hydraulic fluidborne noise measurements

23
Vibro-Acoustics Consortium August 12, 2021 Hydraulic Fluidborne Noise Measurements David Herrin University of Kentucky

Upload: others

Post on 27-Feb-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

Hydraulic Fluidborne Noise Measurements

David HerrinUniversity of Kentucky

Page 2: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

2

Heavy Equipment Multiple Sources

Washburn and Wood, 2016

Page 3: Hydraulic Fluidborne Noise Measurements

Forcing Functions(Source)

Energy Paths(Source)

Example: EngineMechanical Dynamics

Piston Slap Internal Gears Bearing Impacts Etc.

Example: Hydraulics/Hydrostatics

Flow Ripple

Kinematic Component Inertial Component

Fluid-Borne

Radiating Surfaces Reservoir Etc.

Fluid-Borne Path

Engine Structure Radiating Surfaces Front Cover Engine Block Valve Covers Oil Pan

Structure-Borne

Airborne

Sound Emitting Orifices Intake Exhaust

Example: Intake / Exhaust

Combustion

Combustion

Vibration Path Engine Mounts Etc.

Vibration Path Hose / Pipe Attachments Etc.

TemplateSource Side

The source energy paths are characterized by the whether the forcing function is airborne, structure-borne, or Fluid-Borne.

T.O.C.

Page 4: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

β€’ Kinematic Componentβ€’ Inertial Component

4

Flow Ripple

Pump Pipe Valve and sink

Time (10-3s)

Flow

(10-

1 l/s)

Typical flow ripple for a piston pump:

Edge, 1999

Page 5: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

5

ISO 15086 Hydraulic fluid power – Determination of fluid-borne noise characteristics of components and systems

Part 1 (2001): Plane wave model in hydraulics

Part 2 (2000): Measurement of speed of sound

Part 3 (2008): Measurement of hydraulic impedance

ISO 10767 Hydraulic fluid power – Determination of pressure ripple levels generated in systems and components

Part 1 (1996): Measurement of source flow ripple and source impedance

Part 1 (2015): Measurement of source flow ripple and source impedance

Standards

Page 6: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

6

Plane Wave Model

𝑃 π‘₯ 𝑝 𝑒 𝑝 𝑒

𝛾 𝑗2πœ‹π‘“π‘ πœ‰

𝑃 π‘₯ 𝑝 𝑒 𝑝 𝑒

π‘˜2πœ‹π‘“π‘

πœ‰: viscosity coefficient

Acoustic Pressure Pressure Ripple

Viscosity Coefficient

πœ‰ πœ” 1Ξ½

2π‘Ÿ πœ”π‘—

Ξ½2π‘Ÿ πœ”

Ξ½π‘Ÿ πœ”

Page 7: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

7

Plane Wave Model

Acoustic Particle Velocity Flow Ripple

𝑄 π‘₯1𝑍 𝑝 𝑒 𝑝 𝑒 𝑄 π‘₯

1𝑍 𝑝 𝑒 𝑝 𝑒

(in air)π‘πœŒπ‘π‘†

π‘πœŒπ‘πœ‰ πœ”

𝑆

Characteristic Impedance Characteristic Impedance

Page 8: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

8

𝑃 π‘₯ : fluid pressure at location π‘₯𝑝 : incident wave amplitude𝑝 : reflected wave amplitude𝛾: wave propagation coefficientπ‘₯: location in the pipe

Plane Wave Model

Source LoadPipe

𝑝

𝑝

π‘₯

𝑃 π‘₯ 𝑝 𝑒 𝑝 𝑒

Page 9: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

9

Hydraulic Transfer Matrix

𝑃𝑄 β†’

𝑇 𝑇 𝑇 𝑇 𝑃

𝑄 β†’

1 2 3

𝑄 β†’ 𝑄 β†’

𝑃𝑃 𝑃

𝑄 β†’ 𝑄 β†’

𝑃𝑄 β†’

𝑇 𝑇 𝑇 𝑇 𝑃

𝑄 β†’

