i optical bistability in mobius microring resonator...

36
i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR AHMAD FAKHRURRAZI BIN AHMAD NOORDEN A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics) Faculty of Science Universiti Teknologi Malaysia MAY 2015

Upload: others

Post on 04-Jan-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

i

OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR

AHMAD FAKHRURRAZI BIN AHMAD NOORDEN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Physics)

Faculty of Science

Universiti Teknologi Malaysia

MAY 2015

Page 2: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

iii

Dedicated with my deepest love and affection to

my family

For their supports and blessings

To all my friends specially Nurul Faridah

For their motivational support

Page 3: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

iv

ACKNOWLEDGEMENT

First and foremost, all praise to Allah, the Almighty, the Benevolent for His

blessing and guidance, for giving me the inspiration to embark on this project and

instilling in me the strength to see that this research becomes reality. Many people

have contributed to the creation and completion of this research. I would like to

express my gratitude to all those who have helped in one way or another in the

planning, brainstorming, writing, editing stages, and discussion for this research. I

would like to specially thank to my supervisor Prof. Dr. Jalil Bin Ali for his

continued guidance and support for this research and contributing in stimulating

suggestions and encouragement, help me to coordinate this research.

I would also like to express my sincere gratitute to my friends especially Dr.

Mehdi, Dr. Kasyif, Dr. Safwan, Dr. Suzairi, Dr. Ong, Dr. Najmee, Azam, Sufi,

Helmi, Nina and Fairuz for their research experiences and knowledges sharing and

support in the field of nanophotonics research. They have created a very warm and

friendly working atmosphere within the laboratory. I would also like to thank the

scientific research officer, Mr. Abdul Rashid for his assistance.

A special thanks to my family. Words cannot express how grateful I am to

my mother, and father for all of the motivational support during my struggle. Your

prayer for me help to sustain me thus far. I would also like to thank all of my friends

who supported me in writing, and incented me to strive towards my goal. At the end

I would like express appreciation to my best friend Nurul Faridah who was always

be my support in the moments when there was no one to answer my queries.

Page 4: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

v

ABSTRACT

Optical bistability is one of the nonlinear properties that produce an essential

light control which contributes in various photonics applications such as all-optical

switching and optical memory. In this thesis, bistability behavior of optical signals

generated in microring resonator (MRR) systems using bright soliton input pulses

with 1.55 μm wavelength is studied. The generation of the bistable signals is

mathematically analyzed through the transfer matrix analysis and simulated by the

MATLAB software version 2014a. The behavior of the propagated input pulses in

terms of intensity and phase shift is investigated for different configurations

including All-pass MRR, Add-drop MRR and PANDA MRR systems. Three novel

Mobius MRR configurations consist of All-pass Mobius MRR, Add-drop Mobius

MRR and PANDA Mobius MRR configurations are proposed and the light treatment

through Mobius MRR systems is analytically studied and compared with

conventional MRR systems. For determining the effect of physical parameters such

as ring radius, control power variation and coupling coefficients on the output pulse,

the optical hysteresis loops of bistable signals are generated via silicon-on-insulator

nonlinear MRR configurations. The analyses of the results are conducted by

calculating the output switching power, input threshold power and hysteresis width

of bistable loop for radius variation from 1 μm to 6 μm with an increment of 1 μm,

change of coupling coefficient from 0.4 to 0.9 with increment of 0.1 and variation of

controlled power from 50 mW to 100 mW with increment of 10 mW. It is found that

small coupling coefficients enhance the hysteresis width and output switching power

of optical bistable loops. The value of output switching power obtained at the output

port of Add-drop Mobius MRR is 30.26 mW which is higher than those obtained

from All-pass Mobius and PANDA Mobius MRR configurations. The threshold

powers of the All-pass Mobius, Add-drop Mobius and PANDA Mobius

configurations for on switching operations are obtained as 20.59 mW, 31.39 mW and

25.19 mW respectively. It is found that, optimization of the Mobius MRR system

can be conducted by increasing the external radius of Mobius ring waveguide and

decreasing the coupling coefficient with implementation of the high control power.

In this work, the Mobius configurations are introduced as a convenient compact

design to generate optical bistability in comparison with conventional configurations

of nonlinear MRR system.

Page 5: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

vi

ABSTRAK

Optik dwikestabilan adalah salah satu daripada sifat-sifat tak linear yang

menghasilkan kawalan cahaya penting yang menyumbang dalam pelbagai kegunaan

fotonik seperti semua-pensuisan optik dan memori optik. Dalam tesis ini, tingkah

laku dwikestabilan isyarat optik yang dihasilkan dalam sistem pengalun cincin mikro

(MRR) menggunakan denyut input soliton cerah dengan panjang gelombang 1.55

μm telah dikaji. Penjanaan isyarat dwistabil dianalisis secara matematik melalui

analisis matriks pindahan dan disimulasikan dengan perisian MATLAB versi 2014a.

Kelakuan denyut input rambatan dikaji dari segi keamatan dan anjakan fasa untuk

susunan yang berbeza termasuk sistem MRR lepasan-semua, MRR penambah-jatuh

dan MRR PANDA. Tiga susunan MRR Mobius baru terdiri daripada susunan MRR

Mobius lepasan-semua, MRR Mobius penambah-jatuh dan MRR Mobius PANDA

dicadangkan dan rawatan cahaya melalui sistem MRR Mobius dikaji secara analitik

dan dibandingkan dengan sistem MRR konvensional. Untuk menentukan kesan

parameter fizikal seperti perubahan jejari cincin, kuasa kawalan dan pekali

gandingan denyut output, gelung histerisis optik isyarat dwistabil telah dihasilkan

melalui susunan MRR tak linear silikon-atas-penebat. Analisis keputusan dilakukan

dengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar gelung

histerisis dwistabil untuk perubahan jejari daripada 1 μm hingga 6 μm dengan

kenaikan 1 μm, perubahan pekali gandingan daripada 0.4 kepada 0.9 dengan

kenaikan 0.1 dan perubahan kuasa kawalan daripada 50 mW kepada 100 mW

dengan kenaikan 10 mW. Ia didapati bahawa pekali gandingan kecil meningkatkan

lebar histerisis dan kuasa pensuisan output gelung optik dwistabil. Nilai kuasa

pensuisan output diperolehi di port output MRR Mobius penambah-jatuh ialah 30.26

mW yang mana lebih tinggi daripada susunan MRR Mobius lepasan-semua dan

MRR Mobius PANDA. Kuasa ambang susunan Mobius lepasan-semua, Mobius

penambah-jatuh dan Mobius PANDA untuk operasi pensuisan terpasang diperoleh

masing-masing sebagai 20.59 mW, 31.39 mW dan 25.19 mW. Ia didapati bahawa,

pengoptimuman sistem Mobius MRR boleh dilakukan dengan meningkatkan jejari

luar pemandu-gelombang cincin Mobius, dan mengurangkan pekali gandingan

dengan pelaksanaan kuasa kawalan yang tinggi. Dalam kerja ini, susunan Mobius

diperkenalkan sebagai reka bentuk padat yang mudah untuk menjana dwikestabilan

optik berbanding dengan susunan konvensional pada sistem MRR tak linear.

