hvdc transmission system

662
HVDC TRANSMISSION SYSTEM FOR RURAL ALASKA APPLICATIONS Phase II Prototyping and Testing May 2012 FINAL REPORT, Version 1.1 prepared by polarconsult alaska, inc. 1503 West 33rd Avenue, Suite 310 Anchorage, Alaska 99503 Phone: (907) 2582420 funding agency The Denali Commission 510 L St., Suite 410 Anchorage, Alaska 99501 Phone: (907) 2711414 project administrator Alaska Center for Energy and Power University of Alaska, Fairbanks 814 Alumni Dr. P.O. Box 755910 Fairbanks, Alaska 99775 Phone: (907) 4745402

Upload: dangtuyen

Post on 02-Jan-2017

287 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: HVDC TRANSMISSION SYSTEM

HVDCTRANSMISSIONSYSTEMFORRURALALASKAAPPLICATIONSPhaseII‐PrototypingandTesting

May2012FINALREPORT,Version1.1

preparedby

polarconsultalaska,inc.1503West33rdAvenue,Suite310Anchorage,Alaska99503Phone:(907)258‐2420

fundingagency

TheDenaliCommission510LSt.,Suite410Anchorage,Alaska99501Phone:(907)271‐1414

projectadministrator

AlaskaCenterforEnergyandPowerUniversityofAlaska,Fairbanks814AlumniDr.P.O.Box755910Fairbanks,Alaska99775Phone:(907)474‐5402

Page 2: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012

AbouttheCoverImage:

ThecoverimageisofademonstrationinstallationinFairbanksofaguyedfiberglasspolesimilarinsize,height,andconstructiontothepolesconsideredinthisstudyforoverheadtransmissioninruralAlaskaapplications.Thepoleisa12‐inch‐diameter,60‐foot‐tallfiberglassstructuresupportedbythreemicro‐thermopiles.Thepole’sfourguysareanchoredbytwomicro‐thermopilesandtwoscrewanchorssetinsilt‐richpermafrost.

Page 3: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE I

EXECUTIVESUMMARY

ProgramObjectives

ThisreportpresentstheachievementsandfindingsofPhaseIIofthe“High‐VoltageDirectCurrent(HVDC)TransmissionSystemsforRuralAlaska”researchanddevelopment(R&D)program.ThegoalofthisprogramistoimprovetheeconomicviabilityofAlaska’sruralcommunitiesbyprovidingmoreaffordableelectricitytransmissionalternatives.PhaseIIworkwasfundedbytheDenaliCommissionandcompletedbyPolarconsultAlaska,Inc.(Polarconsult)undercontracttotheAlaskaCenterforEnergyandPower(ACEP).

TheeffectofexcessiveenergycostscontinuestodegradethequalityoflifeinAlaska’sruralcommunitiesandplacestheseindigenouspopulationsatsevererisk.Nearly80%ofruralcommunitiesaredependentondieselfuelfortheirprimaryenergyneeds.Someofthepooresthouseholdsspent47%oftheirincomeonenergyin2008,morethanfivetimestheamountinAnchorage(CWN,2012).

HVDCintertieswillsupportmorecost‐effectivedevelopmentoflocalenergyresources,suchaswind,hydro,biomass,geothermal,hydrokinetic,gas,andcoal.Reducingthecostoflow‐power(1megawatt[MW]andless)intertiesbyusingHVDCsystemscanenableincreasedinterconnectionofruralcommunitiestoAlaska’sabundantenergyresources.

HVDCintertieswillalsobenefitruralcommunitieswithreducedenergycostsbybuildingeconomicsofscaleinruralpowergridsandallowingutilitiestoconsolidatebulkfuelfacilitiesanddieselelectricpowerplantsintomoreefficientandlower‐costconfigurations.

Asaresultofongoingadvancesinpowerelectronics,small‐scaleHVDCintertiesarenowfeasible.Thisreporthasidentifiedlow‐poweroverheadandsubmarineHVDCtransmissionsystemsasaneconomicallysuperioralternativetoconventionalalternatingcurrent(AC)interties.AdditionalcostreductionscanberealizedbyintegratingHVDCsystemswithfutureexpansionofbroadbandfiber‐optictelecommunicationnetworks.ThissynergisticopportunitybetweenthetelecommunicationsandelectricindustriesisoneofseveralreasonsHVDCintertiescanhelpsurmounttheeconomicbarriersfacingAlaska’sruralcommunities.

ComparativeanalysisofHVDCtransmissionsystemswithconventionalACsystemsindicatessignificanttechnicalandeconomicadvantagesofHVDCsystems.InmanyruralAlaskaapplications,theuseofHVDCsystemswillsignificantlylowerintertiecosts.

PhaseIIObjectivesandFindings

PhaseIIofthisR&DprogramfollowsthePhaseI–PreliminaryDesignandFeasibilityAnalysisFinalReport(Polarconsult,2009).PhaseItasksincludedassessingconvertertechnicalfeasibilityandevaluatingtheeconomicsofalow‐powerHVDCsystemsizedforruralAlaskaapplications.BasedonthefavorableresultsofthePhaseIproject,thefollowingPhaseIIobjectiveswereestablished:

● ConfirmationofthetechnicalfeasibilityoftheHVDC/ACpowerconvertertechnologybydesigning,building,andtestingafull‐scaleprototypeofa1‐MWbidirectionalpowerconverterandkeytransmissionsystemelements.

Page 4: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE II

● Confirmationoftheeconomicfeasibilityofthelow‐powerHVDCsysteminruralAlaskaapplicationsbydeterminingthecommercialcostoftheconverter,theconverter’sefficiency,andtheestimatedoverallcostsofanHVDCsystem.

● DevelopmentofcostestimatesforHVDCtransmissionsystemsandcomparisonwithconventionalACsystemstoquantifythebenefitsandsavingsofHVDCsystems.

PhaseIIhasdemonstratedthattheconvertertechnologyistechnicallyviableandthetransmissionsystemiseconomicallyfeasible.KeyPhaseIIfindingsare:

● Low‐powerHVDCconvertertechnologyisexpectedtobecommerciallyavailableat$250perkilowattperconverter.

● Estimatesofconstructioncostsforaconceptual25‐mileoverheadHVDCintertieindicatecapitalcostsavingsofapproximately30%comparedwithaconventionaloverheadACintertie.Estimatedlife‐cyclecostsrangefrom79%to107%ofthelife‐cyclecostofanACintertie.

● LongeroverheadHVDCintertiescanexpectcapitalcostsavingsofupto40%.

● PhaseIIanalysisalsoindicatesthatsignificantsavingsarepossibleforsubmarinecableandundergroundcableapplicationsusingHVDCsystems.Estimatedcapitalcostsavingsona25‐milelow‐powerHVDCsubmarinecableintertieareover50%comparedtoACalternatives.

BasedonPhaseIIfindings,thebenefitsoflow‐powerHVDCsystemsforAlaskaaresubstantial,andcontinueddevelopmentofthissystemisrecommended.

OpportunitiesandBarriers

BasedonanalysisandstudyconductedduringthisPhaseIIproject,PolarconsulthasconcludedthatthisHVDCtechnologypresentsthefollowingopportunitiesforAlaska’sutilityindustryandruralcommunities:

● Lessexpensiveruralelectricinterties,leadingtolower‐costenergyandincreasedenergyindependenceforruralcommunities.

● Interconnectiontocurrentlystrandedlocalenergyresources.

● Interconnectioncostsavingsbycombiningruralelectricandtelecommunicationsinterties.

Thesuccessfulcommercializationandadoptionoflow‐powerHVDCtechnologyinAlaskarequiresovercomingthefollowingbarriers:

● Completionofthecommercialdevelopmentanddemonstrationoftheconvertertechnology.Continueddevelopmentoftheprototypeconverters,culminatinginindependenttestingoftheconvertersanddeploymentonanAlaskautilitysystem,isneededtoprovethattheconvertersareacommerciallyviabletechnology.

● Acceptanceanduseoflow‐powerHVDCtechnologybyAlaska’sutilityindustry.Continuedinvolvementofin‐stateandinternationalstakeholderswiththeongoingdevelopmentofthistechnologyisconsiderednecessarytosurmountingthisbarrier.

● Developmentanddemonstrationofstandardsandcontrolprotocolsforlow‐powermultiterminaldirect‐current(MTDC)transmissionnetworks,whichareneededtobuildcost‐effectiveregionalHVDCpowernetworksinruralAlaska.

Page 5: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE III

Recommendations

Basedontheconclusionsandfindingsofthisproject,thefollowingactionsarerecommended:

PhaseIIIprogramactivities:

● Continueddevelopmentofthepowerconvertertechnologytocommercializetheexistingprototypeconverterdesign.SolicitationofadditionalHVDCconvertermanufacturersiswarrantedtoencouragediversityofsuppliersandcompetition;

● Independenttestingoftheconverterstovalidateefficiencyandperformance,followedbydeploymentonanAlaskanutilitysystemtovalidatefunctionalityandreliabilityinacommercialsetting;

● FurtherdevelopmentofMTDCtransmissionsystemsinterconnectionandcontroltechnologies;and

● Continuedinvolvementofin‐statestakeholdersinthedevelopmentofthistechnology.

Stakeholderactions:

● Incorporatelow‐powerHVDCtechnologyintoAlaska’sregionalandstatewideenergyplansandpolicies;

● ContinuecoordinationwiththeStateofAlaskatoallowaproject‐specificwaiveroftheNationalElectricalSafetyCode(NESC)toallowtheuseofsingle‐wireearthreturn(SWER)circuits;

● EncourageplannedruralpowerandtelecommunicationsintertiestoincorporateHVDCtechnologyintheireconomicandtechnicalanalysis,aswellastheirenvironmentalandpermittingreviewprocesses;

● Engagethetelecommunicationsindustrytoraiseawarenessofthesynergiespossiblebetweenlow‐powerHVDCtransmissionandfibernetworksinruralAlaska;and

● Collaboratewithinternationalstakeholderstoidentifysynergiesandlessonslearnedfromparalleltechnologydevelopmentefforts.Coordinateondevelopmentofapplicablepolicies/standardsandidentificationofmarketstohelpexpeditethecommercializationandreducethecostsoflow‐powerHVDCsystems.

