hydrogel thermodynamics (continued) physical hydrogels · pdf filelecture 8 spring 2006 1...

28
Lecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering applications of hydrogels thermodynamics of hydrogel swelling Today: Structure, physical chemistry, and thermodynamics of physical gels Reading: L.E. Bromberg and E.S. Ron, ‘Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery,’ Adv. Drug Deliv. Rev., 31, 197 (1998) D. Chandler ‘Interfaces and the driving force of hydrophobic assembly,’ Nature 437, 640- 647 (2005)

Upload: trancong

Post on 06-Mar-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 1

Hydrogel thermodynamics (continued)Physical hydrogels

Announcements:

Last Day: bioengineering applications of hydrogels

thermodynamics of hydrogel swelling Today: Structure, physical chemistry, and thermodynamics of physical gels Reading: L.E. Bromberg and E.S. Ron, ‘Temperature-responsive gels and thermogelling polymer

matrices for protein and peptide delivery,’ Adv. Drug Deliv. Rev., 31, 197 (1998) Supplementary Reading:

D. Chandler ‘Interfaces and the driving force of hydrophobic assembly,’ Nature 437, 640-647 (2005)

Page 2: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 2

Thermodynamics of hydrogel swelling: Peppas-Merrill theory (derived from Flory-Rehner theory of elastic gels)

Vsswelling

Competing driving forces determine total swelling:

Vr

Page 3: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 3

Chemical potential requirement for equilibrium in the gel:

Page 4: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 4

Governing equation for equilibrium:

( ) ( ) 011 =∆+∆ elmix µµ

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎟⎠

⎞⎜⎜⎝

++−−=

r

s

r

s

sss

r

sp

C Vv

MM

,2

,2

3/1

,2

,2

2,2,2,2

,21

2,

21

)1ln(21

φφ

φφ

χφφφφ

Page 5: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 5

Example application of Flory-Rehner/Peppas-Merrill theory:

crosslink

Page 6: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 6

Predictions of Flory/Peppas theory

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

Mc (g/mole)S

= V

s/

Vd

ry

0.20.10.05

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000

Mc (g/mole)

vo

lum

e f

racti

on

po

lym

er

in s

wo

lle

n

sta

te

0.20.10.05

Varying φ2,r:

Q

Page 7: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 7

Predictions of Flory/Peppas theory

Varying χ:

hydrogel swelling vs. solvent quality

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000

Mc (g/mole)

vo

lum

e f

rac

tio

n p

oly

me

r in

sw

oll

en

s

tate

0.50.40.2

hydrogel swelling vs. solvent quality

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

Mc (g/mole)

S

0.50.40.2

Q

Page 8: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 8

Model parametersµ1

bath chemical potential of water in external bath ( = µ10)

µ1 chemical potential of water in the hydrogel µ1

0 chemical potential of pure water in standard state ∆w12 pair contact interaction energy for polymer with water z model lattice coordination number x number of segments per polymer molecule M Molecular weight of polymer chains before cross-linking Mc Molecular weight of cross-linked subchains n1 number of water molecules in swollen gel χ polymer-solvent interaction parameter kB Boltzman constant T absolute temperature (Kelvin) vm,1 molar volume of solvent (water) vm,2 molar volume of polymer vsp,1 specific volume of solvent (water) vsp,2 specific volume of polymer V2 total volume of polymer Vs total volume of swollen hydrogel Vr total volume of relaxed hydrogel ν number of subchains in network νe number of ‘effective’ subchains in network φ1 volume fraction of water in swollen gel φ2,s volume fraction of polymer in swollen gel φ2,r volume fraction of polymer in relaxed gel

Page 9: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 9

Bonding in physical hydrogels

non-cooperative interactions:

Unstable, no gelation

Page 10: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 10

Bonding in physical hydrogels

cooperative interactions:

Stable interactions, gel forms

Page 11: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 11

Gelation via hydrophobic associations

water

Block sequence controls self-assembled structures formed:

Page 12: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 12

Chemical structure of associative copolymers used in bioengineering

Example blocks:

Hydrophilic B blocks

Hydrophobic A blocks Poly(propylene oxide) (PPO)Poly(butylene oxide) (PBO)

Poly(ethylene glycol) (PEG)

CH3O CH3 O O OHO-(CH-C-O-CH-C-O-)x-(CH2-C-O-CH2-C-O)y-(CH2-CH2-O)z-

PLGA

CH3O CH3 O O O (CH-C-O-CH-C-O-)x-(CH2-C-O-CH2-C-O)y-H

PEG PLGA

PEO PPO PEO

Page 13: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 13

Gelation via hydrophobic associations

Hydroxypropylmethyl cellulose

Poly(N-isopropylacrylamide)

ordered water molecules(minimize water-hydrophobe contacts)R = -CH2-CH-CH3, -CH3, or -H

OHDehydration allows water to disorder (entropically-driven)

∆S = Sdehydrated - Shydrated > 0

Page 14: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 14

Hydrogen-bonded hydrogels

Page 15: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 15

Figures 4 and 5 in Percec, V., T. K. Bera, and R. J. Butera. Biomacromolecules 3 (2002): 272-9.

