실\Ï Î&‚ ›>#~ š화 특w effect of silkpeptide on physicochemical

9
KOREAN J. FOOD SCI. TECHNOL. Vol. 36, No. 2, pp. 246~254 (2004) 246 ©The Korean Society of Food Science and Technology \ Ï Î & > # ~ z ß W B ^* B * ^ z B B Effect of Silkpeptide on Physicochemical Properties of Bread Dough Young-Ho Kim* Department of Hotel Baking Technology, Hyejeon College Physicochemical properties of bread dough added with silkpeptide were investigated. Protein content of silkpeptide was 90.83%. In amino acid analysis, glycine content was highest at 18,760.04 mg%. Alanine, serine, and tyrosine contents were much higher in silkpeptide flour than wheat flour. Mixed silkpeptide showed low lightness and redness values and high yellowness. Farinograph water absorption decreased as silkpeptide content increased. Both arrival and development times of silkpeptide-added dough were longer than those of wheat flour. As silkpeptide content increased, degree of weakness increased. Maximum viscosity of amylograph decreased gradually with addition of silkpeptide, while gelatinization temperature was not affected. Extensograph showed extensibility and resistance to extension of dough increased, while ratio of resistence to extensibility highly increased with increasing amount of silkpeptide. Silkpeptide added to bread dough showed oxidation effect, indication that it could be used as natural additive for improving bread dough quality. Key words: bread dough, silkpeptide, farinograph, amylograph, extensograph B · Æ Ö b (silk) º " ® ² Ò B z ' W C & æ B V Ë W ® ² Ò B B > ® . b 2 f  W î B B ê & ¸ b B ê ï Ö & Ë j Ö ö b (1) ^ Ò " b 2 b W > Ú ®b & >ª Ê FÒj Ö" oligopeptide ~ ; Ï & B(2). Ï º >ÏW ;B Î j>j Ö F > Ú ®b 18 & æ ~ j Ö j F ~ ® . b 2 ~ j Ö 7 glycine f rat ~ þ ö B . Ó . Êr çßj ÛB~º Î" & ®b(3) alanine f r &Ò ¢ / ê B ? f r ö ~ * Ë ¢ . O ~ tyrosine f ~ à j . O ~ ¾ ~ ò ~ º £ Ò ' V Ë ® º V æ j Ö ³¦~ ^ Ò 5 Ö ªjö 'Ë j ~ º © b r J ^ ® (4). ® ö B Ï º ' ·, Ò ; VËWö ' Ëj b ®ö Ö 7º j . ¢> 'b Úöº ; ÒWj <º FÒÏ & ô ®b, ®öº «~~ Ï BÎ ~ & ¾Ò 7ö ^ > ®b 7öº ® Wî ¦ V ÒW Ï& W> º ©b r J^ ®(5). Luo (6) f rat ~ þöB b2 R . ~ çß ÛB>îb, .Ó .Êr ³ê~ &~& &V>î ~ & . Keiko (7) f 6% Ï Ï j Î & ~ B &f zæ Î" & Ö >~ ~ &. b 2~ &¦ªj Næ~ ®º glycine, alanine, serine 5 tyrosine j Ö f ~ £ ® 5 V Ë W ® b B ~ Ï ö & & ê¯> ®Ú ¢ Ï îÚ ²Ò~ ª ¢& F © . æ .r æ B α-glucosidase Û B · Ï ö ~ . ; ~ VË, .Ó .Ê r " 7 Wæî 6 ²V Ë, zæ V Ë 5 ÷ ~ò VËj &ê Ï¢ ~ ² Ò Ï b ÒW Î "¢ æò VËW ~ B VF j B B ~ º © f î ÷ ~ ~ ò ¾ . O j * ~ j º ~ ' >î. º Ï Î & ï j Ò~ > # ~ b W ß W j « b Ï Î & B > # ~ > N, b W, ê K W, B Î Ú K B ; ö B j º ~ º B > ò ¢ ª C Ò b ® î ß W " & Ö > Ï Î&ö & "' Bj »~º ò B Ï~~, Ëê Ï ÒÏ~º wÏ º*¢ { &~ j j "~ f · ®& B Öëö Ï¢ Î& B®B Bj ÖëÚö ²B~ ¢ Ï > ® º 2 / Î " ö ' Ë © b 6 B . V ¢ B ö Bº V Ë W ®² Ò Ï ¢ B ö Î *Corresponding author : Young-Ho Kim, Dept. of Hotel Baking Technology, Hyejeon College, Namjang-ri, Hongsung-eup, Chung- nam 350-702, Korea Tel: 82-41-630-5239 Fax: 82-41-631-4405 E-mail: [email protected]

Upload: lamminh

Post on 04-Jan-2017

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

KOREAN J. FOOD SCI. TECHNOL. Vol. 36, No. 2, pp. 246~254 (2004)