Page 6: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xvii

LIST OF SYMBOLS xviii

LIST OF APPENDICES xxi

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 2

1.3 Research Objectives 3

1.4 Research Scope 4

1.5 Research Significance 5

1.6 Thesis Outline 5

2 LITERATURE REVIEW OF OPTICAL BISTABILITY 7

2.1 Introduction 7

2.2 Optical Bistability Switching 7

2.3 Optical Bistability in MRR 19

Page 7: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

viii

3 THEORY OF OPTICAL BISTABILITY 25

3.1 Introduction 25

3.2 Nonlinear Response of Optical Fiber 25

3.3 Nonlinear Refraction 28

3.4 Self-phase Modulation 29

3.5 Group Velocity Dispersion 30

3.6 Temporal Optical Soliton 32

3.7 Microring Resonator 37

3.8 Mobius Resonator Configuration 38

3.9 Coupling Theory 43

3.10 Transfer Matrix Analysis 50

3.11 Optical Bistability 52

4 RESEARCH METHODOLOGY 58

4.1 Introduction 58

4.2 Mathematical Computation of Optical Fields

in MRR 59

4.2.1 All-pass Type MRR Configurations 59

4.2.2 Add-drop Type MRR Configurations 65

4.2.3 PANDA Type MRR Configurations 71

4.3 Modelling of Microring Resonator System 79

4.3.1 Modelling of All-pass MRR 80

4.3.2 Modelling of Add-drop MRR 84

4.3.3 Modelling of PANDA MRR 88

5 RESULTS AND DISCUSSIONS 91

5.1 Introduction 91

5.2 Analysis of Optical Bistability in All-pass Type

MRR Configurations 92

5.2.1 Analysis of Output Power of All-pass

and All-pass Mobius MRR 93

Page 8: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

ix

5.2.2 Optical Hysteresis Operating in All-pass

and All-pass Mobius Configurations 96

5.2.3 Parametric Effects of Optical Bistability in

All-pass Type MRR Configurations 101

5.3 Analysis of Optical Bistability in Add-drop Type

MRR Configurations 110

5.3.1 Analysis of Output Power of Add-drop Filter

and Add-drop Mobius MRR 110

5.3.2 Optical Hysteresis Operating in Add-drop

and Add-drop Mobius MRR

Configurations 113

5.3.3 Parametric Effects of Optical Bistability in

Add-drop Type MRR Configuration 118

5.4 Analysis of Optical Bistability in PANDA Type

MRR Configurations 129

5.4.1 Analysis of Output Power of PANDA

and PANDA Mobius MRR 129

5.4.2 Optical Hysteresis Operating in PANDA and

PANDA Mobius MRR Configurations 133

5.4.3 Parametric Effects of Optical Bistability in

PANDA Type MRR Configuration 141

5.5 Optimization and Switching of Optical Bistability in

Mobius-Type MRR 164

6 CONCLUSION 171

6.1 Conclusion 171

6.2 Future Work 173

REFERENCES 174

Appendices A-D 184 - 208

Page 9: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

x

LIST OF TABLES

TABLE NO.

TITLE

PAGE

5.1 The threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops at

output port, point 1, and point 2 for the All-pass

Mobius configuration

100

5.2

List of threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops with

variation of radius, and coupling for All-pass and All-

pass Mobius configurations

108

5.3

List of threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops with

variation of control power for All-pass and All-pass

Mobius configurations

109

5.4

The threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops at

output ports, point 1, point 2, point 3 and point 4 for

the Add-drop filter ADF and Add-drop Mobius ADM

configurations.

117

5.5

Threshold powers, output switching powers ΔPswitch,

and hysteresis width Whys for Add-drop Mobius and

Add-drop filter configurations as a function of radius,

coupling coefficients and control powers.

