hyperint - exact integration with...

89

Upload: others

Post on 24-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas
Page 2: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt - exact integration with hyperlogarithms

Erik [email protected]

(CNRS, ERC grant 257638, F. Brown)

Institute des Hautes Etudes Scientifiques35 Route de Chartres

91440 Bures-sur-YvetteFrance

Higgs Centre for Theoretical PhysicsEdinburgh

April 30th, 2015

Page 3: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Feynman integrals: special functions and numbersMany (not all) FI are expressible via multiple polylogarithms (MPL)

Lin1,...,nd (z1, . . . , zd ) =∑

0<k1<···<kd

zk11 · · · z

kdd

kn11 · · · k

ndd

and there special values, like multiple zeta values (MZV)ζn1,...,nd = Lin1,...,nd (1, . . . , 1).

Example (p21 = 1, p2

2 = |z |2, p23 = |1− z |2)

Φ( )

= 252ζ3ζ5 + 4325 ζ3,5 − 25056

875 ζ42

Φ( )

= 4i Im [Li2(z) + log(1− z) log |z |]z − z

Questions on MPL from FIWhy? When? How?

1 / 18

Page 4: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Feynman integrals: special functions and numbersMany (not all) FI are expressible via multiple polylogarithms (MPL)

Lin1,...,nd (z1, . . . , zd ) =∑

0<k1<···<kd

zk11 · · · z

kdd

kn11 · · · k

ndd

and there special values, like multiple zeta values (MZV)ζn1,...,nd = Lin1,...,nd (1, . . . , 1).

Example (p21 = 1, p2

2 = |z |2, p23 = |1− z |2)

Φ( )

= 252ζ3ζ5 + 4325 ζ3,5 − 25056

875 ζ42

Φ( )

= 4i Im [Li2(z) + log(1− z) log |z |]z − z

Questions on MPL from FIWhy? When? How?

1 / 18

Page 5: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Feynman integrals: special functions and numbersMany (not all) FI are expressible via multiple polylogarithms (MPL)

Lin1,...,nd (z1, . . . , zd ) =∑

0<k1<···<kd

zk11 · · · z

kdd

kn11 · · · k

ndd

and there special values, like multiple zeta values (MZV)ζn1,...,nd = Lin1,...,nd (1, . . . , 1).

Example (p21 = 1, p2

2 = |z |2, p23 = |1− z |2)

Φ( )

= 252ζ3ζ5 + 4325 ζ3,5 − 25056

875 ζ42

Φ( )

= 4i Im [Li2(z) + log(1− z) log |z |]z − z

Questions on MPL from FIWhy? When? How?

1 / 18

Page 6: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Properties of MPL

locally analytic (multivalued) functionsnon-analytic on divisors zkzk+1 · · · zd ∈ 0, 1,∞, called alphabetat worst logarithmic divergencesspan an algebra (shuffle and stuffle)plenty of functional equations like

Li2(1− z) = ζ2 − Li2(z)− log(1− z) log(z)

numerical evaluation solvediterated integrals: path-concatenation and monodromy formulaswith rational prefactors: closed under differentiation and integration

MPL are well-understood, suitable for computer algebra and thereforeparticularly useful representations of Feynman integrals. Several tools areavailable (for example HPL, Ginac, HyperInt).

2 / 18

Page 7: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Parametric integration

Page 8: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Schwinger parametersScalar propagators (p2

e + m2e)−ae , sdd =

∑e ae − D/2 · loops(G):

Φ(G) = Γ(sdd)∏e Γ(ae)

∫(0,∞)E

ΩψD/2

ϕ

)sdd ∏e∈E

αae−1e

Volume form: Ω = δ(1− αN)∏

e dαe

, graph polynomials:

ψ = U =∑T

∏e /∈T

αe ϕ = F =∑

F=T1∪T2

q2 (T1)∏e /∈F

αe + ψ∑

em2

eαe

Example (D = 4− 2ε, ae = 1)

ψ = α1 + α2 + α3 ϕ = p21α2α3 + p2

2α1α3 + m2α3(α1 + α2 + α3)

G = 12

3

p3

p1 p2

Φ(G) = Γ(1 + ε)∫

(0,∞)E

Ωψ1−2εϕ1+ε

3 / 18

Page 9: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Schwinger parametersScalar propagators (p2

e + m2e)−ae , sdd =

∑e ae − D/2 · loops(G):

Φ(G) = Γ(sdd)∏e Γ(ae)

∫(0,∞)E

ΩψD/2

ϕ

)sdd ∏e∈E

αae−1e

Volume form: Ω = δ(1− αN)∏

e dαe , graph polynomials:

ψ = U =∑T

∏e /∈T

αe ϕ = F =∑

F=T1∪T2

q2 (T1)∏e /∈F

αe + ψ∑

em2

eαe

Example (D = 4− 2ε, ae = 1)

ψ = α1 + α2 + α3 ϕ = p21α2α3 + p2

2α1α3 + m2α3(α1 + α2 + α3)

G = 12

3

p3

p1 p2

Φ(G) = Γ(1 + ε)∫

(0,∞)E

Ωψ1−2εϕ1+ε

3 / 18

Page 10: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Schwinger parametersScalar propagators (p2

e + m2e)−ae , sdd =

∑e ae − D/2 · loops(G):

Φ(G) = Γ(sdd)∏e Γ(ae)

∫(0,∞)E

ΩψD/2

ϕ

)sdd ∏e∈E

αae−1e

Volume form: Ω = δ(1− αN)∏

e dαe , graph polynomials:

ψ = U =∑T

∏e /∈T

αe ϕ = F =∑

F=T1∪T2

q2 (T1)∏e /∈F

αe + ψ∑

em2

eαe

Example (D = 4− 2ε, ae = 1)

ψ = α1 + α2 + α3 ϕ = p21α2α3 + p2

2α1α3 + m2α3(α1 + α2 + α3)

G = 12

3

p3

p1 p2

Φ(G) = Γ(1 + ε)∫

(0,∞)E

Ωψ1−2εϕ1+ε

3 / 18

Page 11: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Schwinger parametersScalar propagators (p2

e + m2e)−ae , sdd =

∑e ae − D/2 · loops(G):

Φ(G) = Γ(sdd)∏e Γ(ae)

∫(0,∞)E

ΩψD/2

ϕ

)sdd ∏e∈E

αae−1e

Volume form: Ω = δ(1− αN)∏

e dαe , graph polynomials:

ψ = U =∑T

∏e /∈T

αe ϕ = F =∑

F=T1∪T2

q2 (T1)∏e /∈F

αe + ψ∑

em2

eαe

Example (D = 4− 2ε, ae = 1)

ψ = α1 + α2 + α3 ϕ = p21α2α3 + p2

2α1α3 + m2α3(α1 + α2 + α3)

G = 12

3

p3

p1 p2

Φ(G) = Γ(1 + ε)∞∑

n=0

εn

n!