Page 6: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE IV

 

TABLEOFCONTENTS

EXECUTIVESUMMARY...........................................................................................................................................................I 

1.0  INTRODUCTION........................................................................................................................................................1 1.1  REPORTORGANIZATION...................................................................................................................................................2 

1.2  ACKNOWLEDGEMENTS......................................................................................................................................................3 

1.3  DISCLAIMER.........................................................................................................................................................................4 

1.4  COPYRIGHTNOTICE...........................................................................................................................................................4 

2.0  BACKGROUND............................................................................................................................................................5 2.1  PROGRAMOVERVIEW........................................................................................................................................................6 

2.2  STAKEHOLDERADVICE......................................................................................................................................................7 

3.0  HVDCTRANSMISSIONSYSTEMDESCRIPTION............................................................................................8 3.1  HVDCBACKGROUND........................................................................................................................................................8 

3.2  HVDCSYSTEMCONFIGURATIONS................................................................................................................................10 

3.3  COMPARISONOFACTOHVDCTRANSMISSION.........................................................................................................16 

3.4  OVERHEADINTERTIEALTERNATIVES.........................................................................................................................17 

3.5  SUBMARINECABLEINTERTIEALTERNATIVES...........................................................................................................19 

4.0  HVDCCONVERTERSTATIONS.........................................................................................................................20 4.1  OVERVIEW........................................................................................................................................................................20 

4.2  CONVERTERDEVELOPMENTOVERVIEW.....................................................................................................................20 

4.3  ADDITIONALEQUIPMENT..............................................................................................................................................28 

5.0  DESIGNCONCEPTSFOROVERHEADINTERTIES....................................................................................29 5.1  OVERHEADDESIGNAPPROACH....................................................................................................................................29 

5.2  GEOTECHNICALCONDITIONS........................................................................................................................................30 

5.3  ENVIRONMENTALLOADS...............................................................................................................................................30 

5.4  CONSTRUCTION,RUSSTANDARDPRACTICE..............................................................................................................30 

5.5  CONSTRUCTION,ALASKA‐SPECIFICCONCEPT............................................................................................................31 

5.6  TESTINGOFOVERHEADDESIGNCONCEPTS...............................................................................................................32 

6.0  SYSTEMECONOMICS...........................................................................................................................................37 6.1  COSTCOMPARISONOFACANDHVDCOVERHEADINTERTIES..............................................................................37 

6.2  CASESTUDIES..................................................................................................................................................................41 

7.0  CONCLUSIONSANDRECOMMENDATIONS................................................................................................49 7.1  CONCLUSIONS...................................................................................................................................................................49 

7.2  OPPORTUNITIESANDBARRIERS...................................................................................................................................49 

7.3  RECOMMENDATIONS.......................................................................................................................................................50 

Page 7: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE V

 

 

LISTOFTABLES

Table6‐1 EstimatedLife‐CycleCostsfor25‐mileOverheadACandHVDCInterties......................39

Table6‐2 SummaryofCaseStudies......................................................................................................................42

Table6‐3 EstimatedCostforaGreensCreek–HoonahHVDCIntertie.................................................44

Table6‐4 EstimatedBenefit‐CostRatioofGreensCreek–HoonahHVDCIntertie..........................45

Table6‐5 EstimatedInstalledCostfora5‐MWPilgrimHotSprings–NomeIntertie....................48

LISTOFFIGURES

Figure3‐1  TypicalLargeHVDCStation....................................................................................................................9 

Figure3‐2  ThreeTypesofIntertiesUsedinHVDCSystems........................................................................11 

Figure3‐3  MonopolarHVDCIntertieUsingSWER...........................................................................................12 

Figure3‐4  MonopolarHVDCIntertiewithReturnConductor(SWER‐capableforBackup)..........13 

Figure3‐5  BipolarHVDCIntertie(SWER‐capableforBackup)..................................................................14 

Figure4‐1  LowVoltageAlternatingCurrent(LVAC)Enclosure:MechanicalLayout........................22 

Figure4‐2  HVDCTransformerTank:MechanicalLayout.............................................................................23 

Figure4‐3  CentralResonantLinkTestSetup.....................................................................................................25 

Figure4‐4  Hi–PotTestSetupforHVDCTransformer.....................................................................................25 

Figure4‐5  DrySystemInverterModeTestSchematicandSetup..............................................................26 

Figure4‐6  System#1HVTankandLVEnclosure............................................................................................27 

Figure4‐7  System#1ShowingHVMeasurementProbes.............................................................................27 

Figure5‐1  InstallingMicro‐ThermopileforGuyAnchor...............................................................................33 

Figure5‐2  AssemblingthePrototypeGFRPPoleSplice................................................................................34 

Figure5‐3  PrototypeGFRPPoleFoundationDuringInstallation..............................................................35 

Figure5‐4  PrototypePoleattheFairbanksTestSite......................................................................................36 

Figure6‐1  ComparativeInstalledCost:Overhead1‐MWHVDCandACInterties..............................38 

Figure6‐2  ComparativeLife‐CycleCost:Overhead1‐MWHVDCandACInterties............................40 

Figure6‐3  LocationMapforPotentialHVDCProjectSites...........................................................................41 

Figure6‐4  GreensCreek–HoonahIntertieRoute...........................................................................................43 

Figure6‐5  ProspectiveTransmissionRoutefromPilgrimHotSpringstoNome................................47 

Page 8: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE VI

APPENDICES

APPENDIXA HVDCOVERVIEW............................................................................................................................A‐1

APPENDIXB ECONOMICANALYSIS...................................................................................................................B‐1

APPENDIXC CONCEPTUALDESIGNOFOVERHEADHVDCINTERTIELINES.................................C‐1

APPENDIXD CONCEPTUALDESIGNFORSUBMARINECABLES............................................................D‐1

APPENDIXE SWERCIRCUITSANDHVDCSYSTEMGROUNDING.........................................................E‐1

APPENDIXF HVDCPOWERCONVERTERDEVELOPMENT.....................................................................F‐1

APPENDIXG HVDCSYSTEMPROTECTION,CONTROLS,ANDCOMMUNICATIONS......................G‐1

APPENDIXH CANDIDATEHVDCSYSTEMDEMONSTRATIONPROJECTS..........................................H‐1

APPENDIXI STAKEHOLDERADVISORYGROUPINVOLVEMENTANDMEETINGS........................I‐1

APPENDIXJ BIBLIOGRAPHY..................................................................................................................................J‐1

Page 9: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE VII

ACRONYMSANDTERMINOLOGY

°F degreesFahrenheit

A,a,i amperesoramps

AC alternatingcurrent

ACEP AlaskaCenterforEnergyandPower

ACSR aluminumconductorsteelreinforced

ADNR AlaskaDepartmentofNaturalResources

AEA AlaskaEnergyAuthority

AEL&P AlaskaElectricLightandPowerCompany

AFI ArcticFoundations,Inc.

AKDOL AlaskaDepartmentofLabor

albedo Theextenttowhichanobjectdiffuselyreflectslight.

alternatingcurrent

Theformofelectricitycommonlyusedinhomesandbusinessesinwhichthecurrentandvoltageoscillateatafrequencyof60cyclespersecond.(Thefrequencyinsomenationsis50cycles.)

Alumoweld Atypeofcableusedinelectricalsystems.Eachstrandofthecableconsistsofasteelcorewithalayerofaluminumextrudedoveritduringthepullinganddrawingprocess.Thesteelcoreprovidesincreasedstrength,andthealuminumexteriorprovidesbettercorrosionprotectionandincreasedelectricalconductivity.

amperes/amps

Ameasureoftheamountofelectricalcurrentflowingthroughacircuit(atypicalhouseholdcircuitisratedfor20amperes).

AP&T AlaskaPowerandTelephoneCompany

APA AlaskaPowerAssociation

ASCE AmericanSocietyofCivilEngineers

AVEC AlaskaVillageElectricCooperative,Inc.

AVR automaticvoltagereference

bandwidth Ameasureofthedatatransfercapabilityofagivencommunicationsmethod.Unitsofbandwidthcanvarybutaregenerallybitspersecond.

BEC BethelElectricUtility

bipolar Atypeofdirectcurrentcircuitthatusestwowirestotransmitenergy.Bipolarcircuitsoperateonewire(“pole”)atapositivepotentialandthesecondpoleatanegativepotentialrelativetoground(e.g.,+/‐600,000volts).Thesecircuitsnormallyalsohaveanearthreturnpathwayoradedicatedgroundconductorthatisusedtocompensateforanyimbalanceonthetwopolesandservesasatemporaryreturnpathwayifthenegativeorpositivepoleisoutofserviceforanyreason.

BSNC BeringStraitsNativeCorporation

Page 10: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE VIII

Btu Britishthermalunit

CEA ChugachElectricAssociation,Inc.

CIGRE InternationaledesGrandsReseauxElectriques

circuit Acircuitprovidesanelectricalpathwayfromapointofenergysupply(e.g.,ageneratororbattery)toapointofenergyuse(e.g.,motor,lighting,etc.),andthenbacktothepointofsupply.Withoutacompletepathwayfromsupplytouseandback,thecircuitwillnotfunction.Thepathwaycantakemanyforms.Mostcommonly,itismadeofmetallic(copperoraluminum)wires,butitcanalsousewater,theearth,orothermaterials.Theseothermaterialsaremostoftenusedonthereturnpathwaybacktothepointofsupply,wherethevoltagedifferentialrelativetothesurroundingenvironmentislow.

conductor Atypicallymetallicwireorcablethatisdesignedandfabricatedtoconductelectricitybetweentwolocations.

converter AnelectricaldevicethatconvertselectricityfromACtoDCand/orfromDCtoAC.“Converter”isamoregeneraltermforarectifierorinverter.

CVEA CopperValleyElectricAssociation,Inc.