246

©The Korean Society of Food Science and Technology

����� ��� ���� ���� ��

� � �*���� �������

Effect of Silkpeptide on Physicochemical Properties of Bread Dough

Young-Ho Kim*Department of Hotel Baking Technology, Hyejeon College

Physicochemical properties of bread dough added with silkpeptide were investigated. Protein content ofsilkpeptide was 90.83%. In amino acid analysis, glycine content was highest at 18,760.04 mg%. Alanine, serine,and tyrosine contents were much higher in silkpeptide flour than wheat flour. Mixed silkpeptide showed lowlightness and redness values and high yellowness. Farinograph water absorption decreased as silkpeptide contentincreased. Both arrival and development times of silkpeptide-added dough were longer than those of wheat flour.As silkpeptide content increased, degree of weakness increased. Maximum viscosity of amylograph decreasedgradually with addition of silkpeptide, while gelatinization temperature was not affected. Extensograph showedextensibility and resistance to extension of dough increased, while ratio of resistence to extensibility highlyincreased with increasing amount of silkpeptide. Silkpeptide added to bread dough showed oxidation effect,indication that it could be used as natural additive for improving bread dough quality.

Key words: bread dough, silkpeptide, farinograph, amylograph, extensograph

� �

����� ��(silk)� �� ������ ��� ��� ����� ��� �� ��� ��� �� ��. ������

� �� ����� ��� ����� �� ��� ��� ���� ����(1) ���� ������ ���� ��� ������� ������ oligopeptide ��� ����

�� ��(2). ������ ��� ���� �� �����

�� ��� ��� 18�� ����� ��� ��. ������ ���� � glycine� rat ���� �� ��

��� ��� ���� ��� ���(3) alanine� ����

� ���� ��� ��� � ���� ���� tyrosine����� ����� ���� ��� ��� �� � �� ���� �� ���� ��� � ��� ��� �� ��

� ��� ��� ��(4). ���� ���� ��, � ���

������ �� ����� ��� �� �� �

��. ���� ���� �� ����� �� ����

� �� ���, ���� �� �� ����� �� �

���� �� �� � ��� �� ��� �� �����

� ���� ���� ���� ��� ��� ��(5).Luo �(6)� rat ���� ���� ��� �� ���

������, �� ����� �� ��� ������

�����. Keiko �(7)� 6% ����� �� ���� ��� ��� ���� ��� ����� �����. ���

��� ���� ���� �� glycine, alanine, serine �tyrosine ����� �� � ��� ����� ��� �� ��� ���� �� �� ��� ��� ���� ��� � ���.���� �� ��� α-glucosidase ����� � ���

���, �� ������ ���� ���, ���� ��

� ��� �� ��� �� ������ � ��� ��

���� ���� ��� �� �� ��� � �� ��

� ���� �� �� ��� ��� ��� ���� ����.� ��� ����� ���� ���� �� �� ��

� ������ ����� ��� ��� �� ���, ���, ���, ����� � �� ���� �� �� ��

��� �� ������ �� ��� ��� ��� ���

�� ���� �� ���� ���� ���� ����

�� ����� ��, ����� ���� ����

��� �� ��� ���� ��� ���� �����

������ ��� ����� ���� ���� �� �� � �� �� ��� �� � ��� ����. ���

� ����� ��� ����� ������ � ��� �

*Corresponding author : Young-Ho Kim, Dept. of Hotel BakingTechnology, Hyejeon College, Namjang-ri, Hongsung-eup, Chung-nam 350-702, KoreaTel: 82-41-630-5239Fax: 82-41-631-4405E-mail: [email protected]

Page 2: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

����� ��� ��� ���� �� 247

���� � �� ���� ����� ��� � �� ���� ����� ��� ���� ���� ��.

�� � ��

��

� ��� ��� ���� (�)���� ���, ����

�� (�)����� ��� ������, �� ����� ����� ���� �� ���(baker’s percent)� ���

100% ��� �� 0, 0.5, 1, 2, 3 � 4%� ���� �����.

����

������ ��� ���� AOAC�(8)� �� �����. �� ��� 105oC �� � ��, ���

600oC ���, ���� ��� micro-Kjeldahl � �����, ��� ��� Soxhlet ���� �����. ��

� Prosky �(9) ��� total dietary fiber ���(SigmaCo., MO, St. Louis, USA)��� ���� �����.