Page 16: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 16

Ionically-bonded hydrogels

+- Ca++--

Salt bridgeDivalent cations

Alginate(polysaccharide)

+ divalent cations+ cationic polymer

e.g. chitosan (cationic polysaccharide),

polylysine

http://www.lsbu.ac.uk/water/hyalg.html

Page 17: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 17

Combined non-covalent interactions example: coiled-coil peptide gels

Figure 1 in Wang, C., R. J. Stewart, and J. Kopecek. "Hybrid Hydrogels Assembled From Synthetic Polymers and Coiled-coil Protein Domains." Nature 397 (1999): 417-20.

Page 18: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Structure of associating block copolymer hydrogels

Increasing c, T

Hydrophobic block

Hydrophilic block

unimers micelles

‘flower’ micelle

Core-shell micelle

Lecture 8 Spring 2006 18

Page 19: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 19

Formation of micelles

Experiments by Hatton group at MIT:

PEO-PPO-PEO micellization at different temperatures measured by adding a hydrophobic dye that absorbs UV light when bound in a hydrophobic environment (e.g. micelle core) but not free in solution

Figure 3 in Alexandridis, P., J. F. Holzwarth, and T. A. Hatton. Macromolecules 27 (1994): 2414-2425.

Page 20: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 20

Structure of associating block copolymer hydrogels

Intermicelle physical cross-links

Page 21: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 21

Structure of associating block copolymer hydrogels

5 mm

PEO PPO PEO

Entanglement and H-bonding between packed micelle coronas

Page 22: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 22

Structure of associating block copolymer hydrogels

Figures 19 and 20 in CCopolymers. Edited by V.

hu, B. and Z. Zhou. Nonionic Surfactants: Polyoxyalkylene Block

M. Nace. New York, NY: Marcel Dekker, 1996, pp. 67-143.

Page 23: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 23

Block length determines gel structure

Figure 14 in Chu, B. Z. Zhou. Nonionic Surfactants: PolyoxyalkyleneBlock Copolymers. Edited by V. M. Nace. New York, NY: Marcel Dekker, 1996, pp. 67-143.

Page 24: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 24

Relation between structure and applications in bioengineering

Cubic phase gel drug depots

Micelle drug nanocarriers

10-50 nmFigure 1 in Zhang, L., D. L. Parsons, C. Navarre, and U. B. Kompella. J Control Release 85 (2002): 73-81.

Page 25: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 25

Thermodynamics of hydrophobic association

T

0 Mole % B 100

T

0 Mole % B 100

UCST LCST

P + S

PS

PS = polymer solutionP + S = two-phase region: polymer-rich, polymer-poor

PS

P + S

Page 26: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 26

Thermodynamics of hydrophobic association

Page 27: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 27

Determination of thermodynamic driving force for triblock self-assembly

Figure 6 and Table 4 in Alexandridis, P., J. F. Holzwarth, and T. A. Hatton. Macromolecules 27 (1994): 2414-2425.

Page 28: Hydrogel thermodynamics (continued) Physical hydrogels · PDF fileLecture 8 Spring 2006 1 Hydrogel thermodynamics (continued) Physical hydrogels Announcements: Last Day: bioengineering

Lecture 8 Spring 2006 28

Further Reading

1. Wang, C., Stewart, R. J. & Kopecek, J. (1999) Nature 397, 417-20.2. Guenet Thermoreversible Gelation of Polymers and Biopolymers, New York). 3. Shah, J. C., Sadhale, Y. & Chilukuri, D. M. (2001) Adv Drug Deliv Rev 47, 229-50. 4. Landau, E. M. & Rosenbusch, J. P. (1996) Proc Natl Acad Sci U S A 93, 14532-5. 5. Ron, E. S. & Bromberg, L. E. (1998) Adv Drug Deliv Rev 31, 197-221. 6. Percec, V., Bera, T. K. & Butera, R. J. (2002) Biomacromolecules 3, 272-9. 7. Kuo, C. K. & Ma, P. X. (2001) Biomaterials 22, 511-21. 8. Bray, J. C. & Merrill, E. W. (1973) Journal of Applied Polymer Science 17, 3779-3794. 9. Salem, A. K., Rose, F. R. A. J., Oreffo, R. O. C., Yang, X., Davies, M. C., Mitchell, J. R., Roberts, C. J., Stolnik-Trenkic, S., Tendler, S. J. B., Williams, P. M. & Shakesheff, K. M. (2003) Advanced Materials 15, 210-213. 10. Cao, Y., Rodriguez, A., Vacanti, M., Ibarra, C., Arevalo, C. & Vacanti, C. A. (1998) J Biomater Sci Polym Ed 9, 475-87. 11. Zhang, L., Parsons, D. L., Navarre, C. & Kompella, U. B. (2002) J Control Release 85, 73-81. 12. Jeong, B., Bae, Y. H., Lee, D. S. & Kim, S. W. (1997) Nature 388, 860-2. 13. Chu, B. & Zhou, Z. (1996) in Nonionic Surfactants: Polyoxyalkylene Block Copolymers, ed. Nace, V. M. (Marcel Dekker, New York), pp. 67-143. 14. Chu, B. (1995) Langmuir 11, 414-421. 15. Alexandridis, P., Holzwarth, J. F. & Hatton, T. A. (1994) Macromolecules 27, 2414-2425.