128

5.6

Threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops for

optical power at output port, point 1, 2, 3, and 4 of All-

pass and All-pass Mobius configurations

140

5.7

List of threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops with

variation of radius for PANDA and PANDA Mobius

configurations 160

Page 10: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xi

5.8 List of threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops with

variation of coupling coefficient for PANDA and

PANDA Mobius configurations

161

5.9 List of threshold powers, output switch powers, and

hysteresis widths of the optical bistability loops with

variation of control power for PANDA and PANDA

Mobius configurations

162

5.10 Optimized Mobius types MRR configurations

properties

168

Page 11: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xii

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

3.1 The relation between induced polarization P and electric

field E

26

3.2 Schematics illustration of optical pulse with dispersive

and SPM

33

3.3 All-pass microring resonator configuration

38

3.4 Add-drop ring resonator configuration

38

3.5 Schematics diagram of Mobius strip

39

3.6 Photograph of Mobius wire resonator comprise of 5.715

cm radius with 3.175 cm vertical height of aluminum

cavity

40

3.7 Schematics diagram of Mobius resonator

40

3.8 Schematics diagram of transmission line comprised of

inductors and capacitors components in rectangular loop

arrangement

41

3.9 Schematics Mobius and ring resonator with the periodic

elements of LC electrical circuit

41

3.10 Schematic diagram of fabrication process of microring

waveguide in Mobius shape

42

3.11 Coupling between two parallel waveguides

44

3.12 Schematics diagram of transfer matrix method

51

3.13 Fabry-Perot interferometer with the unidirectional

nonlinear cavity

54

3.14 The detuning of optical input source without increment

of intensity 55

Page 12: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xiii

3.15 The output versus input intensity curve with zero phase

detuning

56

3.16 The output versus input intensity curve with low phase

detuning

56

3.17 The output versus input intensity curve with high phase

detuning

57

4.1 Schematics diagram of All-pass MRR system

60

4.2 Schematic diagram of All-pass Mobius configuration

63

4.3 Schematics diagram of Add-drop MRR system

66

4.4 Schematics diagram of Add-drop Mobius ring resonator

69

4.5 PANDA configuration of MRR system

71

4.6 Propagation of electric field approaching the PANDA

right side ring waveguide

73

4.7 Propagation of electric field approaching the PANDA

left side ring waveguide

73

4.8 Schematics diagram of PANDA Mobius ring resonator

75

4.9 Right-side ring coupled to the centre PANDA Mobius

configuration

77

4.10 Left-side ring coupled to the centre PANDA Mobius

configuration

77

4.11 The modelling process of All-pass and All-pass Mobius

configuration of MRR system

83

4.12 The modelling process of Add-drop and Add-drop

Mobius configuration of MRR system

87

4.13 The modelling process of PANDA and PANDA Mobius

configuration of MRR system

90

5.1 Optical Bright soliton signal spectrum

93

5.2 The optical power spectrum of all-pas and All-pass

Mobius configuration, (a) and (b) are the power of

circulated field at point 1 and point 2 respectively, c) is

the output power of the microring system

95

5.3 Hysteresis loop of optical bistability behavior on All- 97

Page 13: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xiv

pass and All-pass Mobius configuration MRR system

5.4 i) Schematic diagram All-pass and All-pass Mobius of

ii)Circulated power at point 1 a) and 2 b) plotted with

respect to input power

98

5.5 The input-output power relation of radius variation in

All-pass configuration Ri where i= 1μm, 2μm, 3μm,

4μm, 5μm, and 6μm.

102

5.6 The output-to-input power relation of coupling

coefficients variation κi where i=0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9

105

5.7 The output-to-input relation with the increment of input

power Pin (in=50mW, 60mW, 70mW, 80mW, 90mW,

and 100mW) variation

107

5.8 Optical powers generated at through (a) and drop (b)

port of ADF and Add-drop-Mobius configurations

111

5.9 Optical circulation powers in ADF and ADM

configurations at point 1, 2, 3, and 4 as (a) to (d)

respectively

112

5.10 Hysteresis loop of optical bistability generated by using

ADF and ADM configuration

114

5.11 Optical hysteresis loop of circulating power of ADF and

ADM configurations

116

5.12 Output-to-input power relation of radius variation in

ADF and ADM configurations Ri where i= 1μm, 2μm,

3μm, 4μm, 5μm, and 6μm

119

5.13 The output-to-input power relation of coupling

coefficients variation κi in ADF and ADM

configurations where i = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9

122

5.14 i) The output-to-input power relation of control power

Pc variation in ADF and ADM configurations. ii) The

hysteresis loop of the bistable signal in ADM MRR.

126

5.15 Optical transmission spectrum generated at output (a)

and drop (b) ports of PANDA and PANDA M

configurations

130

5.16 Optical circulation powers in PANDA and PANDA-

Mobius configurations at point 1, 2, 3, and 4 as (a) to (d)

respectively 132

Page 14: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xv

5.17 The output port optical power versus the input power in

PANDA and PANDA M configuration

134

5.18 Circulation power hysteresis i) diagram of PANDA and

PANDA M circulation point ii) Input-output power

relation of circulating power at point 1,2,3 and 4

136

5.19 Optical bistability in increase of main ring radius

PANDA configuration a) schematics of PANDA

configuration with radius variation of 6 μm to 7μm b)

Input-output power relation for 6 μm and c) Input-

output power relation for 7 μm

142

5.20 Output-to-input power relation of PANDA

configuration with radius variation for 6 μm, 7 μm, 8

μm, 9 μm, 10 μm, and 11 μm a) to f).

143

5.21 Optical bistability in increase of main ring radius

PANDA Mobius configuration a) schematics of

PANDA Mobius configuration with radius variation of

6 μm to 7μm b) Input-output power relation for 6 μm

and c) Input-output power relation for 7 μm

145

5.22 Output-to-input power relation of PANDA Mobius

configuration with radius variation for 6 μm, 7 μm, 8

μm, 9 μm, 10 μm, and 11 μm

146

5.23 Output-to-input power relation of a) PANDA Mobius

and b) PANDA configurations with 0.4 and 0.5 coupling

coefficients

150

5.24 Output-to-input power relation of PANDA and PANDA

Mobius configurations with coupling coefficients

variation for 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9

151

5.25 PANDA control power variation i) schematic diagram

of PANDA configurations with control power variation

of 50mW to 60mW, ii) Input-output power relation with

50mW and 60mW power variation

153

5.26 PANDA Mobius control power variation i) schematic

diagram of PANDA Mobius configurations with control

power variation of 50mW to 60mW, ii) Input-output

power relation with 50mW and 60mW power variation

155

5.27 Output-to-input power relation of PANDA and PANDA

Mobius configurations with coupling coefficients

variation for 50 mW, 60 mW, 70 mW, 80 mW, 90 mW,

and 100 mW

157

Page 15: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xvi

5.28 The output port optical power versus the input power for

All-pass, Add-drop, and PANDA types MRR

configuration

165

5.29 The switching operation of optical bistability hysteresis

loop using All-pass Mobius MRR configuration

166

5.30 Optical bistability from the simulated All-pass Mobius

MRR, experimental data of conventional All-pass MRR,

and finite-element-method (FEM) simulation of single

MRR system.