����

������ ��� ���� ��� Bidlingmeyer �(10) �� � �� ��� 6 N-HCl �� ���� �� �� 110oC�� 24�� � ����� 50 mL� �����. �� 0.45 µm membrane filter� ���� 20 µL� ��� �� �����. ��� ��� methanol : water : triethylamine(2 : 2 : 1) � 30 µL� ���� 2� �� � ��� �

� �� methanol : triethylamine : H2O : phenyl isothiocyanate =7 : 1 : 1 : 1, V/V)� 30 µL ��� 20�� ��� 3� ���

��. methanol 30 µL� ���� �� ���� sodium acetatebuffer(pH 6.4)� ������. �� HPLC(High performanceliquid chromatography, Waters Associates Inc., USA)� ���

� Table 1 ���� �����. ������ �� 2 g����� 200 mL 80% ethanol� 80 µL�� 6�� �� ��

� ���� � ����� ���� ���� 20 mL����� �� ���� ���. �� ��� ���� ��� lithium citrate buffer� 20� ��� �� 0.45 µm mem-brane filter� �����. ������ HPLC� ����

Table 1 ���� �����.

���

������ ��� ��� ��� ������ ��

�. ��� 550oC�� 4�� � ���� 0.2 N HNO3

�� ���� 100 mL� ��� �����. ��� ICP(Inductively coupled plasma, Jobin-Yvon Model JY 38 Plus,France)� ���� Table 2� �� ���� ���.

���

������ ��� �� ��� �� 2 g� ����

200 mL 80% ethanol� 80oC�� 6�� �� ��� ��

���. �� � ����� ���� ���� 20 mL� ���� �� ���� ���. �� �� 0.2 mL� ���

��� �� ���� pyridine 1 mL� ��� ����

� ���� �� ��� hexamethyldisilazane 0.2 mL� tri-methylchlorosilane 0.1 mL� ��� ���� GC� ���

� Table 3 ���� �����.

��� ��

������ ��� �� ��� LS particle size analyzer(Coulter LS 100, USA)� �����. ��� �� ���

isopropyl alcohol� ����� ��(%)� �� �����

�� �. ��� 100%� �� 40 µm�� 900 µm�� ��

�� ���� �� � , ��� � � ���� ��

���.

��

������ ��� ��� ���(Color and color differ-ence meter, TC-3600, Japan)� ���� �����. ����

�� ����� �� ���(Hobart kichenaide K45 10-speedmixer)� 5�� ��� ��� ���� Hunter system� �� ��(L, lightness), ���(a, redness), ��(b, yellow-ness) �� �����. L � 0(���)�� 100(��)��,a (���)� −80(��)�� 100(��)��, b ( ��)� −70(��)�� 70( �)�� �����. ���� ���� ���

�� � ���� ���� L, a, b� 89.2, 0.923, 0.783���. Hunter scale� � ���(∆E, total color difference)� ��� L, a, b � ���� ��� �� �����.

pH�� � ���� pH ��� �� 10 g� �� 250 mL

���� �� 100 mL ���� �� �� �� ����

25oC�� 30�� �� ��� pH ���� �����.

∆E ∆L2 ∆a

2 ∆b2

+ +=

Table 1. Operating conditions for analysis of amino acid byHPLC

UV/VIS detector 254 nmColumn: Water pico-tag column (3.9�150 mm, 4 µm)Column Temp.: 40oCMobile phase Eluent A: 0.14M sodium acetate trihydrate

0.05% trithylamine(pH 6.4 with phosphoric acid)Eluent B: 60% acetonitrile

Table 2. Operating conditions for analysis of mineral by ICP

Nebulizer pressure 3.5 bar for Meinhard type CAerosol flow rate 0.3 L/min

Auxiliary gas 0.3 L/min for multielement analysis ofaqueous solutions

Cooling gas 12 L/min

Table 3. Operating conditions for analysis of free sugar by GC

Insrument: HP-5890 series II plus with HP-6890 AutoinjectorDetector: FIDColumn: HP-5 (30 m�0.25 mmID)Injector Temp.: 250oCDetector Temp.: 280oCColumn Temp.: 150oC (0 min)-10/min-250 (5 min)-20/min-280 (7)Carrier gas: N2 1 mL/min

Page 3: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

248 �������� � 36 � � 2 � (2004)

������ ���

Sephadex G-50(Pharmacia Biotech., Ltd., Uppsala, Sweden)column chromatography� �����. 0.01 M buffer(0.01 Msodium phosphate, 0.15 M NaCl, pH 7.2)� �� ����

Sephadex G-50 regin� ���� � ���� 1.2 cm�30cm glass column� ���� �����. ��� silk proteinhydrolysate� buffer� 1 mg/mL�� ��� �� ��� 200µL �����. � fraction collector(Pharmacia Biotech.,Sweden)� 2 mL� �� �� 280 nm ���� ���

� ���� chromatogram� �����.��� �� �� gel filtration prestained molecular stan-

dard(Bio-Rad Lab., Hercules CA, USA)� �����. ����

� thyroglobulin(670 KDa), bovine gamma globulin(158 KDa),ovalbumin(44 KDa), myoglobin(17 KDa), vitamin B-12(1.35 KDa)������. ��� standard chromatogram� �� chromato-gram� ��� silk protein hydrolysate ���� ����.