DC directcurrent

directcurrent Directcurrentistheformofelectricitycommonlyusedinbattery‐powereddevicessuchascars,flashlights,etc.Thecurrentdoesnotappreciablyvarywithtime.

distributionclass

Referstolower‐voltageelectricalsystems.Definitionsvary,butsystemsoperatingatorbelownominal35kilovolts(kV)aregenerallyclassifiedasdistribution‐class.MostruralAlaskaintertiesfunctionastransmissionsystems,butoperateatdistribution‐classvoltages,typically14.4kV.

earthreturn Ameansofcompletinganelectricalcircuitbyusingtheearthasareturnpathinsteadofasecondwire.Inmanynations,thisapproachisfrequentlyusedinruralareaswhere(1)thecosttoinstallasecondwireforthereturnpathisprohibitivelyhighand(2)thelackofburiedutilitiesensuresthattechnicalissueswithgroundreturnareminimized.

EHS extra‐high‐strength

EPR ethylenepropylenerubber

fiberoptics Acommunicationsmethodthatconsistsofsendingpulsesoflightdownglassfibers.

FO fiberoptics

ft‐lb foot‐pound

gal gallon(s)

GEC GustavusElectricCompany

GFRP glass‐fiber‐reinforcedpolymer

GPS GlobalPositioningSystem

GVEA GoldenValleyElectricAssociation,Inc.

Page 11: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE IX

HEA HomerElectricAssociation,Inc.

hertz Aunitofhowrapidlysomethingoscillates,rotates,orrepeats.Onehertzisequaltoonecompletecyclepersecond.AlternatingcurrentelectricalsystemsintheU.S.operateat60hertz,or60cyclespersecond.

high‐impedancegroundfault

Afaultorshortcircuitbetweenahigh‐voltagewireandground.Anexampleofahigh‐impedancegroundfaultwouldbeaconductorthatfallstothegroundwithoutbreaking,landingoniceorice‐richsoils.Thesesoilsareverypoorconductors,thuslittleornocurrentmayshortcircuitintotheground.Becausethewiredidnotbreak,itcancontinuetotransmitenergybetweentheconverters.Thisenergizedwireposesahazardtoanypeopleoranimalswhohappenuponit.

high‐voltagedirectcurrent

Directcurrentelectricityatahighvoltagerelativetothesurroundingenvironment.

HMI human‐machineinterface

hotwork Workingonelectricalequipmentwhileitisenergized.

HVDC high‐voltagedirectcurrent

IEC InternationalElectro‐technicalCommission

IEEE InstituteofElectricalandElectronicsEngineers

IGBT insulatedgatebipolartransistor

inverter AnelectricaldevicethatcanconvertDCelectricityintoACelectricity.

IPEC InsidePassageElectricCooperative

KEA KodiakElectricAssociation,Inc.

kHz kilohertz(1,000hertz)

kilowatt 1,000watts.OnekWisthepowerconsumedbyten100‐wattincandescentlightbulbs.

kilowatt‐hour Thequantityofenergyequaltoonekilowatt(kW)expendedforonehour.

KoEA KotzebueElectricAssociation,Inc.

kV kilovolt(1,000volts)

kVA kilovolt‐ampere

kW kilowatt(1,000watts)

kWh kilowatt‐hour

LDE LineDesignEngineering,Inc.

LFL linefaultlocator

LIDAR lightdetectionandranging

litzwire Anelectricalwireorcablemadeofmultipleindividuallyinsulatedstrandsofwire.LitzwireisusedinhighfrequencyACapplicationsandisdesignedtoreducepowerlossescausedbyskineffectsandproximityeffectsthatoccurathighfrequencies.

LVAC low‐voltagealternatingcurrent

Page 12: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE X

MEA MatanuskaElectricAssociation

MHRC ManitobaHVDCResearchCentre

mm2 squaremillimeters

MOD motor‐operateddisconnector

monopolar Adirectcurrentcircuitthatoperatesonelegofthecircuitatanelevatedvoltageandthereturnlegatorneargroundvoltage.Thereturnlegcanuseametallicconductoror,inthecaseofearthorseareturnsystems,canusetheearthorseatocompletethecircuit.AnHVDCSWERcircuitisonetypeofmonopolarcircuit.

ms millisecond(s)

MSB Matanuska‐SusitnaBorough

MTDC multi‐terminaldirectcurrent

MVA megavoltamperes(onemillionvoltamperes)

MW megawatt(s)(1,000kilowatts)

MWh megawatt‐hours

NCC NomeChamberofCommerce

NEA NaknekElectricAssociation,Inc.

NEC NushagakElectricCooperative,Inc.

NESC NationalElectricalSafetyCode

NJUS NomeJointUtilityService

NLP NuvistaLightandPower,Inc.

NRECA NationalRuralElectricCooperativeAssociation

NSB NorthSlopeBorough

NWAB NorthwestArcticBorough

O&M operationsandmaintenance

OED CityofOuzinkieElectricDepartment

OMR&R OperationandMaintenance,Repair,Replacement,andRehabilitation

OPGW opticalgroundwire

PCB printedcircuitboard

PCE PowerCostEqualization

PLC powerlinecarrier

PPS PrincetonPowerSystems,Inc.

PSCAD PowerSystemsComputerAidedDesign

psf poundspersquarefoot

R&D researchanddevelopment

RCA RegulatoryCommissionofAlaska

rectifier AnelectricaldevicethatcanconvertACelectricityintoDCelectricity.

Page 13: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE XI

RMS root‐mean‐square

rootmeansquare

Therootmeansquarevoltageisthemeanabsolutevoltageoveranywholenumberofwaveformoscillations.Forasinusoidalwaveform(suchasnormalACelectricity),theroot‐mean‐square(RMS)voltageisthepeakvoltagedividedbythesquarerootof2.Nominal120voltsalternatingcurrent(VAC)electricitythushasapeakvoltageofabout+/‐170voltsrelativetoground.

RUS RuralUtilitiesService(USDA)

SAG StakeholdersAdvisoryGroup

SCADA supervisorycontrolanddataacquisition

seareturn Ameansofcompletinganelectricalcircuitbyusingthesea(ormoregenerallyrivers,lakes,andotherwaterbodies)asareturnpathinsteadofasecondwire.Thisapproachisfrequentlyusedonsubmarinecableswherethecostsavingsfromnotinstallingasecondcablejustifythisapproach.Seareturncanbeusedforsingle‐phaseACcircuitsorforDCcircuits.

SEAPA SoutheastAlaskaPowerAgency

SEC SoutheastConference

single‐wireearthreturn

Anothertermforanearthreturnorseareturncircuit.Thenameemphasizesthefactthatthesetypesofcircuitsonlyrequireonewire,ascomparedwithtwoormorewiresforothertypesofcircuits.

spurandbelt Acommonmethodofclimbingutilitypoles,trees,andsimilarobjects.Specialclimbingspursarestrappedontothefeetandalargebeltisfixedaroundtheclimber'swaist.Theclimberloopsthebeltaroundthepoleanddrivesthespursintothepole.Theclimberthen“walks”upthepolewiththespurs,andhitchesthebeltalongthepoleforsupport.

steppotential Avoltagegradientthatoccursatthegroundsurfaceduetoearthreturncurrents.Ifthevoltagegradientishighenough,itcanposeahazardtopeopleorwildlifesteppinginthevicinity.

strandedenergyresources

Energyresourceslocatedinremote,distant,orotherwiseisolatedareas“stranded”fromeither(1)integrationintomodernenergyinfrastructureandsupplychainsor(2)utilizationbylocalpopulationandindustrycenters.

SWAMC SouthwestAlaskaMunicipalConference

SWER single‐wireearthreturn

transmission‐class

Referstohigher‐voltageelectricalsystems.Definitionsvary,butinAlaskaACsystemsoperatingabovenominal35kVline‐to‐groundaregenerallyclassifiedastransmission‐class.MostruralAlaskaintertiesfunctionastransmissionsystems,butareoperatedatdistribution‐classvoltages.

twistedpair Agenerictermforcommunicationscablethatusesmultipleindividuallyinsulatedwires.Eachpairofwiresistwistedtogether,hencethename.

TWMR transmissionwithmetallicconductor‐returnpath

UAF UniversityofAlaskaFairbanks

USDA U.S.DepartmentofAgriculture

Page 14: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE XII

V volt

VAC voltsalternatingcurrent

VAR volt‐amperesreactive

VDC voltsdirectcurrent

VFT variablefrequencytransformer

volt Aunitofelectricalpotential.Sometypicalvoltagesarecarbattery:12volts(DC);alkalinebattery(AAA,C,D,etc.):1.5volts(DC);householdelectricity:120volts(ACRMS).

VSC voltagesourceconverter(s)

ZAE ZarlingAeroConsulting

Page 15: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 1

1.0 INTRODUCTION

ThisreportpresentstheachievementsandfindingsofPhaseIIofthe“High‐VoltageDirectCurrent(HVDC)TransmissionSystemsforRuralAlaska”researchanddevelopment(R&D)program.

ThegoalofthisprogramistoimprovetheeconomicviabilityofAlaska’sruralcommunitiesbyprovidingmoreaffordableelectricitytransmissionalternatives.TheeffectofexcessiveenergycostscontinuestodegradethequalityoflifeinAlaska’sruralcommunitiesandplacestheseindigenouspopulationsatsevererisk.Nearly80%ofruralcommunitiesaredependentondieselfuelfortheirprimaryenergyneeds.Someofthepooresthouseholdsspent47%oftheirincomeonenergyin2008,morethanfivetimestheamountinAnchorage(CWN,2012).

Reducingthecostoflow‐power(1megawatt[MW]andless)intertiesbyusingHVDCsystemscanenableincreasedinterconnectionofruralcommunitiestoAlaska’sabundantenergyresources.HVDCintertieswillsupportmorecost‐effectivedevelopmentoflocalenergyresources,suchaswind,hydro,biomass,geothermal,hydrokinetic,gas,andcoal.

PhaseIIofthisprogramwasfundedbytheDenaliCommissionandcompletedbyPolarconsultAlaska,Inc.(Polarconsult)undercontracttotheAlaskaCenterforEnergyandPower(ACEP).ThisPhaseIIeffortandfinalreportfollowstheresultsofthePhaseIR&Dproject,completedin2009andsummarizedinPhaseI–PreliminaryDesignandFeasibilityAnalysisFinalReport(Polarconsult,2009).PhaseIofthisR&DprogramincludedevaluationofthetechnicalandeconomicfeasibilityoftheproposedHVDCsystem,includinglimitedprototypingandtestingoftheconvertertechnology.