169

Page 16: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xvii

LIST OF ABBREVIATIONS

MRR - Microring Resonator

FDTD - Finite-Different-Time-Domain

SPR - Surface Palsmon Resonance

VCSEL - Vertical Cavity Surface Emitting Laser

EDF-FBG - Erbium Doped Fiber-Fiber Bragg Grating

FBG - Fiber Bragg Grating

SMFPLD - Single Mode of Fabry Perot Laser Diode

EIR - Induced Reflection Effect

WGM - Whispering Gallery Mode

NLC - Nematic Liquid Crystal

PHI - Photo Induced Isotropic

ICP - Inductively Plasma Coupled

SEM - Scanning Electron Microscopy

All-pass M - All-pass Mobius

Add-drop M - Add-drop Mobius

PANDA M - PANDA Mobius

Page 17: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xviii

LIST OF SYMBOLS

ε0 - Electric vacuum permittivity

χ - Electric susceptibility

α - Attenuation loss

P - Polarization

PNL - Nonlinear polarization

c - Speed of light

n - Internal refractive index

ω0 - Angular frequency

E - Electric field

Po - Nonlinear angular frequency

t - Propagation time

Χ(i) - ith order of susceptibility

χeff - Effective susceptibility

n0 - Linear refractive index

k0 - Wavenumber

L - Propagation length

I - Intensity

𝜙L - Linear phase shift

𝜙NL - Nonlinear phase shift

λ - Wavelength

β - Propagation constant

T - Pulse propagation time

vg - Group velocity

β2 - Group velocity dispersion parameter

ΔT - Pulse spreading time

LD - Dispersion length

Page 18: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xix

T0 - Pulse width

A - Pulse amplitudes

a ( t , z ) - Pulse envelope

f ( x , y ) - Spatial structure of optical field

β ( ω ) - Phase constant

βnl - Nonlinear phase constant

βl - Linear phase constant

Io - Pulse propagation time

z - Pulse propagation distance in z direction

LNL - Nonlinear length

η0 - Wave impedance

In - Current amplitude

N - Number of ladder circuit

L’ - Inductance

C’ - Capacitance

M - Mutual impedance

k - Wavevector

n2’ - Waveguide 2 refractive index

n1 - Waveguide 1 refractive index

μo - Vacuum permeability

S1 - Complex amplitude

u - Wave amplitude function

C21 - Coupling coefficient waveguide 1 to 2

iS - Cross coupling parameter

C - Self-coupling parameter

T’ - Transmission coefficient

R’ - Reflection coefficient

𝜙H - High negative detuning

𝜙L - Low negative detuning

𝜙0 - Centre detuning

κi - Coupling coefficient at coupling region i

n2 - Nonlinear index

Aeff - Effective area

Page 19: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xx

Ei - Electric field at i position

Eim - Electric field at i position for Mobius resonator

ξi - Phase shift for i radius

𝛾i - Propagation loss at coupling region i

Aeff - Effective area

Page 20: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

xxi

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A All-pass and All-pass Mobius Coding

184

B Add-drop and Add-drop Mobius Coding

192

C PANDA and PANDA Mobius Coding

197

D Threshold Determination Graph

208

Page 21: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

Optical bistability is one of the nonlinear properties which has contributed in

various applications such as optical transistors [1, 2], optical logic switching [3, 4],

optical signal processing [5], fiber communication [6-8] and optical memories [7, 9,

10]. Optical bistability is a hysteresis effect that illustrates two possible output power

states within an input power range in a nonlinear optic system. The generation of

optical bistability utilized for producing the change of the refractive index of the

material with the effect of the input signal [11]. In common, the refractive index can

be controlled by manipulating three types of nonlinear effects that occur within the

nonlinear resonator cavity which are thermo-optics [12], optical Kerr [13] and carrier

induced plasma [14, 15]. The optical Kerr effect is found as the main factor of the

optical bistability generation. It enhances by the nonlinear response of the propagated

light signal within the optical resonator cavity and with minimum loss of induced

light signal [16]. Thus, several experiments and theoretical investigation have been

conducted based on the nonlinear Kerr effect for optical switching [17] and optical

memory devices [18]. The development of the optical bistability in numerous

applications has encourage researchers to explore the nonlinear properties with

experimental findings on the various cavities of optical system such as microring

waveguide[19], photonics crystal cavities [20, 21], metal gap nanocavities[22],

subwavelengths metallic grating [23], and amorphous silicon nanoanntena [24]. The

optical resonance effect is found as a key parameter which provided the increase of

the

Page 22: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

2

optical bistability in which have been investigated in theoretical by using Fabry Perot

(FP) configuration in analytical modelling [25]. Besides, the analytical formulation

has been developed in optical nanophotonics system for investigating the optical

bistability within a nonlinear metal nano-anntena in which able to generate strong

field and increase the refractive index changes [25]. The microring resonator (MRR)

is one of the promising components in photonics integrated circuit that has potential

capability in enhancement of nonlinearity which have been proved in experimental

and theoretical investigation that suit with versatile applications including generation

of optical bistability [10, 26, 27]. The optical MRR waveguide has been a noteworthy

structure that provide nonlinearity in low power consumption due to resonance and

confinement of light within the cavity. This allows the MRR to be used for the

generation of the optical bistability that can be achieved in low cost and compact size

[10, 28]. The design of the MRR configuration is an important factor that can affect

the generation and the enhancement of the optical bistability [29]. In year 2008,

Yupapin et al. has introduced PANDA configuration of MRR system to provide

optical switching operation based on the optical bistability effect [30]. The Mobius

shape of ring resonator waveguide have been implemented in electrical resonator

circuit and optical waveguide resonator [31] for several application such as band-

pass filter [32], transmission zero and tunable oscillator [33].

However, in the review of this study, there are still no report on the

investigation of the optical bistability based on the optical Mobius ring waveguide

whether in theoretical or experimental study. Thus, the theoretical investigation is

needed to understand the evolution and enhance the performance of optical

bistability in Mobius configuration of MRR system.

1.2 Problem Statement

Optical bistability is an important optical nonlinear property which has many

application in all-optical switching devices. The generation of optical bistability

behavior is mostly intuitive nonlinearity effect which can be enhanced using the

MRR waveguide system. The optical MRR have provided great advancement in the

Page 23: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

3

research of the optical science field with numerous application such as the all-optical

switching, memory, storage and communication. In recent years, the fabrication of

the optical MRR system is focused to demonstrate the fast bistable switching and

optical chaotic signal with low input power and the compact size of configurations.

Consequently, theoretical and experiment investigations are needed for analyzing the

MRR circuits which can contribute to generate and optimize the bistable optical

signal. The modelling and simulating of the light propagation within the MRR

system are performed with the mathematical derivation of the optical transfer

function based on the transfer matrix method and coupled mode theory to study the

behavior the optical bistability signal on the proposed configurations. The parameters

of the MRR medium such as coupling coefficient, radius of the microring and control

power signal are necessary to be investigated for producing a fine nonlinear response

to generate an optimized optical bistability hysteresis loop for all-optical switching

applications. A clear understanding of fundamental physics optics can be utilized by

analyzing the obtained results which governed several subtopic of the photonics

fields such as nonlinear effect, optical bistability, scattering matrix, and coupled

theory.

1.3 Research Objectives

The general objectives of this research is to study the formation of the optical

bistability, using bright soliton pulse within the ring resonator system based on the

analytical treatment of the waveguide system.

The specific objectives of this research:

To design Mobius type of MRR system based on All-pass, Add-drop

and PANDA microring resonator configurations.

To develop the mathematical formulation for deriving the optical

transfer function based on conventional and Mobius types MRR

configurations.

Page 24: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

4

To simulate the pulse propagation within MRR systems by using

iterative method for modelling the output pulse spectrum and

analyzing the output to input power of the MRR configurations.

To optimize the physical properties of MRR system for enhancing the

generation of optical bistability.