����� ��

������ ��� � �� ������ ��� ����� �����. ����� �� � 2� �� ��

�� �� ���� �����. ��(40�40�30 mm)� ��

�� �� ��� �� ��, JEOL�� ���(JFC-1100,Japan)� ���� ���� ���, JEOL�(JSM-35F, Japan)������� ���� �� 15 KV�� ����.

FarinographAACC�(11)� �� farinograph(Brabender Co., German)�

�����. Farinograph mixing bowl� 30�0.2oC� ���

���. ��� ���� 14.0% ���� 300 g� ����

�, ��� 500 B.U.(Brabender Unit)� ���� ���� ����. ��� ���, ������, ������, �� � ��� �� �����.

AmylographAACC�(12)� �� amylograph(Brabender Co., German)�

���� �����. �� 65 g(�� 14%��)� ���

450 mL� ��� ���� �� �����. 25oC��

95oC�� 1.5oC/min� ������ ���� �����. ������� 25oC�� ���� ������, �����

� ��� �� � �����. ���� ��� ��

�� 10 B.U.� ���� ��� �����.

ExtensographAACC�(13)� �� �� 300 g(�� 14%��)� farino-

graph ���� �� farinograph ����� 2-5% �� � ���� �� 2%(6 g)� ���� �� �����. 1�� ��� �� 5�� ���� �� ��� ���� farino-graph 500 B.U.� ��� ���� �� �� ���� �����. ��� �� �� 150 g(2�) ���

extensograph(Brabender Co., German) rounder�� 20� ��

���� �� ����� �����. �� 30�2oC ��

��� 45, 90 � 135�� ���� ��� �� ���, ��� � ���� �����. ���(E)� ���

��� ��� ��(mm), ���(R)� ��� �� ��

(B.U.)� ���� �� ��� R/E� �����.

�� � ��

����

� ��� ��� ������ ��� ���� Table4� ��. ����� ��� 5.80%� ���, ����

90.83%� ��� ��� �� ��� ���� ���� ��

� 0.05%� 0.48%� �� ���. ���� �� ��

� 14.0%, ����� ���� 12.46%, 0.413%� ��

����. ������ � ���� � � �� �����

�� �� oligopeptide� ���� �� ��� � ����

��� ��� �� ��� ��. ��� ������ ��

������ ��� �� ��� �� �� � ��. ��

���� 90%�� ������ ��� ��� �� �� ���� � ���� ��� �� ��� ���� �� ���� �� �� �� � �� pH ��� ���

� ��� ���. ���� ����� pH� 5.80�6.16� ����� ������ ���. ��� �� �

� ��� �� pH� �� ��� ���� pH� ��

� �� ��� ��� ��(14).

����

������ ��� ���� ��� Table 5� ��. ��� ������ 7549.76 mg%��. ���� glutamicacid� proline ��� 3443.00 mg%� 794.13 mg%� ���� lysine, methionine, tyrosine � cystine � ��� ��

����. �� Kim �(15) ��� ���� ��� ��

��� ����. ����� ������ 50224.12 mg%� ��� ������� 6.7�� �� �� ��� ���

��. ���� ��� glycine(37.4%) ��� � ����

alanine(28.2%), serine(14.7%) � tyrosine(8.6%) ��� ���

� �� � ��� � ���� �� 89%� �� ���

�����. �� Nahm �(16)� ��� ���� ��� ����. ������ �� ������ ��� ��� ��� ����� �� � �� � ��� � ��� ��

��� ���� ��� �� ���� ����� �� ��

��� ���.

���

������ ��� ��� ��� Table 6� ��. ��

���� ��� ��� 702.35 mg%� � ���� ���� ��, � � ��� ��� ��� ��, �� � �

����� ���. ��� ����� ��� ���� ��

Table 4. Compositions of wheat flour and silkpeptide

Moisture (%) Ash (%) Crude protein (%) Crude fat (%) Crude fiber (%) pH

Wheat flour 14.0 0.413 12.46 1.23 0.14 5.80Silkpeptide 5.80 1.985 90.83 0.05 0.48 6.16

Page 4: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

����� ��� ��� ���� �� 249

� ��� ��� ��� � � ��� ���. ����

�� 85.63 mg%� � ��� �, �� � �� ����

� �� ��� �����. ��� �� �� � �� ��

�� �� phytate ��� �� �� ��� �� ��� � ����� �� ��� ��. ���� �� �� ��

� ��� ��� �� ��� ���, �� ��� ��

�� ��� ���� ��� �� ��� ���� ���

� ����.

���

������ ��� ��� Table 7� ��. ���

��� sucrose� 117.35 mg%� � ��� fructose� 7.65mg%� �� ����. ���� �� �� ����� ��� ��� ����� ��� ��� �� � ��.�� ����� �� � fructose� 9.35 mg%, maltose5.30 mg% ��� glucose 2.10 mg%� ���� ��� �� ����.