∫(0,∞)E

Ωψϕ

logn ψ2

ϕ

3 / 18

Page 12: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsproposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al.

Idea: integrate out one variable after the other, fn =∫∞

0 fn−1 dαn.

Definition (Hyperlogarithms, Lappo-Danilevsky 1927)

G(σ1, . . . , σw︸ ︷︷ ︸~σ

; z) :=∫ z

0

dz1z1 − σ1

∫ z1

0

dz2z2 − σ2

· · ·∫ zw−1

0

dzwzw − σw

Strategy:

1 Write fn−1 in terms of hyperlogarithms:

fn−1 =∑~σ,τ,k

G(~σ;αn)(αn − τ)k λσ,τ,k with ~σ and τ independent of αn.

2 Construct an antiderivative ∂αn F = fn−1.3 Evaluate the limits

fn :=∫ ∞

0fn−1 dαn = lim

αn→∞F (αn)− lim

αn→0F (αn).

4 / 18

Page 13: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsproposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al.

Idea: integrate out one variable after the other, fn =∫∞

0 fn−1 dαn.

Definition (Hyperlogarithms, Lappo-Danilevsky 1927)

G(σ1, . . . , σw︸ ︷︷ ︸~σ

; z) :=∫ z

0

dz1z1 − σ1

∫ z1

0

dz2z2 − σ2

· · ·∫ zw−1

0

dzwzw − σw

Strategy:

1 Write fn−1 in terms of hyperlogarithms:

fn−1 =∑~σ,τ,k

G(~σ;αn)(αn − τ)k λσ,τ,k with ~σ and τ independent of αn.

2 Construct an antiderivative ∂αn F = fn−1.3 Evaluate the limits

fn :=∫ ∞

0fn−1 dαn = lim

αn→∞F (αn)− lim

αn→0F (αn).

4 / 18

Page 14: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsproposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al.

Idea: integrate out one variable after the other, fn =∫∞

0 fn−1 dαn.

Definition (Hyperlogarithms, Lappo-Danilevsky 1927)

G(σ1, . . . , σw︸ ︷︷ ︸~σ

; z) :=∫ z

0

dz1z1 − σ1

∫ z1

0

dz2z2 − σ2

· · ·∫ zw−1

0

dzwzw − σw

Strategy:1 Write fn−1 in terms of hyperlogarithms:

fn−1 =∑~σ,τ,k

G(~σ;αn)(αn − τ)k λσ,τ,k with ~σ and τ independent of αn.

2 Construct an antiderivative ∂αn F = fn−1.3 Evaluate the limits

fn :=∫ ∞

0fn−1 dαn = lim

αn→∞F (αn)− lim

αn→0F (αn).

4 / 18

Page 15: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsproposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al.

Idea: integrate out one variable after the other, fn =∫∞

0 fn−1 dαn.

Definition (Hyperlogarithms, Lappo-Danilevsky 1927)

G(σ1, . . . , σw︸ ︷︷ ︸~σ

; z) :=∫ z

0

dz1z1 − σ1

∫ z1

0

dz2z2 − σ2

· · ·∫ zw−1

0

dzwzw − σw

Strategy:1 Write fn−1 in terms of hyperlogarithms:

fn−1 =∑~σ,τ,k

G(~σ;αn)(αn − τ)k λσ,τ,k with ~σ and τ independent of αn.

2 Construct an antiderivative ∂αn F = fn−1.

3 Evaluate the limits

fn :=∫ ∞

0fn−1 dαn = lim

αn→∞F (αn)− lim

αn→0F (αn).

4 / 18

Page 16: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsproposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al.

Idea: integrate out one variable after the other, fn =∫∞

0 fn−1 dαn.

Definition (Hyperlogarithms, Lappo-Danilevsky 1927)

G(σ1, . . . , σw︸ ︷︷ ︸~σ

; z) :=∫ z

0

dz1z1 − σ1

∫ z1

0

dz2z2 − σ2

· · ·∫ zw−1

0

dzwzw − σw

Strategy:1 Write fn−1 in terms of hyperlogarithms:

fn−1 =∑~σ,τ,k

G(~σ;αn)(αn − τ)k λσ,τ,k with ~σ and τ independent of αn.

2 Construct an antiderivative ∂αn F = fn−1.3 Evaluate the limits

fn :=∫ ∞

0fn−1 dαn = lim

αn→∞F (αn)− lim

αn→0F (αn).

4 / 18

Page 17: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsExample: massless triangle

Φ( )

=∫ Ω

(α1 + α2 + α3)(α2α3 + zzα1α2 + (1− z)(1− z)α2α3)

=∫ Ω

(zα1 + α2)(zα1 + α2) log (α1 + α2)(zzα1 + α2)(1− z)(1− z)α1α2

= 1z − z

∫dα2

( 1α2 + z −

1α2 + z

)log (α2 + 1)(α2 + zz)

(1− z)(1− z)α2

= 2 Li2(z)− 2 Li2(z) + [log(1− z)− log(1− z)] log(zz)z − z

RemarkMPL can be rewritten as hyperlogarithms and back:

G(0nd−1, σd , . . . , 0n1−1, σ1; z) = (−1)d Lin1,...,nd

(σ2σ1, · · · , σd

σd−1,

zσd

)

5 / 18

Page 18: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Integration with hyperlogarithmsExample: massless triangle

Φ( )

=∫ Ω

(α1 + α2 + α3)(α2α3 + zzα1α2 + (1− z)(1− z)α2α3)

=∫ Ω

(zα1 + α2)(zα1 + α2) log (α1 + α2)(zzα1 + α2)(1− z)(1− z)α1α2

= 1z − z

∫dα2

( 1α2 + z −

1α2 + z

)log (α2 + 1)(α2 + zz)

(1− z)(1− z)α2

= 2 Li2(z)− 2 Li2(z) + [log(1− z)− log(1− z)] log(zz)z − z

RemarkMPL can be rewritten as hyperlogarithms and back:

G(0nd−1, σd , . . . , 0n1−1, σ1; z) = (−1)d Lin1,...,nd

(σ2σ1, · · · , σd

σd−1,

zσd

)5 / 18

Page 19: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility

We need that all partial integrals

fn :=∫ ∞

0fn−1 dαn =

∫(0,∞)n

f0 dα1 · · · dαn

(f0 = ψsdd−D/2

ϕsdd

∏eαae−1

e

)

are hyperlogarithms in αn+1 with rational prefactors.