To demonstrate the switching operation based on the spectrum of

output signal of MRR configurations.

1.4 Research Scope

This research emphasis on the design of new MRR for generating of optical

bistability. The Mobius ring waveguide is implemented into the All-pass, Add-drop

and PANDA configuration of MRR. The topological effect of Mobius type

configuration is studied in detail in which the ring structure having two different

radius per roundtrip. The MRR configuration is simulated based on the physical

parameter of Silicon-on-Insulator (SOI) waveguide which consists of the silicon as

core and silica as the cladding material. The SOI waveguide fabricated has a linear

refractive index of 2.50 [34] and nonlinear refractive index of 4.8×10-18 m2/W [35].

The MRR configurations is simulated by considering the lateral coupling between

the main ring and bus waveguide. The derivation of optical transfer function equation

is performed based on the coupled mode theory and transfer matrix method. The

pulse propagation equations describing the output and circulating electric fields

within the MRR systems are obtained by an analytical formulation of the incident

optical bright soliton pulses which are fed into the input port of MRR configurations.

The simulation of optical electric fields are based on the iterative method of the

propagation equation for 200000 roundtrips in order to achieve the optical bistability

on the output-to-input power. The parameterization of the waveguide properties is

executed by varying the coupling coefficients from 0.4 to 0.9, the ring radius from 1

μm to 6 μm for All-pass and Add-drop types, and 6 to 11 μm PANDA type

configuration, and control powers from 50 mW to 100 mW. The input power of the

bright soliton is fixed as 50 mW when operating the microring system. The

dynamical variation of the optical bistability hysteresis loop is investigated based on

Page 25: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

5

the dispersive nonlinear element which relates the change of nonlinear index of the

cavity. Several practical parameters such as propagation losses, effective core area,

medium index, and attenuation constant are balanced for enhancing the nonlinearity

of the waveguide. This will enhances the high performance of optical bistability

effect. MATLAB software version 2014a is used to model and simulate the optical

spectrum and the hysteresis loop of the optical bistability within MRR configurations.

1.5 Research Significance

The optical bistability is based on the dispersive process. It is found to be

important study of nonlinear properties due to its capability of providing the optical

switching operation in low power. The contribution of this study is mainly focused

on providing the fundamental physics of the optical bistability generation by

applying the optical bright soliton pulses that leads to a clear understanding the

propagation of the bright soliton pulse within the perspective of nonlinearity theory.

There are six configurations of MRRs have been studied to prefigure precisely the

performance of optical bistability hysteresis loop for switching operation. The

development of theoretical derivation on conventional and proposed Mobius ring

waveguide is utilized based on transfer matrix method. These present the basic

knowledge on the analytical derivation for optical propagation pulse within a

resonator medium. The correlation of the mathematical formulation with nonlinear

optics physics have been described based on the modelling of the integrated

resonator devices for the enhancement of all-optical switching operation for the

information storage, optical transistor and communication applications.

1.6 Thesis Outline

This thesis is divided into six chapters. Chapter 2 will describe the historical

and scientific review of optical bistability. In the third chapter, the essential physic

concepts nonlinear optics for the formation of temporal optical soliton are discussed.

Page 26: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

6

The waveguide theory has been explained by introducing the optical coupled-mode

theory and the transfer matrix analysis for optical field propagation in the medium

which correlates MRR, and optical bistability. The mathematical derivation of the

optical transmission powers based on propagation equations are examined using

transfer matrix analysis and described in detail in Chapter 4. The modelling of the

MRR systems are discussed based on the mathematical iterative method which are

used for the coding and programming aspect part. There are six configuration of

MRR system that are investigated which comprises of three conventional

configurations and three Mobius configurations. In Chapter five, the optical pulse

propagation within MRR configurations are analyzed and discussed based on

numerical modelling using the scattering matrix iterative technique. The linear and

nonlinear effects are considered in the numerical models for six configurations of

MRR waveguide. The bright soliton pulse with different powers are used for the

nonlinear MRR waveguide which provides the chaotics optical signal. The resonance

mode of the MRR systems generated the amplified output signal and enhanced the

generation of the optical bistability of the system. In Chapter six, concludes the study

on optical bistability in Mobius MRR.

Page 27: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

174

REFERENCES

1. Y. Yosia and S. Ping. Double optical bistability and its application in

nonlinear chalcogenide-fiber Bragg gratings. Physica B-Condensed Matter,

2007. 394(2): 293-296.

2. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R.

Cingolani, A. Bramati, G. Gigli, and D. Sanvitto. All-optical polariton

transistor. Nature Communications, 2013. 4.

3. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi. Fast

bistable all-optical switch and memory on a silicon photonic crystal on-chip.

Optics Letters, 2005. 30(19): 2575-2577.

4. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama. On-chip

all-optical switching and memory by silicon photonic crystal nanocavities.

Advances in Optical Technologies, 2008. 2008.

5. M. Pollinger and A. Rauschenbeutel. All-optical signal processing at ultra-

low powers in bottle microresonators using the Kerr effect. Optics Express,

2010. 18(17): 17764-17775.

6. J. P. Ulahannan, M. P. John, and V. Nandakumaran. Bistability and

Hysteresis in the Dynamics of Directly Modulated Multiple Quantum Well

Lasers. Laser Science. Optical Society of America, JWC43.

7. H. Kawaguchi. Optical buffer memory based on polarization bistability in

VCSELs. ICTON 2008: Proceedings of 2008 10th Anniversary International

Conference on Transparent Optical Networks, Vol 2, 2008. 105-108.

8. Z. G. Zang. Numerical analysis of optical bistability based on Fiber Bragg

Grating cavity containing a high nonlinearity doped-fiber. Optics

Communications, 2012. 285(5): 521-526.

9. V. R. Almeida and M. Lipson. Optical bistability on a silicon chip. Optics

Letters, 2004. 29(20): 2387-2389.

Page 28: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

175

10. M. Shafiei and M. Khanzadeh. Low-threshold bistability in nonlinear

microring tower resonator. Optics Express, 2010. 18(25): 25509-25518.

11. B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics: John Wiley &

Sons. 2007.

12. Q. F. Xu and M. Lipson. Carrier-induced optical bistability in silicon ring

resonators. Optics Letters, 2006. 31(3): 341-343.

13. I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C.

Righini, and S. Soria. Hybrid microspheres for nonlinear Kerr switching

devices. Optics Express, 2011. 19(10): 9523-9528.

14. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T.

Kakitsuka, and M. Notomi. All-optical on-chip bit memory based on ultra

high Q InGaAsP photonic crystal. Optics Express, 2008. 16(23): 19382-

19387.