����, �� � ������ ���

������ ��� �� ��� ���� Fig. 1� ��.��� ��� ���� 66.95 µm, ������ 15.95 µm��. �� �� � ���� ���� 4041 cm2/mL, �����

� 9976 cm/mL� ��� ����� ����� ��� ������ ���� �� ��� ��� ���� ��

����� 50-150 µm� ���� �� ��� ����

��� �� ���� ���� �� ��� 1-10 µm ��

� 20-50 µm ���� ���� ���. �� Kwon(17)� �

�� ��� �� ��� ����. ��� �����

��� ���� �� �� ��� ��� �� ��

�� ����. �� ����� ������ ����

�� ��� ���� ��� ����� �� 12-35 µm�� ��� �����.���� ����� ���� ���� ��� �� �

�� Table 8� ��. L �� ��� 100%� ����

92.46��� ����� ���� 2.0%, 3.0% � 4.0%� ��

� 91.84, 91.47 � 91.25� � ��� ����. ��

�� ���� a �� ���� −0.93���� ������

2.0%, 4.0% �� �� −1.23, -1.44� � � ��

����. b � ���� 9.05, ������ 2.0%, 4.0%� �� �� 11.03, 12.82� � � ��� ����, ��

� ∆E � ���� ����� ��� �� ��� ��

�����. �� ����� ���� Fig. 2� �� 1500-1600 Da�� �����.

Table 5. Total amino acid compositions of silkpeptide and wheatflour (mg%)

Amino acids Wheat flour Silkpeptide

Aspartic acid 272.53 728.69Threonine 177.88 523.87Serine 342.29 7367.23Glutamic acid 3443.00 919.91Proline 794.13 246.12Glycine 241.02 18760.04Alanine 177.19 14173.40Cystine 94.42 90.10Valine 269.73 1096.82Methionine 72.08 80.50Isoleucine 231.53 320.11Leucine 475.09 276.67Tyrosine 93.35 4213.76Phenylalanine 351.26 404.74Histidine 154.44 439.01Lysine 156.53 287.60Arginine 203.29 295.55

Total 7549.76 50224.12

Table 6. Mineral compositions of silkpeptide and wheat flour (mg%)

K Na Ca Mg P Fe Mn Cu Zn

Wheat flour 40.52 12.27 20.36 5.15 85.63 0.4753 0.3765 0.0432 0.0324Silkpeptide 23.24 97.65 201.35 702.35 156.25 41.25 0.1423 0.6784 0.8652

Table 7. Free sugar content of silkpeptide and wheat flour (mg%)

Sucrose Maltose Glucose Fructose

Wheat flour 117.35 36.39 28.54 7.65Silkpeptide 1.73 5.30 2.10 9.35

Fig. 1. Particle size distributions of wheat flour (A) andsilkpeptide (B).

Page 5: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

250 �������� � 36 � � 2 � (2004)

����� ��

������ ��� � �� ������ �����

��� ��� ��� Fig. 3� ���. ���� � ���

� �� �� ��� ������ ���� 5-20 µm ��� ��� ���� ���. ���� � ��� � ���� ��� �� �� ���� �����.������ � ��� ���� �� ����� ��

� ��� �� ��� �� �� �� �� ��� �� �� ���. ����� 10-45 µm� ��� �����, ��

�� ��� ��� ��� �� ��� ���� ��

�. �� �� �� ��� � �� �� �� ���� ����� ���� � �� �� ��� ��� ���

� ��� ����.������ ��� �� ������ Fig. 4� ��. �

� �� ������ �� ���� ���� protein-starch matrix� ���� �� �� �� � ��� ��

���� �� �� � ���� �� ��� ��� �

� ����. � �� ��� �� � 15-25 µm ���� �� � ��� 2-10 µm ��� ��� �����.�� Parades �(18)� ��� � ��� ��� ��� �

� �����. Parkkonen �(19)� ���� ��� �� ��� �� �� ���� ��� � ����� ��

�� ���� ��� ��� ���� �� ��� ��� ����� ���. � �� ���� ����� ��� �

� �� matrix� �� ���� �� �� �� � ���, �� ������ �� � � protein-starch matrix ��� �� ���� ���. ��� �� ���� ��

��� ���� � ��� � �� ��� � ��

� �� �� �����. Protein matrix ���� �� ��

� ����� �� � ��� � �� ���� ���

�� �� �� ��� ���� ��� ��� �� �� �����.������ 1.0% ��� �� ������ ���� �

� �� ��� ���� 3.0% ��� protein-starch matrix��� ���� �� � ��� �� �� � ��

Table 8. Color values of flour blended added with silkpeptide

Silkpeptide (%)

0 0.5 1.0 2.0 3.0 4.0

L1) 92.46 92.29 92.19 91.84 91.47 91.25a2) -0.93 -0.96 -1.00 -1.23 -1.31 -1.44b3) 9.05 9.48 9.69 11.03 11.90 12.82

∆E4) 0.00 0.44 0.68 2.09 3.03 3.991)L: Degree of lightness (white 100�0 black).2)a: Degree of redness (red +100�-80 green).3)b: Degree of yellowness (yellow +70�-80 blue).