DefinitionIf this holds for some ordering e1, . . . , eN of its edges, the Feynman graphG is called linearly reducible.

condition on the polynomials ψ and ϕ only;independent of ε-order and expansion point (D,~a)ε=0 ∈ 2N× ZN

sufficient criteria: polynomial reduction algorithms (Brown, Panzer)

6 / 18

Page 20: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility

We need that all partial integrals

fn :=∫ ∞

0fn−1 dαn =

∫(0,∞)n

f0 dα1 · · · dαn

(f0 = ψsdd−D/2

ϕsdd

∏eαae−1

e

)

are hyperlogarithms in αn+1 with rational prefactors.

DefinitionIf this holds for some ordering e1, . . . , eN of its edges, the Feynman graphG is called linearly reducible.

condition on the polynomials ψ and ϕ only;independent of ε-order and expansion point (D,~a)ε=0 ∈ 2N× ZN

sufficient criteria: polynomial reduction algorithms (Brown, Panzer)

6 / 18

Page 21: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility

We need that all partial integrals

fn :=∫ ∞

0fn−1 dαn =

∫(0,∞)n

f0 dα1 · · · dαn

(f0 = ψsdd−D/2

ϕsdd

∏eαae−1

e

)

are hyperlogarithms in αn+1 with rational prefactors.

DefinitionIf this holds for some ordering e1, . . . , eN of its edges, the Feynman graphG is called linearly reducible.

condition on the polynomials ψ and ϕ only;independent of ε-order and expansion point (D,~a)ε=0 ∈ 2N× ZN

sufficient criteria: polynomial reduction algorithms (Brown, Panzer)

6 / 18

Page 22: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Polynomial reductionDenote alphabets (divisors) by sets S of irreducible polynomials.

DefinitionLet S denote a set of polynomials f = f eαe + fe linear in αe . Then with[f , g ]e := f ege − fege , Se shall be the set of irreducible factors of

f e , fe : f ∈ S and [f , g ]e : f , g ∈ S .

Example (massless triangle)S = ψ,ϕ = α1 + α2 + α3, α2α3 + zzα1α3 + (1− z)(1− z)α1α2

[ϕ,ψ]3 = (α1 + α2)(α2 + α1zz)− (1− z)(1− z)α1α2

(zα1 + α2)(zα1 + α2)S3 = α1 + α2, zα1 + α2, zα1 + α2, zzα1 + α2, α1, α2, 1− z , 1− z

LemmaIf the singularities of F are cointained in S, then the singularities of∫∞

0 F dαe are contained in Se .

7 / 18

Page 23: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Polynomial reductionDenote alphabets (divisors) by sets S of irreducible polynomials.

DefinitionLet S denote a set of polynomials f = f eαe + fe linear in αe . Then with[f , g ]e := f ege − fege , Se shall be the set of irreducible factors of

f e , fe : f ∈ S and [f , g ]e : f , g ∈ S .

Example (massless triangle)S = ψ,ϕ = α1 + α2 + α3, α2α3 + zzα1α3 + (1− z)(1− z)α1α2

[ϕ,ψ]3 = (zα1 + α2)(zα1 + α2)S3 = α1 + α2, zα1 + α2, zα1 + α2, zzα1 + α2, α1, α2, 1− z , 1− z

LemmaIf the singularities of F are cointained in S, then the singularities of∫∞

0 F dαe are contained in Se .

7 / 18

Page 24: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Polynomial reductionDenote alphabets (divisors) by sets S of irreducible polynomials.

DefinitionLet S denote a set of polynomials f = f eαe + fe linear in αe . Then with[f , g ]e := f ege − fege , Se shall be the set of irreducible factors of

f e , fe : f ∈ S and [f , g ]e : f , g ∈ S .

Example (massless triangle)S = ψ,ϕ = α1 + α2 + α3, α2α3 + zzα1α3 + (1− z)(1− z)α1α2

[ϕ,ψ]3 = (zα1 + α2)(zα1 + α2)S3 = α1 + α2, zα1 + α2, zα1 + α2, zzα1 + α2, α1, α2, 1− z , 1− z

LemmaIf the singularities of F are cointained in S, then the singularities of∫∞

0 F dαe are contained in Se .7 / 18

Page 25: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Polynomial reduction

Corollary (linear reducibility)If all Sk := (Sk−1)k are linear in αk+1, then any MPL F with alphabet inS0 integrates to a MPL

∫∞0 F

∏ne=1 dαe with alphabet in Sn.

Example (massless triangle)S = ψ,ϕ = α1 + α2 + α3, α2α3 + zzα1α3 + (1− z)(1− z)α1α2

S3 = α1 + α2, zα1 + α2, zα1 + α2, zzα1 + α2, α1, α2, 1− z , 1− zS3,2 = z , z , 1− z , 1− z , z − z , zz − 1

This gives only very coarse upper bounds, for example zz − 1 is spurious:It drops out in S2,3 ∩ S3,2 = z , z , 1− z , 1− z , z − z because

S2,3 = z , z , 1− z , 1− z , z − z , zz − z − z .

There are more sophisticated (and much more powerful) polynomialreduction alorithms (Fubini and several variants of compatibility graphs).

8 / 18

Page 26: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Polynomial reduction

Corollary (linear reducibility)If all Sk := (Sk−1)k are linear in αk+1, then any MPL F with alphabet inS0 integrates to a MPL

∫∞0 F

∏ne=1 dαe with alphabet in Sn.

Example (massless triangle)S = ψ,ϕ = α1 + α2 + α3, α2α3 + zzα1α3 + (1− z)(1− z)α1α2

S3 = α1 + α2, zα1 + α2, zα1 + α2, zzα1 + α2, α1, α2, 1− z , 1− zS3,2 = z , z , 1− z , 1− z , z − z , zz − 1

This gives only very coarse upper bounds, for example zz − 1 is spurious:It drops out in S2,3 ∩ S3,2 = z , z , 1− z , 1− z , z − z because

S2,3 = z , z , 1− z , 1− z , z − z , zz − z − z .

There are more sophisticated (and much more powerful) polynomialreduction alorithms (Fubini and several variants of compatibility graphs).

8 / 18

Page 27: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linearly reducible graphs

Page 28: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 29: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 30: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 31: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 32: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 33: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 34: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Example

Linearly reducible:1 3-constructible massless propagators (Brown)

2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 35: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Linearly reducible:1 3-constructible massless propagators (Brown)

2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 36: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Linearly reducible:1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)

3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 37: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Linearly reducible:1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 2 loops (Chavez & Duhr)

4 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 38: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Linearly reducible:1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)

9 / 18

Page 39: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Schwinger parameters

Definition (vertex-width 3 (Brown), 3-constructible (Schnetz))The class of 3-point graphs including star, triangle and closed under

−→ and −→

Linearly reducible:1 3-constructible massless propagators (Brown)2 all ≤ 4-loop massless propagators (Panzer)3 all massless off-shell 3-point with ≤ 3 loops (Panzer)4 massless on-shell 4-point up to 2 loops (Luders)

· · ·

9 / 18

Page 40: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Forest functions

Theorem (Panzer)All 3-constructible massless 3-point graphs evaluate to MPL.