15. W. Yoshiki and T. Tanabe. Add-drop system for Kerr bistable memory in

silicon nitride microrings. arXiv preprint arXiv:1308.6042, 2013.

16. W. Yoshiki and T. Tanabe. Performance of Kerr bistable memory in silicon

nitride microring and silica microtoroid. Japanese Journal of Applied

Physics, 2014. 53(12).

17. H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao. Ultrafast all-optical

switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Optics

Express, 2011. 19(4): 2910-2915.

18. W. Yoshiki and T. Tanabe. Analysis of bistable memory in silica toroid

microcavity. Journal of the Optical Society of America B-Optical Physics,

2012. 29(12): 3335-3343.

19. C. T. Wang, C. W. Tseng, J. H. Yu, Y. C. Li, C. H. Lee, H. C. Jau, M. C.

Lee, Y. J. Chen, and T. H. Lin. Optical bistability in a silicon nitride

microring resonator with azo dye-doped liquid crystal as cladding material.

Optics Express, 2013. 21(9): 10989-10994.

20. R. Shankar, I. Bulu, R. Leijssen, and M. Loncar. Study of thermally-induced

optical bistability and the role of surface treatments in Si-based mid-infrared

photonic crystal cavities. Optics Express, 2011. 19(24): 24828-24837.

21. R. Shankar, I. Bulu, R. Leijssen, K. Leonard, and M. Loncar. Mitigation of

optical bistability in Si-based mid-infrared photonic crystal cavities using

Page 29: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

176

surface treatments. 2012 Conference on Lasers and Electro-Optics (Cleo),

2012.

22. Y. Shen and G. P. Wang. Optical bistability in metal gap waveguide

nanocavities. Optics Express, 2008. 16(12): 8421-8426.

23. J. C. Wang, Y. K. Wang, X. R. Zhang, Y. L. Song, and S. T. Liu. Optical

bistability of subwavelength metallic film coated by Kerr dielectric gratings.

Optik, 2012. 123(8): 675-678.

24. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar. Actively tunable

bistable optical Yagi-Uda nanoantenna. Optics Express, 2012. 20(8): 8929-

8938.

25. F. Zhou, Y. Liu, Z. Y. Li, and Y. N. Xia. Analytical model for optical

bistability in nonlinear metal nano-antennae involving Kerr materials. Optics

Express, 2010. 18(13): 13337-13344.

26. D. Alexandropoulos, H. Simos, M. J. Adams, and D. Syvridis. Optical

bistability in active semiconductor microring structures. IEEE Journal of

Selected Topics in Quantum Electronics, 2008. 14(3): 918-926.

27. Y. Dumeige, L. Ghisa, and P. Feron. Dispersive multistability in microring

resonators. Journal of Optics a-Pure and Applied Optics, 2006. 8(7): S483-

S489.

28. M. H. Mohammadzadeh, A. Rostami, M. Dolatyari, and G. Rostami. Optical

bistability in a single-bus InGaAs micro-ring resonator array. Optik, 2014.

125(14): 3573-3577.

29. F. Felber and J. Marburger. Theory of nonresonant multistable optical

devices. Applied Physics Letters, 1976. 28(12): 731-733.

30. M. Bahadoran, J. Ali, and P. P. Yupapin. Ultrafast all-optical switching using

signal flow graph for PANDA resonator. Applied Optics, 2013. 52(12): 2866-

2873.

31. S. Li, L. Ma, V. Fomin, S. Böttner, M. Jorgensen, and O. Schmidt. Non-

integer optical modes in a M\" obius-ring resonator. arXiv preprint

arXiv:1311.7158, 2013.

32. J. M. Pond, S. J. Liu, and N. Newman. Bandpass filters using dual-mode and

quad-mode mobius resonators. Ieee Transactions on Microwave Theory and

Techniques, 2001. 49(12): 2363-2368.

Page 30: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

177

33. A. K. Poddar and U. L. Rohde. Metamaterial Mobius Strips (MMS):

Application in Resonators for Oscillators and Synthesizers. 2014 Ieee

International Frequency Control Symposium (Fcs), 2014. 297-305.

34. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci. Tunable silicon

microring resonator with wide free spectral range. Applied Physics Letters,

2006. 89(7).

35. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude. Nonlinear

silicon-on-insulator waveguides for all-optical signal processing. Optics

Express, 2007. 15(10): 5976-5990.

36. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal. Analytical study of

optical bistability in silicon ring resonators. Optics Letters, 2010. 35(1): 55-

57.

37. S. Banerjee, M. Mitra, and L. Rondoni. Applications of chaos and nonlinear

dynamics in engineering: Springer. 2011.

38. R. Clavero, E. Ramos, and J. Marti. All-optical flip-flop based on an active

Mach-Zehnder interferometer with a feedback loop. Optics Letters, 2005.

30(21): 2861-2863.

39. Y. D. Jeong, J. S. Cho, Y. H. Won, H. J. Lee, and H. Yoo. All-optical flip-

flop based on the bistability of injection locked Fabry-Perot laser diode.

Optics Express, 2006. 14(9): 4058-4063.

40. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and

S. Kawanishi. All-optical flip-flop circuit composed of coupled two-port

resonant tunneling filter in two-dimensional photonic crystal slab. Optics

Express, 2006. 14(3): 1230-1235.

41. L. Li, X. L. Zhang, and L. X. Chen. Optical bistability and Fano-like

resonance transmission in a ring cavity-coupled Michelson interferometer.

Journal of Optics a-Pure and Applied Optics, 2008. 10(7).

42. J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q.

W. Zhan. Optical bistability enhanced by highly localized bulk plasmon

polariton modes in subwavelength metal-nonlinear dielectric multilayer

structure. Applied Physics Letters, 2009. 94(8).

43. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi. Extremely low power

optical bistability in silicon demonstrated using 1D photonic crystal

nanocavity. Optics Express, 2009. 17(23): 21108-21117.

Page 31: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

178

44. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams. Power and

wavelength polarization bistability with very wide hysteresis cycles in a

1550nm-VCSEL subject to orthogonal optical injection. Optics Express,

2009. 17(26): 23637-23642.

45. T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H.

Kawaguchi. All-Optical Flip-Flop Operation at 1-mA Bias Current in

Polarization Bistable Vertical-Cavity Surface-Emitting Lasers With an Oxide

Confinement Structure. Ieee Photonics Technology Letters, 2011. 23(23):

1811-1813.

