energy change

Page 23: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Van’t Hoff Equation

cKRTG ln

Relationship bet Temp and Kc

RS

RTHK

ln

cRTHK

ln

Gibbs free energy changeEquilibrium constant

Enthalpy change

Entropy change

N2O4 (g) ↔ 2NO2(g) ΔH = + 54kJmol-1

Temp increase ↑ – Kc increase ↑

Endothermic rxn

cTR

HK

1ln

Plot Kc against Temp

Temp/K

350 400 507 550

Kc 3.89 47.9 1700 6030

ln Kc 1.36 3.87 7.44 8.7

1/T(x 10-

3)2.86 2.50 1.97 1.82

RTH

c eK

Plot ln Kc against 1/T

N2O4 (g) ↔ 2NO2(g) ΔH = + 54kJmol-1

Endothermic rxn

Using Kc and Temp to find ΔH

Conclusion

RHGradient

31.8007.0 H

JH 58170

Temp increase ↑ Kc increase ↑ Endo rxn =+ΔH Relationship bet Temp, Kc and ΔH

ΔH=+ve

-0.007

STHG

Gibbs free energy change

STHKRT ln

Page 24: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Van’t Hoff Equation

KRTG ln

Relationship bet Temp and Kc

RS

RTHK

ln

cRTHK

ln

Gibbs free energy changeEquilibrium constant

Enthalpy change

Entropy change

Exothermic rxn

cTR

HK

1ln

Plot Kc against Temp

ln Kc 6.9 3.45 -3.3 -9.5

1/T(x 10-

3)2.9 2.6 2 1.4

RTH

c eK

Plot ln Kc against 1/T

Exothermic rxn

Using Kc and Temp to find ΔH

Conclusion

RHGradient

31.811316 H

JH 94000

Temp increase ↑ Kc decrease ↓ Exo rxn =-ΔH Relationship bet Temp, Kc and ΔH

H2(g) + I2(g) ↔ 2HI(g) ΔH = -9.6kJmol-1

H2(g) + I2(g) ↔ 2HI(g) ΔH = -9.6kJmol-1

Temp/K

345 385 500 700

Kc 1000 31.6 0.035 0.00007

Temp increase ↑ – Kc decrease ↓

ΔH=-ve

+11316

STHKRT lnSTHG

Gibbs free energy change

Page 25: IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc

Acknowledgements

Thanks to source of pictures and video used in this presentation

Thanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/

Prepared by Lawrence Kok

Check out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com