Minors of ladder boxes are closed under the operationsv1

v2 v3

v4

7→

v1

v2 v3

v4

v′

3

e

,

v1

v2 v3

e

v′

4v4

,

v1

v2 v3

e

v4

Example

v1

v2 v3

v4

1

2

3

4

7→v1

v2 v3

v4

7→v1

v2 v3

v4

7→v1

v2 v3

v4

Theorem (Panzer)All minors of ladder boxes (with p2

1 = p22 = 0) evaluate to MPL.

10 / 18

Page 41: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Forest functions

Theorem (Panzer)All 3-constructible massless 3-point graphs evaluate to MPL.

Minors of ladder boxes are closed under the operationsv1

v2 v3

v4

7→

v1

v2 v3

v4

v′

3

e

,

v1

v2 v3

e

v′

4v4

,

v1

v2 v3

e

v4

Example

v1

v2 v3

v4

1

2

3

4

7→v1

v2 v3

v4

7→v1

v2 v3

v4

7→v1

v2 v3

v4

Theorem (Panzer)All minors of ladder boxes (with p2

1 = p22 = 0) evaluate to MPL.

10 / 18

Page 42: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt

Page 43: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt

open source Maple programintegration of hyperlogarithmstransformations of arguments (functional equations)polynomial reductiongraph polynomials

symbolic computation of constants (no numerics)

Example

> read "HyperInt.mpl":> hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):> fibrationBasis(%);

87ζ

32

computes∫∞

0 Li2(−x) Li3(−1/x)dx = 87ζ

32 .

11 / 18

Page 44: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt

open source Maple programintegration of hyperlogarithmstransformations of arguments (functional equations)polynomial reductiongraph polynomialssymbolic computation of constants (no numerics)

Example

> read "HyperInt.mpl":> hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):> fibrationBasis(%);

87ζ

32

computes∫∞

0 Li2(−x) Li3(−1/x)dx = 87ζ

32 .

11 / 18

Page 45: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt

open source Maple programintegration of hyperlogarithmstransformations of arguments (functional equations)polynomial reductiongraph polynomialssymbolic computation of constants (no numerics)

Example

> read "HyperInt.mpl":> hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):> fibrationBasis(%);

87ζ

32

computes∫∞

0 Li2(−x) Li3(−1/x)dx = 87ζ

32 .

11 / 18

Page 46: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt: propagator

1 2

87

4

3

5

6

51

2

3

4

> E := [[2,1],[2,3],[2,5],[5,1],[5,3],[5,4],[4,1],[4,3]]:> psi := graphPolynomial(E):> phi := secondPolynomial(E, [[1,1], [3,1]]):> add((epsilon*log(psiˆ5/phiˆ4))ˆn/n!,n=0..2)/psiˆ2:> hyperInt(eval(%,x[8]=1), [seq(x[n],n=1..7)]):> collect(fibrationBasis(%), epsilon);(

254ζ7 + 780ζ5 − 200ζ2ζ5 − 196ζ23 + 80ζ3

2 −168

5 ζ22ζ3

)ε2

+(−28ζ2

3 + 140ζ5 + 807 ζ

32

)ε+ 20ζ5

12 / 18

Page 47: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt: triangleGraph polynomials:> E:=[[1,2],[2,3],[3,1]]:> M:=[[3,1],[1,z*zz],[2,(1-z)*(1-zz)]]:> psi:=graphPolynomial(E):> phi:=secondPolynomial(E,M):

Integration:> hyperInt(eval(1/psi/phi,x[3]=1),[x[1],x[2]]):> factor(fibrationBasis(%,[z,zz]));(Hlog (z , [1]) Hlog (zz , [0])−Hlog (z , [0]) Hlog (zz , [1]) + Hlog (zz , [0, 1])

−Hlog (zz , [1, 0]) + Hlog (z , [1, 0])−Hlog (z , [0, 1]))/(z − zz)Polynomial reduction:> L[]:=[psi,phi, psi,phi]:> cgReduction(L):> L[x[1],x[2]][1];

−1 + z ,−1 + zz ,−zz + z13 / 18

Page 48: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt: MGEW’ss1

2t

1t

1

2

s2

Linearly reducible representation:

F (2)(2,2)(α) =

∫ 1

0dx1

∫ 1

0dx2p0(x1, α)p0(x2, α)G(2)

(2,2)(x1, x2)

G(2)(2,2)(x1, x2) = θ(x1 − x2) ln

( x11− x1

1− x2x2

)pε(x , γ) =

( 1x + 1/(α− 1) −

1x − α/(α− 1)

)1−ε

LemmaAll gluon-exchange graphs with two Wilson lines are linearly reducible (canbe integrated directly) and give MPL with alphabet A, 1− A (A := α2).

> web2([2,1]);

−4ζ3 + Hlog (0, 0, 0, [A])− 2Hlog (0, 1, 0, [A]) + 2ζ2Hlog (0, [A])(1− A)2

14 / 18

Page 49: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt: MGEW’ss1

2t

1t

1

2

s2

Linearly reducible representation:

F (2)(2,2)(α) =

∫ 1

0dx1

∫ 1

0dx2p0(x1, α)p0(x2, α)G(2)

(2,2)(x1, x2)

G(2)(2,2)(x1, x2) = θ(x1 − x2) ln

( x11− x1

1− x2x2

)pε(x , γ) =

( 1x + 1/(α− 1) −

1x − α/(α− 1)

)1−ε

LemmaAll gluon-exchange graphs with two Wilson lines are linearly reducible (canbe integrated directly) and give MPL with alphabet A, 1− A (A := α2).