46. C.-H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H.

Sumikura, and M. Notomi. All-optical memory based on injection-locking

bistability in photonic crystal lasers. Optics express, 2011. 19(4): 3387-3395.

47. K. Ogusu and Y. Oda. Modeling of the dynamic transmission properties of

chalcogenide ring resonators in the presence of fast and slow nonlinearities.

Optics Express, 2011. 19(2): 649-659.

48. H. Mabuchi. Coherent-feedback control strategy to suppress spontaneous

switching in ultralow power optical bistability. Applied Physics Letters,

2011. 98(19).

49. M. Karimi, M. Lafouti, A. A. Amidiyan, and J. Sabbaghzadeh. All-optical

flip-flop based on nonlinear effects in fiber Bragg gratings. Applied Optics,

2012. 51(1): 21-26.

50. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L.

Kwong, J. Hone, and C. W. Wong. Regenerative oscillation and four-wave

mixing in graphene optoelectronics. Nature Photonics, 2012. 6(8): 554-559.

51. J. B. Li, N. C. Kim, M. T. Cheng, L. Zhou, Z. H. Hao, and Q. Q. Wang.

Optical bistability and nonlinearity of coherently coupled exciton-plasmon

systems. Optics Express, 2012. 20(2): 1856-1861.

52. Q. Zhang, C. Qin, K. S. Chen, M. Xiong, and X. L. Zhang. Novel Optical

Multibistability and Multistability Characteristics of Coupled Active

Microrings. Ieee Journal of Quantum Electronics, 2013. 49(3): 365-374.

53. J. W. Wu and B. Nakarmi. A power and wavelength detuning-dependent

hysteresis loop in a single mode Fabry-Perot laser diode. Chinese Physics B,

2013. 22(8).

Page 32: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

179

54. H. Lu and X. M. Liu. Optical bistability in subwavelength compound

metallic grating. Optics Express, 2013. 21(11): 13794-13799.

55. B. Nakarmi, T. Q. Hoai, Y. H. Won, and X. P. Zhang. Analysis of Hysteresis

Width on Optical Bistability for the Realization of Optical SR Flip-Flop

Using SMFP-LDs With Simultaneous Inverted and Non-Inverted Outputs.

Ieee Photonics Journal, 2014. 6(3).

56. S. W. Tang, B. C. Zhu, S. Y. Xiao, J. T. Shen, and L. Zhou. Low-threshold

optical bistabilities in ultrathin nonlinear metamaterials. Optics Letters, 2014.

39(11): 3212-3215.

57. B. Memarzadeh and H. Mosallaei. Engineering optical bistability in a

multimaterial loop metasurface. Journal of the Optical Society of America B-

Optical Physics, 2014. 31(7): 1539-1543.

58. O. Tsilipakos and E. E. Kriezis. Optical bistability with hybrid silicon-

plasmonic disk resonators. Journal of the Optical Society of America B-

Optical Physics, 2014. 31(7): 1698-1705.

59. T. A. Tameh, N. Granpayeh, B. M. Isfahani, and A. M. Javan. Comparison of

optical bistability of photonic crystal microring resonator switch with

different input signal. Electrical Engineering (ICEE), 2010 18th Iranian

Conference on. IEEE, 68-70.

60. B. A. Daniel and G. P. Agrawal. Phase-switched all-optical flip-flops using

two-input bistable resonators. IEEE Photonics Technology Letters, 2012.

24(5): 479.

61. S. Chiangga, S. Pitakwongsaporn, T. D. Frank, and P. P. Yupapin. Optical

Bistability Investigation in a Nonlinear Silicon Microring Circuit. Journal of

Lightwave Technology, 2013. 31(7): 1101-1105.

62. Q. Li, H. Yuan, and X. Tang. Bistability and all-optical flip–flop with active

microring resonator. Applied optics, 2014. 53(14): 3049-3056.

63. A. Majumdar and A. Rundquist. Cavity-enabled self-electro-optic bistability

in silicon photonics. Optics Letters, 2014. 39(13): 3864-3867.

64. X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z.

Huang. Mode Characteristics and Optical Bistability for AlGaInAs/InP

Microring Lasers. Ieee Photonics Technology Letters, 2014. 26(17): 1703-

1706.

Page 33: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

180

65. M. Bahadoran, J. Ali, and P. P. Yupapin. Graphical Approach for Nonlinear

Optical Switching by PANDA Vernier Filter. Ieee Photonics Technology

Letters, 2013. 25(15): 1470-1473.

66. C. C. Evans and E. Mazur. Nanophotonics: Linear and Nonlinear Optics at

the Nanoscale. In: Nano-Optics for Enhancing Light-Matter Interactions on

a Molecular Scale: Springer. 119-176; 2013.

67. G. P. Agrawal. Nonlinear fiber optics: Academic press. 2007.

68. B. Di Bartolo, J. Collins, and L. Silvestri. Nano-Optics for Enhancing Light-

Matter Interactions on a Molecular Scale. 2011. 135.

69. Y. S. Kivshar and B. Luther-Davies. Dark optical solitons: physics and

applications. Physics Reports-Review Section of Physics Letters, 1998.

298(2-3): 81-197.

70. L. F. Mollenauer and J. P. Gordon. Solitons in optical fibers: fundamentals

and applications: Academic Press. 2006.

71. A. Biswas and S. Konar. Introduction to non-Kerr law optical solitons: CRC

Press. 2006.

72. G. P. Agrawal. Nonlinear fiber optics: Academic press. 2007.

73. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R.

Morandotti. Highly Stable 200GHz Soliton Microring Resonator Laser based

on Filter-Driven Four Wave Mixing. 2011 Ieee Photonics Conference (Pho),

2011. 427-428.

74. M. Soljacic, E. Lidorikis, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos,

and Y. Fink. Optical bistability and cutoff solitons in photonic bandgap

fibers. Optics Express, 2004. 12(8): 1518-1527.

75. J. Scheuer, G. T. Paloczi, J. K. Poon, and A. Yariv. Coupled resonator optical

waveguides: toward the slowing and storage of light. Optics and photonics

news, 2005. 16(2): 36-40.

76. D. G. Rabus. Integrated ring resonators the compendium. New York:

Springer. 2007.

77. P. Yupapin. Guided Wave Optics and Photonics. New York: Nova Science

Publishers. 2008.

78. A. Kazmierczak, M. Briere, E. Drouard, P. Bontoux, P. Rojo-Romeo, I.

O'Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou. Design,

simulation, and characterization of a passive optical add-drop filter in silicon-

Page 34: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

181

on-insulator technology. Ieee Photonics Technology Letters, 2005. 17(7):

1447-1449.