PhaseIIoftheHVDCTransmissionSystemprogramincludeddesign,fabrication,andtestingoffull‐scaleprototypesoftheconverterandtransmissionsystemelements.ThePhaseIIeffortsinvolvedtheevaluationofdesign,efficiency,andfunctionalityoftheHVDCsystems.RuralAlaskaintertiealternativeswerealsoinvestigated,whichinvolvedcomparingHVDCtransmissionsystemstotheconventionalalternatingcurrent(AC)alternatives.ThePhaseIIfindingswereusedtofurtherdevelopconstructioncostestimatesandrefinetheeconomicanalysisofthetechnologydevelopedinPhaseI.PolarconsultistheprimecontractorandauthorofbothPhaseIandIIprojectreports.

Asaresultofongoingadvancesinpowerelectronics,small‐scaleHVDCintertiesarenowfeasible.ThisreporthasidentifiedoverheadandsubmarineHVDCtransmissionsystemsaseconomicallysuperioralternativestoconventionalACinterties.

AdditionalcostreductionscanberealizedbyintegratingHVDCsystemswithfutureexpansionofbroadbandfiber‐optictelecommunicationnetworks.ThissynergisticopportunitybetweenthetelecommunicationsandelectricindustriesisoneofseveralreasonsHVDCintertiescanhelpsurmounttheeconomicbarriersfacingAlaska’sruralcommunities.

ComparativeanalysisofHVDCtransmissionsystemswithconventionalACsystemsindicatessignificanttechnicalandeconomicadvantagesofHVDCsystems.InmanyruralAlaskaapplications,theuseofHVDCsystemswillsignificantlylowerintertiecosts.

Basedonthefavorablefindings,PolarconsultrecommendscontinuedworkonthisprojectthroughPhaseIIIworkactivities,includingdemonstrationoftheHVDCsystemonanAlaskautilitysystem.

Page 16: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 2

1.1 REPORTORGANIZATION

PhaseIIofthisprojectaddressesawiderangeoftechnicaldisciplinesandsubjectmaterial.Forbrevity,thebodyofthisreportfocusesonthekeyfindingsandconclusionsthathaveresultedfromthiswork.In‐depthinformationpertainingtospecifictopicsisincludedinthereport’sappendices.

Thisreportisorganizedasfollows:

● TheExecutiveSummaryandtheAcronymsandDefinitionssectionsareincludedatthebeginning.

● Section1.0introducesthereport.

● Section2.0providesbackgroundinformationonAlaska’sruralenergyissuesandabriefexplanationofthestakeholders’rolesinthisphaseoftheproject.

● Section3.0isadescriptionoftheHVDCtransmissionsystem,whichincludesacomparisonofACandHVDCtransmission,overheadintertiealternatives,andsubmarinecableintertiealternatives.

● Section4.0discussesHVDCconverterstations.

● Section5.0evaluatesthedesignconceptsforoverheadinterties.

● Section6.0containstheeconomicevaluationofPhaseII.

● Section7.0providestheconclusionsandrecommendationsforthePhaseIIprototypingandtestingstudy.

Inaddition,thisreportcontainsthefollowingappendices,whichincludereportsgeneratedbyPolarconsult’ssubcontractorsforthisprojectasattachments:

● AppendixA HVDCOverview

● AppendixB EconomicAnalysis

● AppendixC ConceptualDesignofOverheadHVDCIntertieLines

● AppendixD ConceptualDesignforSubmarineCables

● AppendixE SWERCircuitsandHVDCSystemGrounding

● AppendixF HVDCPowerConverterDevelopment

● AppendixG HVDCSystemProtection,Controls,andCommunications

● AppendixH CandidateHVDCSystemDemonstrationProjects

● AppendixI StakeholderAdvisoryGroupInvolvementandMeetings

● AppendixJ Bibliography

Page 17: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 3

1.2 ACKNOWLEDGEMENTS

Polarconsultacknowledgesandappreciatesthesupportandcontributionsofthemanyindividualsandentitiesthathaveparticipatedinthisproject.Theirsupport,insights,experience,andtechnicalanalysis remain invaluable to the continuing effort to bring lower‐costHVDC intertie systems toAlaskans.

MembersoftheteaminvolvedinthesecondphaseofHVDCintertiedevelopmentinclude:

● DenaliCommission(FundingAgency)

● ACEP(GrantManagement,EconomicAnalysis,Strategy)

● Polarconsult(ProjectManagement,StrategicVision,Design)

● PrincetonPowerSystems,Inc.(PPS)(ConverterDevelopment)

● UniversityofAlaskaFairbanks(UAF)/Dr.RichardWies(UAFQualityControlandTechnicalReview)

● AlaskaVillageElectricCooperative,Inc.(AVEC)(AlaskaIntegration/Practicality)

● StakeholdersAdvisoryGroup(Practicality/IndustryAcceptance)

● ManitobaHVDCResearchCentre(HVDCExpert)

● LineDesignEngineering(StructuralandCodeExpert)

● GolderAssociates(GeotechnicalExpert)

● Almita,Inc.(FoundationSupplier)

● ArcticFoundations,Inc.(AFI)(FoundationSupplier)

● ZarlingAeroConsulting(ZAE)(ThermalSoilsAnalysis)

● STG,Inc.(RuralIntertieContractor)

● Cabletricity,Inc.(SubmarineCable/HVDCExpert)

Inaddition,theStakeholdersAdvisoryGroup(SAG)membershaveplayedaninstrumentalroleinthisprogrambycontributingtheirtimeandyearsofexperience.TheSAGwaschairedbytheDenaliCommissionandfacilitatedbyACEP.SAGmembersinclude:

● AlaskaDepartmentofLabor(AKDOL)

● AlaskaEnergyAuthority(AEA)

● AlaskaPower&TelephoneCompany(AP&T)

● AlaskaPowerAssociation(APA)

● AVEC

● BeringStraitsNativeCorporation(BSNC)

● BethelElectricUtility(BEC)

● CopperValleyElectricAssociation,Inc.(CVEA)

● GoldenValleyElectricAssociation,Inc.(GVEA)

● HomerElectricAssociation,Inc.(HEA)

● InsidePassageElectricCooperative(IPEC)

● InstituteofNorthernEngineering(INE),UAF

Page 18: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 4

● KodiakElectricAssociation,Inc.(KEA)

● KotzebueElectricAssociation,Inc.(KoEA)

● MatanuskaElectricAssociation(MEA)

● NaknekElectricAssociation,Inc.(NEA)

● NationalRuralElectricCooperativeAssociation(NRECA)

● NomeChamberofCommerce(NCC)

● NomeJointUtilityService(NJUS)

● NorthSlopeBorough(NSB)

● NorthwestArcticBorough(NWAB)

● NushagakElectricAssociation

● NuvistaLightandPower,Inc.(NLP)

● SoutheastConference(SEC)

● SouthwestAlaskaMunicipalConference(SWAMC)

● U.S.DepartmentofAgriculture(USDA)RuralUtilitiesService(RUS)

● UAF

1.3 DISCLAIMER

ThisreportwaspreparedbyPolarconsultsolelyfortheUAF.TheUAFhastherighttoreproduce,use,andrelyuponthisreportforpurposesrelatedtoinvestigatingthe“HVDCTransmissionSystemforRuralAlaskanApplications,”including,withoutlimitation,therighttodeliverthisreporttoregulatoryauthoritiesinsupportof,orinresponseto,regulatoryinquiriesandproceedings.ForthepurposesofthisDisclaimer,allpartiesotherthanPolarconsultandtheUAFare“thirdparties.”NeitherPolarconsultnortheUAFrepresent,guarantee,orwarranttoanythirdparty,expresslyorbyimplication,theaccuracy,suitability,reliability,completeness,relevance,usefulness,timeliness,fitness,oravailabilityofthisreportforanypurposeortheintellectualorotherpropertyrightsofanypersonorpartyinthisreport.

Thirdpartiesshallnotuseanyinformation,product,orprocessdisclosed,described,orrecommendedinthisreportandshallnotrelyuponanyinformation,statement,orrecommendationcontainedinthisreport.Shouldanythirdpartyuseorrelyuponanyinformation,statement,recommendation,product,orprocessdisclosed,contained,described,orrecommendedinthisreport,theydosoentirelyattheirownrisk.Tothemaximumextentpermittedbyapplicablelaw,innoeventshallPolarconsultortheUAFacceptanyliabilityofanykindarisinginanywayoutoftheuseorreliancebyanythirdpartyuponanyinformation,statement,recommendation,product,orprocessdisclosed,contained,described,orrecommendedinthisreport.

1.4 COPYRIGHTNOTICE

ThisreportiscopyrightprotectedbyPolarconsultandmaynotbereproducedinwholeorpartwithoutthepriorwrittenconsentofPolarconsult.

Page 19: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 5

2.0 BACKGROUND

Energycoststhroughoutmostofrural1Alaskaaresignificantlyhigherthaninthestate’surbanareas.Overthepastdecade,ruralenergycostshaveescalateddramatically,tothepointwherelifeinmanyruralAlaskancommunitiesisinastateofeconomicperil.TheprimaryreasonsforthesehighenergycostsisruralAlaska’sdependenceondieselfuelforpowergenerationandheating,thelackofeconomiesofscaleinruralcommunities,andthetransportationchallengescommoninruralAlaska.

FormostruralAlaskancommunities,adiesel‐electricplantisthepowergenerationresourceofchoicesincetheseplantsandtheirsupportinginfrastructuresuchasbulkfuelfacilitiesarereadilyadaptedtotheneedsofrurallocalities.However,generatingelectricitywithdieselfuelisexpensiveduetothesecommunities’smallscaleandgeographicisolation.Consequently,ruralAlaskahassignificantlyhigherenergycostscomparedtocommunitiesinorconnectedwithAlaska’surbancenters.ThehighcostofruralenergynegativelyaffectboththequalityandsustainabilityoflifeinruralAlaska.