> web2([2,1]);

−4ζ3 + Hlog (0, 0, 0, [A])− 2Hlog (0, 1, 0, [A]) + 2ζ2Hlog (0, [A])(1− A)2

14 / 18

Page 50: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt: MGEW’sAngles between pairs (βi , βj) of Wilson lines: γij = 2βiβj√

β2i β

2j

= −αij − 1αij

F (n)(D) ∝∫ 1

0

n∏k=1

[dxkpε(xk , γk)]φ(n)D (x ; ε)

φ(n)D (xi ; ε) =

∫ 1

0

n−1∏0

dyk(1− yk)−1+2εy−1+2kεk ΘD [xk , yk]

Conjecturally, subtracted webs are expressible in terms of (A := α2)

Mn,k,l =∫ ∞

0ds[ 1

1 + s −1

A + s

]lnk (s + 1)(s + A)

A lnl α

s lnn s + As + 1 ,

which themselves are MPL over the alphabet A, 1− A.> Msq(2,0,0);

2Hlog (A, [0, 0, 0])− 4ζ3 − 8ζ2Hlog (A, [1])− 4Hlog (A, [1, 0, 0])+4ζ2Hlog (A, [0]) + 8Hlog (A, [1, 1, 0])− 4Hlog (A, [0, 1, 0])

15 / 18

Page 51: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

HyperInt: MGEW’sAngles between pairs (βi , βj) of Wilson lines: γij = 2βiβj√

β2i β

2j

= −αij − 1αij

F (n)(D) ∝∫ 1

0

n∏k=1

[dxkpε(xk , γk)]φ(n)D (x ; ε)

φ(n)D (xi ; ε) =

∫ 1

0

n−1∏0

dyk(1− yk)−1+2εy−1+2kεk ΘD [xk , yk]

Conjecturally, subtracted webs are expressible in terms of (A := α2)

Mn,k,l =∫ ∞

0ds[ 1

1 + s −1

A + s

]lnk (s + 1)(s + A)

A lnl α

s lnn s + As + 1 ,

which themselves are MPL over the alphabet A, 1− A.> Msq(2,0,0);

2Hlog (A, [0, 0, 0])− 4ζ3 − 8ζ2Hlog (A, [1])− 4Hlog (A, [1, 0, 0])+4ζ2Hlog (A, [0]) + 8Hlog (A, [1, 1, 0])− 4Hlog (A, [0, 1, 0])

15 / 18

Page 52: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parameters

G = 12

3

p3

p1 p2 ψ = α1 + α2 + α3ϕ = p2

1α2α3 + p22α1α3 + m2α3(α1 + α2 + α3)

= α3ϕ

In D = 4− 2ε, subdivergence∫

0dα3α3

at ε = 0:

ΦD

( )

Regularization: integrate by parts∫ Ωψ1−2εϕ1+εα1+ε

3= −α−ε3εψ1−2εϕ1+ε

∣∣∣∣∞α3=0

+ 1ε

∫ Ωαε3

∂α3ψ−1+2εϕ−1−ε

= 1ε

∫ Ωα3ψ1−2εϕ1+ε

[2ε− 1ψ

− (1 + ε)α3m2

ϕ

]

16 / 18

Page 53: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parameters

G = 12

3

p3

p1 p2 ψ = α1 + α2 + α3ϕ = p2

1α2α3 + p22α1α3 + m2α3(α1 + α2 + α3)

= α3ϕ

In D = 4− 2ε, subdivergence∫

0dα3α3

at ε = 0:

ΦD

( )= Γ(1 + ε)

∫ Ωψ1−2εϕ1+εα1+ε

3

Regularization: integrate by parts∫ Ωψ1−2εϕ1+εα1+ε

3= −α−ε3εψ1−2εϕ1+ε

∣∣∣∣∞α3=0

+ 1ε

∫ Ωαε3

∂α3ψ−1+2εϕ−1−ε

= 1ε

∫ Ωα3ψ1−2εϕ1+ε

[2ε− 1ψ

− (1 + ε)α3m2

ϕ

]

16 / 18

Page 54: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parameters

G = 12

3

p3

p1 p2 ψ = α1 + α2 + α3ϕ = p2

1α2α3 + p22α1α3 + m2α3(α1 + α2 + α3)

= α3ϕ

In D = 4− 2ε, subdivergence∫

0dα3α3

at ε = 0:

ΦD

( )= Γ(1 + ε)

∫ Ωψ1−2εϕ1+εα1+ε

3

Regularization: integrate by parts∫ Ωψ1−2εϕ1+εα1+ε

3= −α−ε3εψ1−2εϕ1+ε

∣∣∣∣∞α3=0

+ 1ε

∫ Ωαε3

∂α3ψ−1+2εϕ−1−ε

= 1ε

∫ Ωα3ψ1−2εϕ1+ε

[2ε− 1ψ

− (1 + ε)α3m2

ϕ

]16 / 18

Page 55: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parameters

G = 12

3

p3

p1 p2 ψ = α1 + α2 + α3ϕ = p2

1α2α3 + p22α1α3 + m2α3(α1 + α2 + α3)

= α3ϕ

In D = 4− 2ε, subdivergence∫

0dα3α3

at ε = 0:

ΦD

( )=(

2− 1ε

)ΦD+2

( )−2m2

εΦD+2

( )

Regularization: integrate by parts∫ Ωψ1−2εϕ1+εα1+ε

3= −α−ε3εψ1−2εϕ1+ε

∣∣∣∣∞α3=0

+ 1ε

∫ Ωαε3

∂α3ψ−1+2εϕ−1−ε

= 1ε

∫ Ωα3ψ1−2εϕ1+ε

[2ε− 1ψ

− (1 + ε)α3m2

ϕ

]16 / 18

Page 56: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Regularization of subdivergences

TheoremEvery Euclidean Feynman integral is a finite linear combination ofFeynman integrals without subdivergences.

only the original Feynman graph occurs, with shifted D and ae⇒ preserves linear reducibility!decomposition computable by partial integrationsallows for numeric integrationreproves: coefficients of ε-expansion are periods (Bogner & Weinzierl)

Corollary (IBP, Euclidean kinematics)One can choose master integrals to be scalar and free of subdivergences,given that one allows for shifted dimensions D + 2, D + 4, . . . and dots.

17 / 18

Page 57: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Regularization of subdivergences

TheoremEvery Euclidean Feynman integral is a finite linear combination ofFeynman integrals without subdivergences.

only the original Feynman graph occurs, with shifted D and ae⇒ preserves linear reducibility!decomposition computable by partial integrationsallows for numeric integrationreproves: coefficients of ε-expansion are periods (Bogner & Weinzierl)

Corollary (IBP, Euclidean kinematics)One can choose master integrals to be scalar and free of subdivergences,given that one allows for shifted dimensions D + 2, D + 4, . . . and dots.

17 / 18

Page 58: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Regularization of subdivergences

TheoremEvery Euclidean Feynman integral is a finite linear combination ofFeynman integrals without subdivergences.

only the original Feynman graph occurs, with shifted D and ae⇒ preserves linear reducibility!decomposition computable by partial integrationsallows for numeric integrationreproves: coefficients of ε-expansion are periods (Bogner & Weinzierl)

Corollary (IBP, Euclidean kinematics)One can choose master integrals to be scalar and free of subdivergences,given that one allows for shifted dimensions D + 2, D + 4, . . . and dots.