𝑄 β†’ 𝑄 β†’ 0

Page 10: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

10

Property Calculations

Viscosity of fluid in pipe

Density of fluid

From handbooks:

From measurement: Speed of sound

Wave propagation coefficient 𝛾 𝑗

πœ”π‘ πœ‰

𝜈

𝜌

𝑐

Page 11: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

11

Speed of Sound ISO 15086-2

𝑄 β†’ 𝑄 β†’

𝑃 𝑃𝑃𝐿 𝐿

1. Assume speed of sound to determined incident and reflected wave using 𝑝 and 𝑝 .

2. Determine 𝑝 and compare to measured 𝑝 .3. Iterate 𝑐 until error is minimized.

Page 12: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

12

Speed of Sound ISO 15086-2

0

400

800

1200

1600

600 800 1000 1200 1400 1600 1800

Erro

r (Ξ΅)

Speed of Sound (m/s)

1344 m/s

Page 13: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

13

Transmission Loss Two Source Approach

Notes: primary pump is to provide the mean flow pressureand is running at 270 Hz.

Test Component

L2

L1

L3

1 43 62 5

Hose

Primary Source(pump)

Secondary Source

Ball Valve

6 Transducers

Symmetric Setup

Page 14: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

14

Transmission Loss ASTM E2611

Liu, Suh, and Yang (2017)

Page 15: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

15

‐5

0

5

10

15

20

200 400 600 800 1000 1200 1400 1600

Transm

ission Loss (d

B)

Frequency (Hz)

Transducers 1&2, 4&5Transducers 2&3, 5&6Transducers 1&3, 4&6

Test Component1 43 62 5

Transmission Loss ASTM E2611

Page 16: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

16

Load valvePressure relief valve

Pressure transducers

Straight rigid pipe

Test pump

Secondary Source

β€’ More than 2 pressure transducers can be used for accuracy.β€’ 𝑄 and 𝑍 are solved at the harmonics of the secondary source.

13 2

Source Impedance ISO 10767-1 (1996)

Page 17: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

17

𝑄𝑍

𝑍 𝑍 𝑄𝑃

𝑍 𝑍𝑃𝑍

Current source: 𝑄 and 𝑍

𝑄

𝑍𝑄 , 𝑍

Voltage source: 𝑃 and 𝑍

𝑃

𝑍

𝑃 , 𝑍

Source Load

Source Impedance ISO 10767-1

Page 18: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

18

𝑃𝑄

𝐿 𝐿

Connecting Pipe Reference Pipe

Loading Valve

𝑃𝑄

(a)

𝑄

𝑃

𝐿 𝐿 𝐿

Extension Pipe Reference Pipe

Loading Valve

𝑄𝑃𝑄

(b)

𝑄

𝑄𝑃𝑍 𝑄

1 𝑃1 𝑃

π‘„π‘Œ

𝑄𝑄

Where π‘Œ 1 𝑍⁄

Multi-load approach can be used, and source properties can be solved by least square approach.

Source Impedance ISO 10767-1

Liu, Suh, and Butts (2018)

Page 19: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

19

Source Impedance Load Selection

Liu, Suh, and Butts (2018)

Page 20: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

20

Source Impedance ISO 10767-1

Liu, Suh, and Butts (2018)

Page 21: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

21

Flow Ripple ISO 10767-1

Liu, Suh, and Butts (2018)

Page 22: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

22

Flow Ripple ISO 10767-1

Liu, Suh, and Butts (2018)

Page 23: Hydraulic Fluidborne Noise Measurements

Vibro-Acoustics Consortium

August 12, 2021

References

23

β€’ J. Liu, S. Suh, and Y. Yang, Hydraulic Fluid-borne Noise Measurement and Simulation for Off-Highway Equipment, Noise-Con, Grand Rapids, MI, June 12-14 (2017).

β€’ J. Liu, S. Suh, and T. Butts, Source Flow Ripple and Source Impedance Measurement for Different Hydraulic Pumps, Inter-Noise, Chicago, IL, August 26-29 (2018).