4) (total color difference).∆E ∆L2 ∆a

2 ∆b2

+ +=

Fig. 2. Determination of molecular weight of silkpeptide by gelpermeation chromatograph using Sephadex G-50.

Fig. 3. Scanning electron micrograph (�1,000) of wheat flourand silkpeptide.

Page 6: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

����� ��� ��� ���� �� 251

� �� ��� �� ���� �����. Pomeranz �(20)� ��� �� ���� � ��� � ��� �� ��� �� ����� protein matrix� ���� ��� ��

��, �� protein-starch ����� ���� ��� ���

�� ��� �� ���� ��� �� ���� �� ���� ���� ���� � ��� � ��� ���.

Farinograph����� ���� � farinogram ��� Fig. 5, ��

� Table 9� ��. ���� ��� ���� 63.1%��. �����0.5%, 1.0%� ��� ���� 63.1%� 62.1%��

3.0%, 4.0%��� 60.4%� 59.3%� ������ ��

� ���� ��� �� �����.�� ���� ���� ������� ����� 1.0%

��� 1.8����. ���� ��� 3.0%, 4.0%� 2.0�, 2.7��� ��� 1.5�� �� ��� �� �����.�� �� ��� ���� ������� 1.0% ���

6.0��� ��� 5.0�� �� ��� ���� 3.0%, 4.0%� ��� 7.0�, 7.5��� ����. ��� ����

15����. ����� 2.0% ����� ���� �� ��� ���� 3.0%, 4.0%� ���� 13�� 11.5��� ����� ��� �� ��� ���. ���� ���� 40 B.U.��� 1.0%� 50 B.U.� �� �����. ���� ���� 3.0%, 4.0%� 65 B.U.� 75 B.U.� ������ ��� �� ���� ��� ��� ��

�. �� ���� farinograph� �� ����. ��� ��

Fig. 4. Scanning electron micrograph (�1,500) of fresh mixeddough and fermented dough added with silkpeptide.(A) Fresh mixed dough of 100% wheat flour (B) Fermented doughof 100% wheat flour (C) Fresh mixed dough with 1.0% silkpeptide(D) Fermented dough with 1.0% silkpeptide (E) Fresh mixed doughwith 3.0% silkpeptide (F) Fermented dough with 3.0% silkpeptide.

Fig. 5. Farinograms of wheat flour added with various levels ofsilkpeptide (SP).

Table 9. Farinogram characteristics of wheat flour added with various levels of silkpeptide

Silkpeptide (%)

0 0.5 1.0 2.0 3.0 4.0

Water absorption (%) 63.1 63.1 62.1 61.0 60.4 59.3Arrival time (min) 1.5 1.7 1.8 1.5 2.0 2.7Development time (min) 5.0 5.0 6.0 6.5 7.0 7.5Stability (min) 15 16 16 15 13 11.5Weakness (B.U.) 40 40 50 55 65 75

Page 7: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

252 �������� � 36 � � 2 � (2004)

�� �� �� �� ��� ��� � �� ���

�� � ��� �� �� �� ��� � ��. � ���

� ����� ��� �� ����� �� ��� �� ��� ����.

Amylograph����� ���� � amylogram ��� Fig. 6, ��

� Table 10� ��. ������� 100% ���� ����

59.5oC���� ����� 3.0% ����� ���� � �

��, 4.0% ���� 58.0oC� ����� ���. ����

��� ����� ���� ���� ��� ��� ���.���� ���� 780 B.U.��� ������ 2.0%, 4.0%� ���� 720 B.U.� 645 B.U.� ��� ���

�. Amylogram �� �� ����� � � ��

� �� �� ��� � �� � ��� �� pH ����� �� ����(21). � ���� � ��

� α-amylase ��� ����� ����� ��� �

� ����� ��� �� ��� ���.

Extensograph����� ���� � �� extensogram� Fig. 7, �

� � Table 11� ��. Fig. 7 ���� ���� ����

���� �� ��� �� ��� �� ���� ���

� ���� ��� ��� ��� ���. ��� ��

���� 45�� 560 B.U.�� 90� ��� 620 B.U., 135� �� �� 700 B.U.� � � ��� ���� �� ����

�. ��� � �� 45�� 183 mm, 90�, 135� ���

170 mm, 162 mm� ����, resistance/extensibility(R/E) ��

45�, 135��� �� ��� �� 3.06, 4.32� ���

��.����� ���� ���� 45�, 135� ��� �� �

��� ����� ���� ����� �� �� R/E �� �����. ��� ��� ��� ��� ��� ��

��� �� ���� ���� ���� Hoseney �(22) ��� ����. ����� 0%�� 4.0%�� ����

� � �� ��� �� ��� ��� �� 45� ��

�� 183 mm, 4.0% ��� 150 mm, 90� � ���� 170mm, 4.0% ��� 110 mm, 135� � ���� 162 mm��

4.0% ��� 85 mm� ���� ��� ����� ��� �� ���� ����. ���� 45� ���� 560 B.U.��, 4.0%� 860 B.U.��. ��� ��� 90�, 135��� ���� 610 B.U., 700 B.U.� ����.���� ����� 1.0% ���� 90�, 135� ��� 900

B.U., 1000 B.U.� ���� ���� �����, �����

2.0% �� ���� 90� �� ���� ��� ����

��� ��� ����, � � ��� �� 1000 B.U.� �� ��� �� ��� � �� � ���. ���

� 45� ���� 133 cm2���� 2.0%� 170 cm2, 4.0%� 182 cm2� ����� ��� �� � ��� �� �� ���, 2.0% �� ���� 90� �� �� ��� ��

� ��� ���� �� � ���. ��� ��� ���� � �� ��� ��� �� ���� ��

� ��� �� ��� ����. ���� ��� ��� R/E ��� Fig. 8� �� ����� ��� ��

�� ��� R/E � ������, �� 2.0% �� � 90���� �� ���� �� � �� �� ���. ���

������ ���� ��� �� �� ��� �� ���� ���� �� ����� �� ���� ����

��� �� ��� ���. Cho �(23)� ��� ���, ���� ����� � R/E�� ��� ����� �����

� ���. ���� ascorbic acid, KBrO3 �� ��� ��

�� ��� ��� ���� � �� ��� ��� ��� ��, ��� -SH�� ���� -SH� -SS ���

��� ������ ���� � ���� ���� ��

� ��� R/E �� ����� ��� �� ����(24).

Table 10. Amylogram characteristics of wheat flour added with various levels of silkpeptide

Silkpeptide (%)

0 0.5 1.0 2.0 3.0 4.0

Starting temperature (oC) 25.0 25.0 25.0 25.0 25.0 25.0Gelatinization temperature (oC) 59.5 59.5 59.5 59.5 59.5 58.0Temperature at max. viscosity (oC) 90.0 90.5 90.5 90.5 90.5 90.0Max. viscosity (B.U.) 780.00 770.00 720.00 720.00 690.00 645.00

Fig. 6. Amylograms of wheat flour added with various levels ofsilkpeptide (SP).

Page 8: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

����� ��� ��� ���� �� 253

�� �� ����� ��� �� ��� ��� �� �� ���� � � ��� �� � ���� ��� ��

� �� �� ������� ���� ��� �� ���.

� �

����� ����� 90.83%� ��� �� ��� ����� ��� 50,224.12 mg%� � �� ���. ����

��� glycine(37.4%)� � ���� alanine(28.2%), serine(14.7%) � tyrosine(8.6%) ��� ���� �� � ���

� ���� �� 89%� �� ��� �����. ����

� ���� 1500-1600 Da�� ������, ����� 10-45 µm� ����� �����. �� ��� ��� farino-graph�� ������� ����� ��� �� � ���

� �� ��� �� ������ ������� ����. ��� ����� 2.0% ����� ���� �� �

�� ���� 3.0%, 4.0%� ��� ��� ��� ���

� �� �����. Amylogram ���� ���� ���

100% ���� ���� 59.5oC���� ����� 3.0% ����� ���� � ���, 4.0% ���� 58.0oC� ��

��� ���. ������� ����� ���� ���

� ��� ��� ���� ���� ����� ��� ��� �� ���. Extensograph�� ����� ��� �� ���� �� ����� ��� � �� ���

�� �����. �� 2.0% �� ��� 90� ��� ��� � �� ���� �� � �� �� ���. ��

�� ��� ��� R/E ��� ����� ���

�� �� �� � R/E � ������, ������ ��

�� ��� �� �� ��� �� ���� ���� �� ����� �� ���� ���� ��� �� ���

�� ����� ��� �� ��� ��� �� �� �

Table 11. Extensogram characteristics of dough added with silkpeptide after 45, 90, and 135 min rest time

Silkpeptide (%)

Rest time 000 00.5 01.0 02.0 03.0 04.0

Water absorption (%) 060 59.8 58.5 57.9 56.8 56.0

Extension(mm)

45min 183 171 169 170 147 15090min 170 157 150 132 114 110135min 162 143 127 100 92 85

Resistance to extension(B.U.)

45min 560 620 670 740 880 86090min 610 730 900 1000� 1000� 1000�135min 700 780 1000 1000� 1000� 1000�

Area under curve(cm2)

45min 133 140 150 170 173 18290min 124 146 162 -1) - -135min 149 156 185 - - -

-1): Unmeasured.

Fig. 7. Extensograms of dough added with various levels ofsilkpeptide (SP).