17 / 18

Page 59: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Summary

polynomial reductionlots of linearly reducible graphs with non-trivial kinematicsfew easily recognizable, infinite families

HyperInt

analytic regularization in terms of Feynman graphsSchwinger parameters are not always optimal:sometimes Φ(G) is MPL, but not linearly reducible

18 / 18

Page 60: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Summary

polynomial reductionlots of linearly reducible graphs with non-trivial kinematicsfew easily recognizable, infinite familiesHyperInt

analytic regularization in terms of Feynman graphsSchwinger parameters are not always optimal:sometimes Φ(G) is MPL, but not linearly reducible

18 / 18

Page 61: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Summary

polynomial reductionlots of linearly reducible graphs with non-trivial kinematicsfew easily recognizable, infinite familiesHyperInt

analytic regularization in terms of Feynman graphs

Schwinger parameters are not always optimal:sometimes Φ(G) is MPL, but not linearly reducible

18 / 18

Page 62: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Summary

polynomial reductionlots of linearly reducible graphs with non-trivial kinematicsfew easily recognizable, infinite familiesHyperInt

analytic regularization in terms of Feynman graphsSchwinger parameters are not always optimal:sometimes Φ(G) is MPL, but not linearly reducible

18 / 18

Page 63: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Thank you! Questions?

Page 64: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Forest polynomials

DefinitionSpanning forest polynomial ΦA,B :=

∑F∏

e /∈F αe over 2-forests F whichseparate the vertices A and B.

f12 := Φ1,2,3,4 f3 := Φ3,1,2,4

f14 := Φ1,4,2,3 f4 := Φ4,1,2,3

Examplev1

v2 v3

v4

1

2

3

4ψ = α1 + α2 + α3 + α4 f12 = α2α4

f14 = α1α3

f3 = α2α3f4 = α3α4

ϕ = F = (p1 + p2)2f12 + (p1 + p4)2f14 + p23f3 + p2

4f4

1 / 15

Page 65: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Restricting forest polynomials

Definition

FG (z) :=∫RE

+

ψ−D/2G · δ(4)

( fψ− z

) ∏e∈E

αae−1e dαe

(R

4+ −→ R+

)

Example (a1 = a2 = a3 = a4 = 1)

F

v1

v2 v3

v4

1

2

3

4; z

=

1z3z4

(D = 4)

z12[z12 (z14 + z3 + z4) + z3z4︸ ︷︷ ︸

Q

]2 (D = 6)

2 / 15

Page 66: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Appending a vertex

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

v4

v′

3

e

or

v1

v2 v3

e

v′

4v4

Using (f ′12, f ′14, f ′3 , f ′4 , ψ′) = (f12, f14, f3, f4 + αeψ,ψ) where x = αe ,

FG ′(z) =∫ z4

0FG(z12, z14, z3, z4 − x) · xae−1 dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

=

∫ z3

0

z12 dz ′3[z12 (z14 + z3 + z4) + z3z4]2 = z3

(z14 + z4) · Q

F

v1

v2 v3

v4

; z

= 1z12 − z14

ln z12(z3 + z14)(z4 + z14)z14 · Q

3 / 15

Page 67: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Appending a vertex

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

v4

v′

3

e

or

v1

v2 v3

e

v′

4v4

Using (f ′12, f ′14, f ′3 , f ′4 , ψ′) = (f12, f14, f3, f4 + αeψ,ψ) where x = αe ,

FG ′(z) =∫ z4

0FG(z12, z14, z3, z4 − x) · xae−1 dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

=∫ z3

0F

v1

v2 v3

v4

1

2

3

4

; z12, z14, z ′3, z4

dz ′3

∫ z3

0

z12 dz ′3[z12 (z14 + z3 + z4) + z3z4]2 = z3

(z14 + z4) · Q

F

v1

v2 v3

v4

; z

= 1z12 − z14

ln z12(z3 + z14)(z4 + z14)z14 · Q

3 / 15

Page 68: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Appending a vertex

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

v4

v′

3

e

or

v1

v2 v3

e

v′

4v4

Using (f ′12, f ′14, f ′3 , f ′4 , ψ′) = (f12, f14, f3, f4 + αeψ,ψ) where x = αe ,

FG ′(z) =∫ z4

0FG(z12, z14, z3, z4 − x) · xae−1 dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

=∫ z3

0

z12 dz ′3[z12 (z14 + z3 + z4) + z3z4]2 = z3

(z14 + z4) · Q

F

v1

v2 v3

v4

; z

= 1z12 − z14

ln z12(z3 + z14)(z4 + z14)z14 · Q

3 / 15

Page 69: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Appending a vertex

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

v4

v′

3

e

or

v1

v2 v3

e

v′

4v4

Using (f ′12, f ′14, f ′3 , f ′4 , ψ′) = (f12, f14, f3, f4 + αeψ,ψ) where x = αe ,

FG ′(z) =∫ z4

0FG(z12, z14, z3, z4 − x) · xae−1 dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

=∫ z3

0

z12 dz ′3[z12 (z14 + z3 + z4) + z3z4]2 = z3

(z14 + z4) · Q

F

v1

v2 v3

v4

; z

=∫ z4

0F

v1

v2 v3

v4

; z12, z14, z3, z ′4

dz ′4

= 1z12 − z14

ln z12(z3 + z14)(z4 + z14)z14 · Q

3 / 15

Page 70: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Appending a vertex

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

v4

v′

3

e

or

v1

v2 v3

e

v′

4v4

Using (f ′12, f ′14, f ′3 , f ′4 , ψ′) = (f12, f14, f3, f4 + αeψ,ψ) where x = αe ,

FG ′(z) =∫ z4

0FG(z12, z14, z3, z4 − x) · xae−1 dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

=∫ z3

0

z12 dz ′3[z12 (z14 + z3 + z4) + z3z4]2 = z3

(z14 + z4) · Q

F

v1

v2 v3

v4

; z

= 1z12 − z14

ln z12(z3 + z14)(z4 + z14)z14 · Q

3 / 15

Page 71: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Adding an edge

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

e

v4

FG ′(z) = Qae+sdd−D∫ z12

0xD/2−ae−1

[QD/2−sdd · FG

]z12=z12−x

dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

= 1Q2

∫ z12

0F

v1

v2 v3

v4

; z12 − x , z14, z3, z4

xdx

= z12 − z14Q2

[ln Q

z3z4ln (z14 + z3)(z14 + z4)

z14(z14 + z3 + z4) − Li2(z3z4(z14 − z12)

z14Q

)]+z12 − z14

Q2 Li2(z3z4

Q

)+z12

Q2 ln z14z3z4z12(z14 + z3)(z14 + z4)−

ln(z3z4/Q)Q(z14 + z3 + z4)