79. D. J. Ballon and H. U. Voss. Classical Möbius-Ring Resonators Exhibit

Fermion-Boson Rotational Symmetry. Physical review letters, 2008.

101(24): 247701.

80. J. M. Pond. Mobius dual-mode resonators and bandpass filters. Microwave

Theory and Techniques, IEEE Transactions on, 2000. 48(12): 2465-2471.

81. A. K. Poddar, U. L. Rohde, and D. Sundararajan. A novel Mobius-coupled

printed resonator based signal sources. Microwave Symposium Digest (IMS),

2013 IEEE MTT-S International. IEEE, 1-4.

82. M. J. Kim, C. S. Cho, and J. Kimt. Miniaturized resonator using a planar

Mobius strip bisected along the circumferential direction. 2006 Ieee Mtt-S

International Microwave Symposium Digest, Vols 1-5, 2006. 1385-1388.

83. A. Poddar, U. Rohde, and T. Itoh. Metamaterial Möbius Strips (MMS):

Tunable oscillator circuits. Microwave Symposium (IMS), 2014 IEEE MTT-S

International. IEEE, 1-4.

84. X. Q. Wu and L. M. Tong. Optical microfibers and nanofibers.

Nanophotonics, 2013. 2(5-6): 407-428.

85. H. Y. Choi, S. Y. Ryu, J. Y. Kim, G. H. Kim, S. J. Park, B. H. Lee, and K. S.

Chang. Microlensed dual-fiber probe for depth-resolved fluorescence

measurements. Optics Express, 2011. 19(15): 14172-14181.

86. C. L. Chen. Foundations for Guided-Wave Optics: Wiley. 2006.

87. G. I. Stegeman and R. A. Stegeman. Nonlinear Optics: phenomena,

materials and devices: John Wiley & Sons. 2012.

88. N. M. Litchinitser, I. R. Gabitov, and A. I. Maimistov. Optical bistability in a

nonlinear optical coupler with a negative index channel. Physical review

letters, 2007. 99(11): 113902.

89. Y. A. Sharaby, A. Joshi, and S. S. Hassan. Optical bistability without the

rotating wave approximation. Physics Letters A, 2010. 374(21): 2188-2194.

90. A. R. Cowan and J. F. Young. Nonlinear optics in high refractive index

contrast periodic structures. Semiconductor Science and Technology, 2005.

20(9): R41-R56.

Page 35: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

182

91. A. L. Steele. Optical bistability, instabilities and power limiting behavior

from a dual nonlinear optical fibre loop mirror resonator. Optics

Communications, 2004. 236(1-3): 209-218.

92. C. Li, X. Luo, and A. W. Poon. Dual-microring-resonator electro-optic logic

switches on a silicon chip. Semiconductor Science and Technology, 2008.

23(6).

93. S. Y. Cho and R. Soref. Interferometric microring-resonant 2x2 optical

switches. Optics Express, 2008. 16(17): 13304-13314.

94. J. Heebner, R. Grover, and T. A. Ibrahim. Optical microresonators: theory,

fabrication, and applications: Springer Verlag. 2008.

95. Y. S. Kivshar and G. Agrawal. Optical solitons: from fibers to photonic

crystals: Academic press. 2003.

96. G. P. Agrawal. Nonlinear fiber optics: Springer. 2000.

97. S. Lynch. Dynamical Systems with Applications using MATLAB®:

Birkhäuser Boston. 2004.

98. L. Shuai, W. Yuanda, Y. Xiaojie, A. Junming, L. Jianguang, W. Hongjie, and

H. Xiongwei. Tunable filters based on an SOI nano-wire waveguide micro

ring resonator. Journal of Semiconductors, 2011. 32(8): 084007.

99. G. V. Herrera, T. Bauer, M. G. Blain, P. E. Dodd, R. Dondero, E. J. Garcia,

P. C. Galambos, D. L. Hetherington, J. J. Hudgens, F. B. McCormick, G. N.

Nielson, C. D. Nordquist, M. Okandan, R. H. Olsson, K. Ortiz, M. R.

Platzbecker, P. J. Resnick, R. J. Shul, M. J. Shaw, C. T. Sullivan, and M. R.

Watts. SOI-Enabled MEMS Processes Lead to Novel Mechanical, Optical,

and Atomic Physics Devices. 2008 IEEE International SOI Conference,

Proceedings, 2008. 5-8.

100. B. Oktem, C. Ulgudur, and F. O. Ilday. Soliton-similariton fibre laser. Nature

Photonics, 2010. 4(5): 307-311.

101. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao. Dissipative soliton resonance

in an all-normal-dispersion erbium-doped fiber laser. Optics Express, 2009.

17(7): 5580-5584.

102. G. P. Agrawal. Nonlinear fiber optics: its history and recent progress

[Invited]. Journal of the Optical Society of America B-Optical Physics, 2011.

28(12): A1-A10.

Page 36: i OPTICAL BISTABILITY IN MOBIUS MICRORING RESONATOR …eprints.utm.my/id/eprint/54763/1/AhmadFakhrurraziPFS2015.pdfdengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar

183

103. I. Chremmos, N. K. Uzunoglu, and O. Schwelb. Photonic microresonator

research and applications. New York: Springer. 2010.

104. D. N. Maywar, G. P. Agrawal, and Y. Nakano. All-optical hysteresis control

by means of cross-phase modulation in semiconductor optical amplifiers.

Journal of the Optical Society of America B-Optical Physics, 2001. 18(7):

1003-1013.

105. Z. Yang and J. Sipe. Increasing the delay-time-bandwidth product for

microring resonator structures by varying the optical ring resonances. Optics

letters, 2007. 32(8): 918-920.

106. L. Y. Tobing and P. Dumon. Fundamental principles of operation and notes

on fabrication of photonic microresonators. In: Photonic Microresonator

Research and Applications: Springer. 1-27; 2010.

107. L. J. Zhou and A. W. Poon. Electrically reconfigurable silicon microring

resonator-based filter with waveguide-coupled feedback. Optics Express,

2007. 15(15): 9194-9204.

108. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim. Optical

microresonators: theory, fabrication, and applications. London: Springer.

2008.

109. G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong. Theoretical study

of microfiber resonator devices exploiting a phase shift. Journal of Optics a-

Pure and Applied Optics, 2008. 10(2).

110. S. Xiao, M. H. Khan, H. Shen, and M. Qi. Compact silicon microring

resonators with ultra-low propagation loss in the C band. Optics express,

2007. 15(22): 14467-14475.