Manypowergenerationcostsarebeyondacommunity’scontrol.Thefuelpricefortheseplantsisdeterminedbyanincreasinglyvolatileglobalenergymarket.Inaddition,asubstantialcomponentofthefuelcostistransportation.Inrecentyears,thelimitedshippinganddeliverywindowscausedbyseasonaliceandlowwaterconditionsinmanypartsofthestatehaveresultedinvillagespayingrecordpricesforfuel.Interiorcommunities,locatedneartheupperlimitsofnavigablewaterwaysandthussusceptibletolowwaterconditions,paidasmuchas$11pergallonin2010(DCRA,2010).Severalruralcommunitiesfrequentlyflyinfuelduetoalackofreliablebargeaccessorservice.

Alternativestodieselgenerationoftenexistintheformoflocalenergyresourcessuchashydro,wind,geothermal,tidal,solar,gas,coal,andbiomass.However,manyofthese“strandedenergyresources”arenoteconomicallyviableduetothecostoftheconventionalACelectrictransmissionsystemsrequiredtointerconnectthemandtheprohibitivelyhighcosttodeveloptheselocalenergyresourcestoservesmallloads.HVDCintertiescanhelpsurmountbothofthesebarriersbyloweringthecosttoreachstrandedenergyresourcesandbyreducingthecosttointerconnectcommunities(ACEP,2012).

AlthoughcommercialHVDCtransmissiontechnologyhasbeenavailableforover50years,ithasbeenlimitedtolarge‐scaletransmissionoftenstothousandsofMWsofpower.ThesesystemsarefartoolargeandexpensivetousefortheinterconnectionofAlaska’sruralcommunities,whichtypicallyhaveloadsmeasuredinthehundredstothousandsofkilowatts(kWs).Currently,nocommerciallyavailableHVDCconvertersystemexiststhatissuitableforinterconnectingtheseruralcommunities.However,innovativetechnologiesinthepowerelectronicsindustryhavemadethedevelopmentoflow‐power,cost‐effectiveconvertersfeasible.

PolarconsulthasinvestigatedalternativestoACintertiesandfoundthatinmanyapplications,HVDCtransmissionsystemsusinginnovativepowerconversiontechnologiesofferthemosteconomicalsolutiontointerconnectwithstrandedenergyresources.Further,thereplacementofaconventionaloverheadACthree‐orfour‐wiretransmissionlinewithaone‐ortwo‐wireHVDC

1 RuralAlaskaforthepurposesofthisreportreferstoisolatedcommunitiesoffthemainroadsystemthathavehigh

energycostsduetotheirlocation,size,orotherfactors.

Page 20: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 6

transmissionlinehassignificantcostadvantages.Thechangeinoverheadinfrastructureresultsinreducedstructuralloads,allowingfewersupportstructurespermileoftransmissionline.ThedecreaseinmaterialsandconstructiontimeisoneofseveralreasonsthatoverheadHVDCintertiesarelesscostlythanACinterties.SubmarineandburiedHVDCintertiescanalsobelesscostlythantheirACalternatives.

2.1 PROGRAMOVERVIEW

TheHVDCdevelopmenteffortconsistsofthefollowingphases:

PhaseI–PreliminaryDesignandFeasibilityAnalysis(2008‐2009)

DuringPhaseI,PolarconsultevaluatedthetechnicalandeconomicfeasibilityoftheproposedHVDCsystem.TasksincludeddefiningtheHVDCsystem’spreliminarydesignparameters,definingdesignconsiderationsforthetransmissionandconvertercomponents,andestimatingcostsforthesesystems.PhaseIalsoincludedlimitedprototypingandsuccessfultestingoftheconvertertechnology.

PhaseII–PrototypingandTesting(2010‐2012)

PhaseIIincludedconstructionandtestingoffull‐scaleprototypesofthetransmissionandconvertersystems.ThiseffortvalidatedthedesignofthesesystemsandvalidatedthefeasibilityoftheconstructionmethodsnecessarytomakethesystemasuccessinruralAlaskaapplications.TheinformationfromPhaseIItestingwasusedtorefinetheconstructionmethodsanddevelopcostestimatesusedintheeconomicanalysisofthetechnologydescribedinthisreport.ThisreportisthefinaldeliverableforPhaseII.

PhaseIII–DemonstrationProject(Proposed)

PhaseIIIwillincludefulltestingoftheconvertersystem,includingthemanufacturerandthird‐partyfunctional,compliance,andperformancetestingneededtomovetheconvertertechnologyfromadvancedprototypestoacommercialproduct.PhaseIIIwillalsoincludeafull‐scalefielddemonstrationoftheHVDCtechnologyonautilitysysteminAlaska.Thespecificprojectdetailsaredependantonthecandidatelocationselectedfortheintertie.PhaseIIIisintendedtobethefinalproof‐of‐conceptproject,tobefollowedbycommercialdeploymentofthesystem.

Page 21: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 7

2.2 STAKEHOLDERADVICE

ThisprojectseekstodevelopahighlyinnovativepowertransmissiontechnologyfordeploymentinruralAlaskaapplications.Becausemanyaspectsofthissystemmarkadeparturefromacceptedpracticeinruralpowersystems,widespreadindustryunderstanding,aswellasacceptance,ofthistechnologyisconsideredcriticaltothesuccessofthiseffort.Additionally,theoverviewandfeedbackofindustryisconsideredcriticaltothesuccessfuldevelopmentoftheinnovativesystemsneededforthisHVDCtechnology.

TheDenaliCommissionandACEPrecognizedthatthebestmeanstoachievethisunderstanding,acceptance,andfeedbackwouldbetodirectlyengagethestakeholdersandend‐usersoftheproposedsysteminthedevelopmentstagesofthetechnology.Tothisend,aSAGwasformedaspartofthePhaseIIefforttofamiliarizeandfacilitatefeedbackfromindustryleadersonthedevelopmentofthissystem.

TheSAGisanadvisorybodycomprisedofrepresentativesofAlaska’sruralelectricutilityindustryandrelatedprofessionals.ThepurposeoftheSAGistoprovidecomments,feedback,review,andrecommendationstotheHVDCproject.TheSAGheldthefollowingthreemeetingsoverthecourseoftheproject:

● SAGMeeting#1–Fairbanks,Alaska‐‐April27,2010;

● SAGMeeting#2–Anchorage,Alaska–January14,2011;and

● SAGMeeting#3–Anchorage,Alaska–October25,2011.

Severaladditionaloutreachactivitiesoccurredoverthecourseoftheproject.Theseincluded:

● SoutheastConferenceMid‐SessionSummit–Juneau,Alaska(March2,2010);

● EmergingEnergyTechnologyForum–Juneau,Alaska(February14,2011);

● Brown‐BagWorkSession–Anchorage,Alaska(August29,2011);and

● HVDCConverterDemonstration–Lawrenceville,NewJersey(November14,2011).

AppendixIprovidesthefollowingdetailedinformationregardingSAGmeetingsanddiscussions:

● ListofSAGmembers;

● SummaryofSAGroleandpolicies;

● SummaryofkeyinformalcorrespondencebetweenSAGmembersandPolarconsultoverthecourseoftheproject;

● HandoutsfromthethreeSAGmeetings;and

● Handoutsfromothermeetingsandoutreachactivitiesconductedoverthecourseoftheproject.

AdditionaldetailsassociatedwiththeSAGmeetingsandproceedingsarepresentedinAppendixI.TranscriptsoftheSAGmeetingsareavailableuponrequest.

Page 22: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 8

3.0 HVDCTRANSMISSIONSYSTEMDESCRIPTION

HVDCtransmissionsystemscantakeonawidevarietyofconfigurations.Thissectiondescribesthoseconfigurationsrelevanttolow‐powerHVDCapplicationsinruralAlaskaapplications.

● Section3.1providesageneraloverviewofthehistoryofHVDCpowertransmissionandthemajorcomponentsofanHVDCtransmissionsystem.

● Section3.2providesageneraloverviewofthedifferentconfigurationsofHVDCsystemsforpowertransmissionapplications.

● Section3.3providesacomparisonofHVDCandACpowertransmissionalternatives.

● Section3.4providesadescriptionofoverheadlinealternativesforACandHVDCapplications.

● Section3.5providesadescriptionofsubmarinecablelinealternativesforACandHVDCapplications.

3.1 HVDCBACKGROUND

ThomasEdisonpioneeredthefirstutility‐scaleapplicationofelectricpowerinNewYorkCityinthe1880swithadirectcurrent(DC)electricutilitysystem.Concurrently,GeorgeWestinghousewasmarketinganACelectricutilitysysteminventedbyNikolaTesla.ACwasbettersuitedtosteppingupvoltages,whichisvitaltoeconomicalelectrictransmissionacrosstownandbetweencities.Bythe1890s,Westinghouse’sACsystemhadprevailedoverEdison'sDCsystem,andACbecametheindustrystandard.

Inthe1950s,technologicaladvancesenabledDCsystemstoreentertheelectricutilityindustry.Withthecommercializationofthemercuryarc‐valve,voltagetransformationofDCandconversionbetweenDCandACelectricityonalargescalebecamecost‐effective.ThisallowedutilitiestobeginusingHVDCtransmissionlinksintheirsystems.

BecauseofthehighcapitalcostoftheseearlyHVDCconverters,utilityusageofHVDCremainedlimitedtotransmissionfunctions.ACremainedtheindustrystandardforelectricitygeneration,distribution,andconsumption.

Today,HVDCconvertertechnologyhasadvancedtousehighefficiencysolid‐statehardware,andHVDClinksareusedforelectricaltransmissionthroughouttheworld.Thesmallestavailableutility‐gradeHVDCsystemsaredesignedtotransmitapproximately50MW2.Asaresult,thecurrentcommerciallyavailableHVDCconvertersareoversizedandprohibitivelyexpensiveforAlaskanintertiesthattypicallyrequirethetransferoflessthan1MW.Figure3‐1isanimageofalargeHVDCstation.

2“HVDCLite,”distributedbyABB,isoneexampleofthesmallerutility‐gradeHVDCsystems.