4 / 15

Page 72: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Adding an edge

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

e

v4

Dodgson-identities between spanning forest polynomials:

·(

+ +)

+ · = ·

f12 (f14 + f3 + f4) + f3f4 = Q(f ) = ψ · Φ1,2,3,4

FG ′(z) = Qae+sdd−D∫ z12

0xD/2−ae−1

[QD/2−sdd · FG

]z12=z12−x

dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

= 1Q2

∫ z12

0F

v1

v2 v3

v4

; z12 − x , z14, z3, z4

xdx

= z12 − z14Q2

[ln Q

z3z4ln (z14 + z3)(z14 + z4)

z14(z14 + z3 + z4) − Li2(z3z4(z14 − z12)

z14Q

)]+z12 − z14

Q2 Li2(z3z4

Q

)+z12

Q2 ln z14z3z4z12(z14 + z3)(z14 + z4)−

ln(z3z4/Q)Q(z14 + z3 + z4)

4 / 15

Page 73: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Adding an edge

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

e

v4

Dodgson-identities between spanning forest polynomials:

·(

+ +)

+ · = ·

f12 (f14 + f3 + f4) + f3f4 = Q(f ) = ψ · Φ1,2,3,4

FG ′(z) = Qae+sdd−D∫ z12

0xD/2−ae−1

[QD/2−sdd · FG

]z12=z12−x

dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

= 1Q2

∫ z12

0F

v1

v2 v3

v4

; z12 − x , z14, z3, z4

xdx

= z12 − z14Q2

[ln Q

z3z4ln (z14 + z3)(z14 + z4)

z14(z14 + z3 + z4) − Li2(z3z4(z14 − z12)

z14Q

)]+z12 − z14

Q2 Li2(z3z4

Q

)+z12

Q2 ln z14z3z4z12(z14 + z3)(z14 + z4)−

ln(z3z4/Q)Q(z14 + z3 + z4)

4 / 15

Page 74: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Adding an edge

G =

v1

v2 v3

v4

7→ G ′ =

v1

v2 v3

e

v4

FG ′(z) = Qae+sdd−D∫ z12

0xD/2−ae−1

[QD/2−sdd · FG

]z12=z12−x

dx

Example (D = 6 and ae = 1)

F

v1

v2 v3

v4

; z

= 1Q2

∫ z12

0F

v1

v2 v3

v4

; z12 − x , z14, z3, z4

xdx

= z12 − z14Q2

[ln Q

z3z4ln (z14 + z3)(z14 + z4)

z14(z14 + z3 + z4) − Li2(z3z4(z14 − z12)

z14Q

)]+z12 − z14

Q2 Li2(z3z4

Q

)+z12

Q2 ln z14z3z4z12(z14 + z3)(z14 + z4)−

ln(z3z4/Q)Q(z14 + z3 + z4)

4 / 15

Page 75: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Kinematics from forest functions

ϕ = F = (p1 + p2)2f12 + (p1 + p4)2f14 + p23f3 + p2

4f4

Corollary

Φ(G) = Γ(sdd)∏e Γ(ae)

∫ ∞0

FG(z) Ω[(p1 + p2)2z12 + (p1 + p4)2z14 + p2

3z3 + p24z4]sdd

Example (kinematics: s = (p1 + p2)2 and u = (p1 + p4)2)

Φ( )

=∫ ∞

0

dz12sz12 + u

∫ ∞0

dz3

∫ ∞0

dz4z12

[z12(1 + z3 + z4) + z4z3]2

=∫ ∞

0

dz12 ln z12(sz12 + u)(z12 − 1) = π2 + ln2(s/u)

2(s + u)

5 / 15

Page 76: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Compatibility graph of box-ladders

z12 − z14

z12 + z3 Q z12 + z4

z14 + z3 + z4

z14 + z3 z14 + z4

6 / 15

Page 77: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Two-loop non-planar form factor: regularization

(4−2ε)

= 4(1− ε)(3− 4ε)(1− 4ε)εs2

(6−2ε)

− 10− 65ε+ 131ε2 − 74ε3

ε3s2

(6−2ε)

− 14− 119ε+ 355ε2 − 420ε3 + 172ε4

(1− 2ε)ε3s3

(4−2ε)

7 / 15

Page 78: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parametersIn D = 4− 2ε dimensions,

Φ

1

2

3

45

6

7 8

= Γ(2 + 3ε)∫ Ωϕ2+3εψ−4ε

where ϕ = α4(· · · ) + α5(· · · ) + α4α5(· · · ) vanishes at α4 = α5 = 0.Rescale α4 → λα4 and α5 → λα5, so ϕ→ λϕ and ψ → ψ:∫ Ωψ4ε

ϕ2+3ε =∫ Ωψ4ε

ϕ2+3ε

∫ ∞0

δ(α4 + α5 − λ) dλ

Numerator monomials correspond to squared propagators:

ΦD

( )= − 1

3εΦD+2

(+ + · · ·

)

+ 43ΦD+2

(+ + · · ·+ 2 + 2

)

8 / 15

Page 79: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parametersIn D = 4− 2ε dimensions,

Φ

1

2

3

45

6

7 8

= Γ(2 + 3ε)∫ Ωϕ2+3εψ−4ε

where ϕ = α4(· · · ) + α5(· · · ) + α4α5(· · · ) vanishes at α4 = α5 = 0.Rescale α4 → λα4 and α5 → λα5, so ϕ→ λϕ and ψ → ψ:∫ Ωψ4ε

ϕ2+3ε =∫

Ω δ(α4 + α5 − 1)∫ ∞

0

dλλ1+3ε

ψ4ε

ϕ2+3ε

Numerator monomials correspond to squared propagators:

ΦD

( )= − 1

3εΦD+2

(+ + · · ·

)

+ 43ΦD+2

(+ + · · ·+ 2 + 2

)

8 / 15

Page 80: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parametersIn D = 4− 2ε dimensions,

Φ

1

2

3

45

6

7 8

= Γ(2 + 3ε)∫ Ωϕ2+3εψ−4ε

where ϕ = α4(· · · ) + α5(· · · ) + α4α5(· · · ) vanishes at α4 = α5 = 0.Rescale α4 → λα4 and α5 → λα5, so ϕ→ λϕ and ψ → ψ:∫ Ωψ4ε

ϕ2+3ε =∫

Ω δ(α4 + α5 − 1)( 1

)∫ ∞0

dλλ3ε

(∂

∂λ

)ψ4ε

ϕ2+3ε

Numerator monomials correspond to squared propagators:

ΦD

( )= − 1

3εΦD+2

(+ + · · ·

)

+ 43ΦD+2

(+ + · · ·+ 2 + 2

)

8 / 15

Page 81: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parametersIn D = 4− 2ε dimensions,

Φ

1

2

3

45

6

7 8

= Γ(2 + 3ε)∫ Ωϕ2+3εψ−4ε

where ϕ = α4(· · · ) + α5(· · · ) + α4α5(· · · ) vanishes at α4 = α5 = 0.Rescale α4 → λα4 and α5 → λα5, so ϕ→ λϕ and ψ → ψ:∫ Ωψ4ε

ϕ2+3ε =∫ Ωψ4ε

ϕ2+3ε

43

∂ψ

∂λ− 2 + 3ε

3ε1ϕ

∂ϕ

∂λ

λ=1

Numerator monomials correspond to squared propagators:

ΦD

( )= − 1

3εΦD+2

(+ + · · ·

)

+ 43ΦD+2

(+ + · · ·+ 2 + 2

)

8 / 15

Page 82: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Divergences in Schwinger parametersIn D = 4− 2ε dimensions,

Φ

1

2

3

45

6

7 8

= Γ(2 + 3ε)∫ Ωϕ2+3εψ−4ε

where ϕ = α4(· · · ) + α5(· · · ) + α4α5(· · · ) vanishes at α4 = α5 = 0.Rescale α4 → λα4 and α5 → λα5, so ϕ→ λϕ and ψ → ψ:∫ Ωψ4ε

ϕ2+3ε =∫ Ωψ4ε

ϕ2+3ε

43

∂ψ

∂λ− 2 + 3ε

3ε1ϕ

∂ϕ

∂λ

λ=1

Numerator monomials correspond to squared propagators:

ΦD

( )= − 1

3εΦD+2

(+ + · · ·

)

+ 43ΦD+2

(+ + · · ·+ 2 + 2

)8 / 15

Page 83: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Sector decompositionSubdivergences (IR and UV) of Feynman integrals result in (higher order)poles in ε (dimensional regularization) and obstruct both analytical andnumerical evaluation. Standard solution: Sector decomposition .

1 Split original integral into several sectors:∫f (x) dx1 · · · dxN =

∑i

∫Si

f (x) dx1 · · · dxN

2 Change of variables in each sector (monomialise):∫Si

f (x) dx1 · · · dxN =( N∏

k=1

∫ 1

0xβk−1

k dxk

)f ′i (x)

such that f ′i (x) is bounded on [0, 1]N3 Regulate all (now normal crossing) divergences at zero:∫ 1

0xβ−1

k dxk fi (x) = 1β

f (x)|xk =1 −1β

∫ 1

0xβk dxk ∂xk fi (x)

9 / 15

Page 84: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Undesirable features of sector decomposition

Many different terms (sectors and subtraction terms) to considerSpurious structures (cancellation between sectors): An individualsector is more complicated than the total sum.∫ 1

0

ln(1 + x)x(1 + x) dx = 1

2ζ(2)− 12 ln2(2)∫ ∞

1

ln(1 + x)x(1 + x) dx = 1

2ζ(2) + 12 ln2(2)

Changes of variables are different in each sector and can destroy linearreducibility, a property allowing for analytical evaluation

IdeaAvoid sector decomposition and write the integral as a linear combinationof subdivergence-free (“primitive” or “quasi-finite”) Feynman integrals.

10 / 15

Page 85: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Double box: IBP reduction to primitive master integrals

(4−2ε)

= A1

(6−2ε)

+ A2

(6−2ε)

+ A3ε2

(6−2ε)

+ A4ε2

(6−2ε)

+ A5ε3

(4−2ε)

+ A6ε3

(6−2ε)

+ A7ε4

(6−2ε)

+ A8ε3

(4−2ε)

11 / 15

Page 86: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Linear reducibility: Massive examples

12 / 15

Page 87: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Periods of cocommutative graphs

The Feynman period of log. div. graphs depends on the renormalizationscheme/point. Cocommutative graphs are an exception.

Example (wheels in wheels)

P( )

= 72ζ23 − 189

2 ζ7

P

= 72ζ33

P

+

= 480ζ3ζ5 − 40ζ33 −

47309 ζ9

13 / 15

Page 88: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

Massless φ4 theory: primitive sixth roots of unity

P7,11 = is not linearly reducible!

Tenth denominator:

d10 = α2α24α1 + α2α

24α3 − α1α2α3α4 + α2

2α4α1 + α22α4α3

− 2α2α23α4 − α2

2α23 − 2α2

2α3α1 − 2α2α23α1 − α2

3α24

− 2α23α4α1 − α2

2α21 − 2α2α3α

21 − α2

3α21.

Change variables: α3 = α′3α1α1+α2+α4

, α4 = α′4(α2 + α′3) and α1 = α′1α′4,

d ′10 = (α2 + α′3)(α2 + α2α′4 − α′1)(α′1α′4 + α2 + α2α

′4 + α′3α

′4)

Final result: not a multiple zeta value, instead MPL at eiπ/3

14 / 15

Page 89: HyperInt - exact integration with hyperlogarithmspeople.maths.ox.ac.uk/panzer/paper/edinburgh2015.pdf · 2016-01-08 · iterated integrals: path-concatenation and monodromy formulas

√3P(P7,11)

= Im(

19 2856 ζ9 Li2−1029

2 ζ7 Li4 +240ζ23 (9 Li2,3−7ζ3 Li2)

)− 93 824

9675 π3ζ3,5

+ 2592215 Im

(36 Li2,2,2,5 +27 Li2,2,3,4 +9 Li2,2,4,3 +9 Li2,3,2,4 +3 Li2,3,3,3

− 43ζ3(Li2,3,3 +3 Li2,2,4))− 96 393 596 519 864 341 538 701 979

790 371 465 315 684 594 157 620 000π11

+ 21614 755 731 798 995 Im

(2 539 186 130 125 890 Li8 ζ3−1 269 593 065 062 945 Li2,9

−413 965 317 054 502 Li6 ζ5− 996 412 983 391 539 Li3,8

−546 306 741 059 841 Li4,7 − 156 228 639 992 955 Li5,6

)+ 2592

10 945 435π2 Im

(287 205 Li2,7−574 410 Li6 ζ3 + 55 687 Li4,5 +168 941 Li3,6

)+ π

(11 613 751

9030 ζ25 + 267 067

602 ζ3,7 − 31 104215 Re(3 Li4,6 +10 Li3,7)

)Abbreviation: Lin1,...,nr := Lin1,...,nr (eiπ/3)

15 / 15