Fig. 8. Effects of silkpeptide concentration on R/E (resistance/extension) ratio of dough.

Page 9: 실\Ï Î&‚ ›>#~ š화 특W Effect of Silkpeptide on Physicochemical

254 �������� � 36 � � 2 � (2004)

��� � � ��� � ���� ���� �� �� ������� ���� ��� �� ���.

��� �

� ��� 2003�� ��� ������� ��� � ������ �� �����.

� �

1. Chen K, Umeda Y, Hirabayash K. Enzymatic hydrolysis of silkfibroin. Jpn. J. Sericult. Sci. 65: 131-133 (1995)

2. Guoding C, Mitsuo A, Kiyoshi H. Isolation of tyrosine from silkfibroin by enzyme hydrolysis. Jpn. J. Sericult. Sci. 65: 182-184(1996)

3. Sugiyama K, Kushima Y, Muramatsu K. Effect of sulfur contain-ing amino acids and glycine on plasma cholesterol level in ratsfed on a high cholesterol diet. Agric. Biol. Chem. 49: 3455-3461(1985)

4. Takano R, Chen K, Hirabayashi K. Production of soluble fibroinpowder by hydrolysis with hydrochloric acid and physical proper-ties. Jpn. J. Sericult. Sci. 60: 358-362 (1991)

5. Yoshikawa M, Chiba H. Frontiers and new horizons in aminoacid research. Jpn. J. Sericult. Sci. 61: 403-406 (1992)

6. Luo J, Chen K, Xu Q, Hirabayashi K. Study on foodization offibroin and its functionality: The 2nd international silk confer-ence. 1: 73-87 (1993)

7. Keiko F, Sadayuki T, Rumiko K. Preparation and properties of anovel sponge cake by combining rice flour with silk fibroin pro-tein. Jpn. J. Soc. Food Sci. Technol. 47: 363-367 (2000)

8. AOAC. Official Methods of Analysis. 15th ed. Association ofOfficial Analytical Chemists, Washington, DC, USA (1990)

9. Prosky L, Asp NG, Furda I, Devreis JW, Scjweozer TF, HarlandBA. Determination of total dietary fiber in foods and food prod-ucts. J. Assoc. Off. Anal. Chem. 68: 677-684 (1987)

10. Bidlingmeyer BA, Cohen SA, Taruin TL, Frost B. A new rapid

high sensitivity analysis of amino acid in food type samples. J.Assoc. Off. Anal. Chem. 70: 241-253 (1987)

11. AACC. Approved Method of the AACC. Method 54-21. Ameri-can Association of Cereal Chemists, St. Paul, MN, USA (1985)

12. AACC. Approved Method of the AACC. Method 22-10. Ameri-can Association of Cereal Chemists, St. Paul, MN, USA (1985)

13. AACC. Approved Method of the AACC. Method 54-10. Ameri-can Association of Cereal Chemists, St. Paul, MN, USA (1985)

14. Magoffin CD, Hoseney RC. A review of fermentation. Baker'sDigest. 48: 22-29 (1974)

15. Kim CT, Cho SJ, Hwang JK, Kim CJ. Composition of aminoacid, sugars and minerals of domestic wheat varieties. Korean J.Soc. Food Sci. Nutr. 26: 229-235 (1997)

16. Nahm JH, Oh YS. Study of pharmacological effect of silkfibroin. J. Agri. Sci. 37: 145-157 (1995)

17. Kwon HR, Ahn MS. Study on rheological and general bakingproperties of breads and their rusks prepared of various flour.Korean J. Food Sci. Technol. 11: 479-486 (1995)

18. Parades-Lopez O, Bushuk W. Development and undevelopment ofwheat dough by mixing microscopic structure and its relations tobread-making quality. Cereal Chem. 60: 24-27 (1982)

19. Parkkonen T, Harkonen H, Autio K. Effect of baking on themicrostructure of rye cell walls and protein. Cereal Chem. 71:58-63 (1994)

20. Pomeranz Y, Mayer D, Seible W. Wheat, rye and dough scanningelectron microscopy. Cereal Chem. 61: 53-69 (1984)

21. Kim DH. Food Chemistry. Tamgudang, Seoul, Korea. pp. 289-294 (1988)

22. Hoseney RC, Hsu KH, Junge RC. A simple spread test to mea-sure the rheological properties of fermenting dough. CerealChem. 56: 141-152 (1979)

23. Cho NJ, Hur DK, Kim SK. The effect of ascorbic acid and L-cystein on rheological properties of wheat flour and no-timedough method. Korean J. Food Sci. Technol. 21: 800-807 (1989)

24. Elkassabany M, Hoseney RC. Ascorbic acid as an oxidant inwheat flour dough II. Rheological effects. Cereal Chem. 57: 88-95 (1980)

(2003� 11� 13� ��; 2003� 12� 24� ��)