Page 23: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 9

HVDCtransmissionsystemsincludethefollowingmajorcomponents:

● HVDCConverterStations.EachconnectionpointbetweentheHVDCtransmissionlineandaloadcenterrequiresanHVDCconverterstation.TheconverterstationconvertstheHVDCelectricityintoACelectricitythatcanbemovedthroughalocalpowergridandused.Theconverterstationincludesthepowerconverters,groundingstations,communicationsandcontrolsystems,andprotectiveequipmentasrequiredbytheparticularsystemdesignrequirements.ThepowerconvertersarediscussedinAppendixF.ThegroundingstationsarediscussedinAppendixE.

● HVDCTransmissionLine.TheHVDCtransmissionlineistheoverheadwire,submarinecable,undergroundcable,orcombinationofthesethatconnectstheconverterstationstogetherandformsthetransmissioncircuit.Theconfigurationanddesignofthetransmissionlinewilldependonlocalconditionsandsystemrequirements.OverheadtransmissionlineconceptsarediscussedinAppendixC.SubmarinecabletransmissionlineconceptsarediscussedinAppendixD.

● ControlsandCommunications.TheHVDCtransmissionsystemrequiresameansofcommunicatingbetweentheconverterstationsandthecontrolthesystem.ThesimplestcontrolandcommunicationschemewouldusetheDClinevoltageasacontrolsignal.Thiswouldbesuitableforapoint‐to‐pointHVDCsystemthatfeedspowerinonedirection.Powerreversalovertheintertiewouldbepossiblewithmanualintervention.ControlandcommunicationoptionsforHVDCsystemsarediscussedinAppendixG.

Figure 3-1 Typical Large HVDC Station

5,000MW+/‐800kVHVDCYunnan‐GuangdongConverterStation.(TDW,2012)

Page 24: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 10

3.2 HVDCSYSTEMCONFIGURATIONS

ThevarioussystemconfigurationsforHVDCcanbeclassifiedintothreedifferentcategories,withseveraloptionswithineachcategory.Thethreecategoriesandmajoroptionsareshownbelow.Eachcategoryisdescribedinmoredetailinthefollowingsections.

TypesofHVDCUtilityPowerSystems

HVDCApplication‐HowtheHVDCtechnologyisused:

● Point‐to‐PointDCPowerTransmission

● MultiterminalDirectCurrent(MTDC)PowerTransmission

HVDCCircuit‐Howtheelectricityistransported:

● MonopolarwithSingle‐WireEarthReturn(SWER)

● MonopolarwithMetallicReturn

● Bipolar

IntertieType‐Howthewirestransportingtheelectricityareconfigured:

● Overhead

● Submarine

● Underground

3.2.1 HVDCSystemApplications

TherearethreebasicapplicationsofHVDCtechnologyintoday’selectricutilityindustry.Theseare:

● Point‐to‐pointpowertransmission.ThemajorityofHVDCsystemsinusetodayarepoint‐to‐pointtransmissionsystems.Thesetransportbulkenergy(100sor1,000sofMWs)overlongdistances(100sor1,000sofmiles)moreefficientlythanACtransmissionsystems.

Point‐to‐pointnetworkswillbeasignificantapplicationforthelow‐powerHVDCtechnologybeingdevelopedwiththisproject.

● Multiterminalpowertransmission.MTDCnetworksareamoreflexibleandcomplicatedapplicationofHVDCtransmissiontechnology.Insteadofthetwoterminalsinaconventionalpoint‐to‐pointHVDCsystem,MTDCsystemshavemorethantwoterminalsandcanroutepowertoorfromtheseterminalsasneeded.MTDCsystemsarecurrentlyreceivingsignificantindustryinterestastechnologyevolvestohandlethesemorecomplicatedsystemsandregionalgridsdemandthesuperiorperformanceandenhancedcapabilitiesthatMTDCsystemsofferoverACtransmissionnetworksforcertainapplications.Thereareahandfuloflarge‐scaleMTDCsystemsplannedorinoperation.ExamplesincludetheQuebec–NewEnglandMTDCsystemandtheSardinia–Corsica–ItalyMTDCsystem.

ManyregionalenergysolutionsinruralAlaskausingHVDCwillbeintheformofMTDCnetworks.ThepowerconvertersdevelopedforthisprojectcansupportMTDCoperation,providedsuitablecontrolsystemsandprotectiveequipmentarepresent.MTDCsystemsandcontrolconsiderationsarediscussedingreaterdetailinAppendixG.

Atthemostabstractlevel,anelectricalcircuitrequirestwocurrentpathways,normallymetalwires.Onewiregoesfromthepowersupplytotheload,andasecondwiregoesfromtheloadback

Page 25: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 11

INCREASING COST AND COMPLEXITY

1. Monopolar with earth return (SWER) 2. Monopolar with return conductor 3. Bipolar

tothepowersupply.Bothsingle‐phaseACandDCcircuitsrelyonthisbasicconfiguration.Thewirefromthepowersupplytotheloadisusuallyatanincreasedvoltagerelativetoground,andsoitisinsulatedforsafetyandtopreventshortcircuits.Thewirefromtheloadbacktothepowersupplyisusuallyatamuchlowervoltagerelativetogroundandisusually,butnotalways,insulated.

TherearethreetypesofHVDCcircuitsinusearoundtheworld.Eachofthesecircuitsmayutilizeoverheadwires,undergroundcables,submarinecables,oracombinationofthese.ThesethreecircuitsarelistedonFigure3‐2anddescribedonthefollowingpages.

Figure 3-2 Three Types of Interties Used in HVDC Systems

MorecomplexHVDCcircuitconfigurationsnormallyincorporateelementsofthesimplercircuitsforefficiency,reliability,redundancy,and/orsafety.Forexample,allbipolarHVDCsystemsincludeearthelectrodesandsometimesagroundconductorsotheycanoperateeitherpoleinmonopolarormonopolarSWERmodeduringmaintenanceoremergencies.Generally,themorecomplexbipolarcircuitconfigurationsareusedforlarge,importantintertieswheretheincreasedreliability,efficiency,andpowerthroughputcapabilityjustifythehighercostofthesesystems.

3.2.1.1 SingleWireEarthReturn(SWER)CircuitsSWERcircuitsusethesubsurfacegeologyasareturncurrentpathway.Seareturncircuitsaresimilartoearthreturncircuits.Theonlydifferenceisthatthesea,oranywaterbody,isusedasthepredominantreturncurrentpathway.Parallelpathways,suchastheseabed,arealsoavailableforcurrentflow.TheprimaryadvantagesofferedbySWERcircuitsinclude:

● Lowercosts(eliminatethesecondconductor).

● Higherefficiency(lowerelectricallosses).

TheprimaryconcernsassociatedwithSWERcircuitsinclude:

● Avoidingaccelerated“inducedcurrent”corrosionofburiedmetallicobjects.

● Aswithallelectricalsystems,safety.SWERcircuitsarewidelyusedforutilitytransmissionanddistributionofelectricityallovertheworld.NumerousHVDCintertiesareSWERcircuits,consistingofasinglehigh‐voltagecableandanearthorseareturntocompletethetransmissioncircuit.ManyoftheseareinstalledinclimatesandconditionssimilartoAlaska,notablyinScandinavia.Inmanynations,single‐phaseACSWERcircuitsareacceptedpracticeandareindustrystandardforservingruralareas.

Page 26: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 12

Twosingle‐phaseACSWERcircuitshavebeensuccessfullybuiltandoperatedinAlaska.TheseACSWERcircuitsdemonstratethatSWERisaproven,beneficial,andappropriatetechnologyforruralAlaskatransmissionapplications.

3.2.1.2 MonopolarHVDCCircuitUsingSWER

AmonopolarHVDCintertieusingSWER(seeFigure3‐3)forthereturnpathwaywillgenerallybethelowest‐costalternativeforHVDCpowertransmissioninruralAlaskaapplications.Thiscircuitconfigurationwillconsistofthefollowingmajorcomponents:

● AC/DCconvertermoduleinthegeneratingvillage.

● High‐voltageconductor.Thiscanbeanoverheadline,buriedcable,orsubmarinecable.

● DC/ACconverterinthereceivingvillage.

● Groundingelectrodesinbothvillagestocompletetheintertiecircuitusingearthreturn.

Figure 3-3 Monopolar HVDC Intertie Using SWER

TherearenumerousexamplesofmonopolarHVDCintertiesusingSWERcircuits.The500‐MWsubmarineHVDClinkcompletedbetweenVictoriaandTasmania,Australia,in2006isoneexampleofarecentlyconstructedSWERHVDCsystem.BipolarandmonopolarHVDCcircuitsarenormallydesignedtooperateinamonopolarSWERconfigurationwhenneededtomaximizesystemreliability.

Page 27: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 13

3.2.1.3 MonopolarHVDCCircuitwithReturnConductor

AmonopolarHVDCintertiewithareturnconductor(seeFigure3‐4)issimilartoamonopolarSWERHVDCintertie.Theprimarydifferenceisthattheearthreturnisreplacedwithadedicatedreturnconductortominimizeearthcurrentsinducedbytheintertie.Often,suchintertieswillstillhavetheearthelectrodesnecessarytooperateinSWERmodeandwilloperateinSWERmodeduringmaintenanceoremergencysituations.ThisHVDCcircuitconfigurationincludesthefollowingmajorcomponents:

● AC/DCconvertermoduleinthegeneratingvillage.

● High‐voltageconductor.Thiscanbeanoverheadline,buriedcable,orsubmarinecable.

● DC/ACconverterinthereceivingvillage.

● Returnconductor.Thiscanbeanunder‐builtlineonthehigh‐voltagepoles,aseparatecable,orincorporatedintothesamecableasthehigh‐voltageconductor,suchasaconcentricneutralonanACcable.

● Groundingelectrodesinbothvillages.Thesewillnotnormallybeusedtocompletetheintertiecircuit,buttheywillbeusedduringmaintenanceoremergencies.

MonopolarreturnconductorsarewarrantedinareaswhereaSWERcircuitisnotviableordesirable.Generally,thisisduetotheriskofinducingcorrosioninburiedmetallicutilities.Thelackofsuitablegroundconditionsforeconomicalearthelectrodeswouldalsowarrantuseofareturnconductor.Usinganreturnconductorwiththesameelectricalresistanceasthehigh‐voltageconductorwillnearlydoubletheconductorlossesrelativetoaSWERtransmissioncircuit.

Figure 3-4 Monopolar HVDC Intertie with Return Conductor (SWER-capable for Backup)

Page 28: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 14

3.2.1.4 BipolarHVDCCircuit

AbipolarHVDCintertie(seeFigure3‐5)isgenerallythemostcostlyandmostreliableHVDCcircuitconfiguration.Itemploystwoparallelhigh‐voltageconductors,oneoperatedatpositivevoltageandthesecondatnegativevoltage.Thesystemrequirestwoconvertersateachendoftheintertie(fourtotal),comparedtooneconverterperendformonopolarcircuits(twototal).Thus,thebipolarHVDCconfigurationincludesthesemajorcomponents:

● TwoAC/DCconvertermodulesinthegeneratingvillage.One(+)andone(–).

● Twohigh‐voltageconductors.Thesecouldbeoverheadlines,buriedcables,orsubmarinecables.

● Athirdneutralconductortocarryanycurrentduetominorimbalancebetweenthepowertransmissionlevelsonthepositiveandnegativepoles.Somebipolarsystemsdonothaveaneutralconductorandinsteadrelyonthegroundingelectrodestobalancethepoles.

● TwoDC/ACconvertersinthereceivingvillage.One(+)andone(–).

● Groundingelectrodesinbothvillages.Thesewillnotnormallybeusedtocompletetheintertiecircuit,buttheywillbeusedtobalancethesystemandforSWERoperationduringmaintenanceoremergencies.

TheadditionalcostsofabipolarHVDCintertiearelargelyduetotheadditionalconvertersandthesecondhigh‐voltageconductor.AbipolarHVDCintertiewillberoughlytwiceascostlyasamonopolarHVDCintertie,butwithtwicethecapacityandincreasedreliability.

Theprincipaladvantageofabipolarintertiecomparedtoamonopolarintertieisincreasedreliability.Ifsomethingbreaksononeofthetwopoles,theotherpolecanbeoperatedasamonopolarintertie.Thiswillreducethepowertransfercapability,buttheintertiecancontinuetofunction.

FormanyruralAlaskaapplications,theadditionalcostofbipolarcircuitsisnotjustified.Operatingbackupdieselgeneratorsinvillageswouldbemorecost‐effectivethanconstructingabipolarHVDCintertie.

Figure 3-5 Bipolar HVDC Intertie (SWER-capable for Backup)

Page 29: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 15

3.2.2 HVDCIntertieTypes

HVDCintertiescanbebuiltusingoverheadwires,submarinecables,orundergroundcables.Combinationsofthesecanbeusedforasingleintertie.OverheadwireintertieoptionsarediscussedinSection3.4andAppendixC.SubmarinecableintertieoptionsarediscussedinSection3.5andAppendixD.UndergroundcableoptionsarediscussedinAppendixG.

Page 30: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 16

3.3 COMPARISONOFACTOHVDCTRANSMISSION

ThefollowingabbreviatedcomparisonispresentedtoillustratewhenanHVDCintertieisanticipatedtobeagoodalternativetoacomparableACintertieinruralAlaskaapplications.AmoredetailedcomparisonispresentedinAppendicesAandB.

HVDCAdvantages:

● Lowerper‐mileoverheadtransmissionlinecostthanAClines;

● Abilitytouseundergroundorsubmarinecablesforlongdistances;

● Bettercompatibilitywithmigratorybirdsduetofeweroverheadconductors(1or2wiresinsteadof3or4wires);

● Asynchronousconnection;and

● Lowerper‐mileconductorenergylosses.

HVDCDisadvantages:

● AnHVDCconverterismoreexpensive,requiresmoremaintenance,andislessreliablethanacomparableACtransformer;

● Convertercostsareabarriertoservingloadsalongthetransmissionlineroute;

● UnconventionaltechnologyandlimitedequipmentsupplierscomparedtoAC;

● HVDCconvertersgenerallyhavehigherenergylossesthanacomparableACtransformer;and

● HVDCintertiesmayhavefewerfundingopportunitiesthanconventionalAClinesbecausetheyareuncommon.

Implications:

● Ifanintertiemustemploylong‐distancesubmarineorburiedcables,HVDCoffersatechnicallysuperiorsolutiontoAC.ACcableintertiesarenottechnicallyfeasibleforlong‐distancetransmissionsystems.

● Wherebothsystemsaretechnicallyfeasible,thedecisionislargelyeconomic.AnHVDCintertiewillhavehigherterminalcostsandlowerper‐milecosts.Accordingly,anACintertieismorecost‐effectiveforshortinterties,andHVDCismorecost‐effectiveforlonginterties.Thelongertheintertie,thegreaterthecostsavingsofanHVDCversusACsystem.Theeconomiccrossoverpointisprojectspecificbutforthescaleofintertiesunderconsiderationinthisreport,itwillgenerallyoccuratadistanceof6and31miles.

● SincetheHVDCconvertersdevelopedunderthisprogramusenewtechnology,andbecauseitrepresentsadeparturefromconventionalACtransmissionsystems,substantialsavingswillbeafactorinencouragingutilitiestoadoptthistechnologyinlieuofprovenbutmorecostlyintertiesolutions.

● MostACintertiesareoverheadandmaynotbeenvironmentallyacceptableinmanypartsofAlaska.HVDCintertiesareeitherburiedorhavefewerwiresandstructuresandmaybemoreacceptablewithinrefugesandothersensitiveareas.

Page 31: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 17

3.4 OVERHEADINTERTIEALTERNATIVES

3.4.1 ConventionalACInterties

Thetypicalcostforconstructingaconventionaloverheaddistribution‐classACintertieinruralAlaskacanrangefromaslittleas$100,000permileinareaswithgoodlogisticsupportandtransportationinfrastructure(roadsystem,southeast)toover$600,000permile3inruralpartsofthestatewithchallenginglogisticsandlittleornotransportationinfrastructure(remoteinterior,northwest,orYukon‐Kuskokwimdeltaregions).Becauseofthisprohibitiveexpense,relativelyfewruralintertieshavebeenbuilt.

ThehighcostofruraloverheadACintertiesistheresultofseveralfactors.TwosignificantcostcontributorscommontomanyAlaskanintertieprojectsarelogisticsandfoundations.ACsystemsrelyonmulti‐wiretransmissionlines;thisleadstohighmaterialscostsandhighloadsplacedonstructuresandfoundations.ThestructuresneededtosupportthemultipleaerialwiresofanACsystemarecostly.TheresultingACintertieusuallyhasshortspans,250to400feetbeingtypical,thusresultinginmanytransmissioncomponentssuchaspoles,hardware,wire,andfoundationsthatmustbepurchased,shipped,installed,andmaintained.

Whenthecostsofshipping,geotechnicalconditions,constructionfactors,logisticsandenvironmentalrequirementsareallfactoredin,conventionalACconstructionoftenresultsinaprohibitivelyexpensiveintertie.Asaresult,manyruralcommunitiesaredeniedtheopportunitytobenefitfrominterconnectiontoeachotherorlocalenergyresources.

3.4.2 HVDCTransmissionInterties

PolarconsulthasinvestigatedalternativestoACintertiesandfoundthatinmanyapplications,HVDCtransmissionsystemsofferthemosteconomicalsolution.

ReplacingaconventionaloverheadACthree‐orfour‐wiretransmissionlinewithaone‐ortwo‐wireHVDCtransmissionlinehassignificantcostadvantages.Thechangeinoverheadinfrastructureresultsinreducedstructuralloadsthusallowingfewersupportstructurespermileoftransmissionline.ThedecreaseinmaterialsandconstructiontimeistheprimaryreasonoverheadHVDCintertiesaremoreeconomicallyviablethanACinterties.

AmonopolarHVDCintertiedesignedasaSWERcircuitneedsonlyasinglewirealoft,whichsignificantlyreducestheloadscomparedwithathree‐orfour‐wireACintertie.Usingasinglewireprofoundlysimplifiesthetransmissionlinedesign,whichtranslatestosignificantcostsavingscomparedwithanACline.

BecauseSWERcircuitsinduceareturncurrentintheearth,theyrequirespecialattentioninthedesignandplanningphasetoavoidadverseeffectsfromthisearthcurrent.Theprimaryconcernsare(1)thesteppotential4intheimmediatevicinityofthegroundingstationsand(2)acceleratedcorrosionofburiedmetallicobjectsinthevicinityofthereturncurrentpathwaysthroughtheearth.

3SeeSectionB.6.1inAppendixBforcostbasisinformation.4Avoltagegradientthatoccursatthegroundsurfaceduetoearthreturncurrents.Ifthevoltagegradientishighenough,itcanposeahazardtopeopleorwildlifesteppinginthevicinity.

Page 32: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 18

InmostruralAlaskalocalities,theseconcernscanbereadilyaddressedthroughproperplanningandsystemdesign.

Becauseofthesespecialfactors,SWERcircuitsarenotallowedbytheNationalElectricalSafetyCode(NESC),whichistheapplicablecodeforelectricutilitytransmissionanddistributionsystems.PolarconsulthasdiscussedthisHVDCsystemandconceptindetailwiththestatecodeauthorityandfindsthatSWERcircuitscanbeapprovedonaproject‐specificbasisbyissuanceofacodewaiver.ThereisprecedentforcodewaiversbeingissuedforSWERsystemsinAlaska.TheuseofSWERcircuitsisdiscussedfurtherinAppendixEofthisreport.

Asanalternativetousinganearthreturncircuit,two‐wiremonopolarHVDClines(usinganoverheadwireasthereturncircuit)alsoachieveacostsavingsrelativetoACintertiesalthoughthesavingswilltypicallybelessthanforanHVDCSWERtransmissionline.

BipolarHVDCintertiesrequiretheuseoftwoadditionalconvertersbutcantransfertwicetheenergyofacomparablemonopolarsystem.Intheeventofaconverterfailureorlossofaconductor,abipolarsystemcanbeconfiguredtooperateasamonopolarSWERormonopolartwo‐wiresystem.Thisofferssignificantreliabilityadvantages;however,italsoincursthecostoftheadditionalconvertersandsecondhigh‐voltageconductor.Theadvantagesoftheincreaseincapacityandreliabilityaretheprimaryreasonsforuseofbipolarsystems.

Page 33: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 19

3.5 SUBMARINECABLEINTERTIEALTERNATIVES

AnotheradvantageofHVDCtransmissionoverACisitsintrinsicabilitytocarryenergybyburiedorsubmarinecableoverlongdistanceswithoutthetechnicallimitationsandadditionalequipmentrequiredforsimilartransmissionbyAC.MonopolarHVDCusingasinglecablecanconnectvillagesseparatedbylakes,bays,fjords,orlandswhereoverheadtransmissionisnotpractical,cost‐effective,ordesirable.Forthisreason,low‐powerHVDCtechnologyhassignificantimplicationsforinterconnectingcommunitiesinAlaskaseparatedbywaterbodies,particularlyinthesoutheast.

CabletricitywasretainedbyPolarconsultasasubconsultanttoinvestigatesubmarinecablesoptimizedforusewiththisHVDCsystem.AppendixDincludestheCabletricityreportdetailingresultsoftheirinvestigations.

Thereportbeginswithadescriptionoftheelectricalsystemtowhichthecableswillbeconnected,andthenadvancestotheregionalenvironmenttheymustwithstandandontodescriptionsofsubmarinecablestandards,cabledesigns,typicalinstallationmethods,andcostestimatesforacasestudy.

Cabletricityevaluatedsubmarinecablessuitablefor1‐MWmonopolarHVDCintertiesat50kilovolts(kV),withpotentialupgradeoftheconverterstationsto5‐MWserviceinamonopolarcircuit.Cabletricityalsoevaluatedthefeasibilityandcostofintegratingopticalfibersintothepowertransmissionsystemtoservethecommunicationsneedsofruralcommunities.Tomakethissystempractical,simplicityandreliabilityarecriticaldesignconsiderations.

Cabletricity’sinvestigationsfocusedonsinglecoreinsulatedconductorsubmarinecableswithearthorseareturnthatwouldbegenerallysuitablefortheruggedanddeepinter‐islandandfjordcrossingstypicalofsoutheastAlaska.Theobjectiveistoidentifysuitableconventionalorinnovativesubmarinecabledesignstomeettheoverallprojectobjectiveswherewatercrossingsarerequired.

Page 34: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 20

4.0 HVDCCONVERTERSTATIONS

4.1 OVERVIEW

TheHVDCconverterstationswillincludethemajorcomponentslistedbelow:

● HVDCpowerconverterssuchasthosebeingdevelopedbyPPS;

● Converterenclosures,whichmayconsistofdedicatedenclosuresoruseofanexistingbuilding,suchasanexistingpowerplant;

● Protection,control,andswitchingequipmentontheACandHVDCsidesoftheconverters;

● ACtransformers,dependingontheACinterfacevoltageandwiring;and

● Groundingstations,includingthegroundconductorfromtheconverterstationtothegroundingstation.

4.2 CONVERTERDEVELOPMENTOVERVIEW

PolarconsultsubcontractedwithPPSforthedevelopmentoftheHVDCpowerconverters.PPSwastaskedwiththedevelopmentofonefull‐scaleandfull‐functionality1‐MWpowerconverter,consistingoftwo500‐kilowatt(kW)modules.Developmentworkincludedpreparationofspecifications,design,construction,andtestingoftheprototypeconverter.

TheHVDCconverterisa1‐MWpowerconvertercapableofbidirectionalpowerconversionbetweenthree‐phase480voltsalternatingcurrent(VAC)and50kVHVDC.TheconvertercapacityisappropriatetosupplytheelectricalneedsofmostAlaskavillageseconomically.Incontrast,existingHVDCpowerconvertersystemsareonlyavailableatmuchlargertransmissioncapacities,startingatapproximately50MWandextendingupto1,000sofMWsofcapacity.

Each500‐kWPPSconverterconsistsoftwomodules:anair‐cooledlow‐voltagecabinet(Figure4‐1),andanoilcooledhigh‐voltagetank(Figure4‐2).ACpowercablesconnecttothelow‐voltagecabinet,whichconditionsthepowerandtransformsittoaspecialhigh‐frequencyAC,whichistransmittedtothehigh‐voltagetankviapowercable.Thehigh‐voltagetanktransformsthehigh‐frequencyACto50kVDC.Thehigh‐voltagetankhastwobushingsthatoutputupto500kWat50kVDC.Eitherbushingcanbegroundedtoproduceapositive50‐kVHVDCoutputoranegative50‐kVHVDCoutput.

MultiplePPSHVDCconverterscanbe“paralleled”toachievehigherpowertransmissioncapacitieswhereneeded.BasedonPhaseIIdevelopmentwork,thepriceofacommerciallyproduced1‐MWHVDCpowerconverterisestimatedtobe$250,000.Atleasttwo1‐MWconvertersareneededforacomplete1‐MWHVDCtransmissionsystem.

PPShassuccessfullydemonstratedoperationandpowerflowatthefull50kVDCinbothinverter(HVDCtoAC)modeandrectifier(ACtoHVDC)modeinacontrolledtestfacilitysetting.Thesetestingeffortsvalidatethedesignandbasicfunctionalityoftheconverter.

Inthecourseoftesting,PPSidentifiedtwohardwareproblemsthatpreventedfull‐powertestingoftheprototypeconverters.PPShasinvestigatedtheseproblemsandidentifiedtheactionsnecessarytocorrectbothproblems.TheproblemsandsolutionsarediscussedinAppendixF.

Page 35: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 21

Thefollowingfiguresillustratetheconverterfeatures:

o Figures4‐1and4‐2showthetwobasicmodulesthatmakeupacomplete500‐kWconvertersystem.ThesearefurtherdiscussedinAppendixF.

o Figure4‐3showsthetestsetupfortestingofthecentralresonantlinkcircuitinthehigh‐voltageDCtransformer.

o Figure4‐4showsthein‐airhighpotential(hi‐pot)testsetupofthehigh‐voltageDCtransformerassembly.Thistestidentifiedsomeinsulationdefectsthatwerecorrected.ThetestdemonstratedthattheDCtransformerassemblywillwithstandthevoltagesexperiencedatfulloperatingvoltageof50kVDC.

o Figure4‐5showsthedrysystemtestsetupandschematic.BeforetheDCtransformerwasimmersedinoil,itwastestedatlowvoltageinairtovalidatefunctionandfacilitatetroubleshooting.Thiswasprimarilydoneforconvenience,toavoidthedelaysandmessassociatedwithrepeatedlyimmersingtheDCtransformerinoilandremovingit.

o Figure4‐6showsacomplete500‐kWconvertermodule,consistingoftheHVDCtankandthelow‐voltagealternatingcurrent(LVAC)cabinet.

o Figure4‐7showsfourhigh‐voltagemeasurementprobesusedtomonitorthevoltagesatdifferentpointsintheDCtransformer.ThetestshowedexcellentvoltagesharingbetweentheDCtransformerstages,indicatingthatthesystemisperforminginaccordancewithdesign.Uniformvoltagesharingisakeysuccess,asitmeansthepowerelectronicscomponentswillnotbesubjectedtounevenvoltagesstresses.Excessivevoltagestressescouldseverelyshortenthelifeofthecomponents,reducingthereliabilityoftheconverter.

Page 36: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 22

Figure 4-1 Low Voltage Alternating Current (LVAC) Enclosure: Mechanical Layout

Notes:Cabinetsize:66”Wx42”Dx66”H;Cabinetweight:Approximately2,200pounds.

Page 37: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 23

Figure 4-2 HVDC Transformer Tank: Mechanical Layout

Notes:Tanksize:88”Wx39”Dx59.25”H;Tankweightwithoil:4,200pounds.

Page 38: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 24

Page 39: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 25

Figure 4-3 Central Resonant Link Test Setup

Figure 4-4 Hi–Pot Test Setup for HVDC Transformer

Page 40: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 26

Figure 4-5 Dry System Inverter Mode Test Schematic and Setup

Page 41: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 27

Figure 4-6 System #1 HV Tank and LV Enclosure

Figure 4-7 System #1 Showing HV Measurement Probes

Page 42: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 28

4.3 ADDITIONALEQUIPMENT

4.3.1 ConverterEnclosure

WhiletheconverterspecificationspermittheconverterstobeinstalledoutdoorsinmostAlaskaenvironments,itisassumedthattheconverterswillbeinstalledinsideanenclosure.Thiswillprovideforacontrolledoperatingenvironmentandgreatersecurityfortheconverters,extendingtheirusefulservicelife.

Theconceptualdesignassumesthatamodular,prefabricatedenclosurewillbesenttothecommunitywiththetwo500‐kWpowerconverterunitsalreadyinstalled.Thisconvertermodulewillthenbesetinplaceonasuitablefoundation.

IncommunitiesthatwillbeprimarilyservedbyanHVDCintertie,itmaybeappropriatetolocatetheconvertersinsidetheexistingpowerhouseorothersuitableexistingstructure.Thiswouldhavethefollowingadvantages:

● Theexistingpowerhousemayalreadyhaveasuitablestep‐downtransformersizedforthefullcommunityload;

● Wasteheatfromtheconverterswouldprovideallorpartoftheheatforthepowerplantbuilding;and

● Achievesprojectcostreductionbyeliminatingtheneedforadedicatedconverterenclosureandpurchasingorleasinglandtositetheconverter.

4.3.2 ProtectionandSwitchyardEquipment

SwitchgearwillbeneededontheACsideoftheconverterstoisolateandprotecttheconverterfromtheACgridandtomonitorpowerflowbetweentheconverterandthegrid.

Similarisolation,protection,andmonitoringequipmentisneededontheHVDCsideoftheconverter.Ataminimum,manualdisconnectswitches(nonloadbreak),surgearrestors,andprotectivefusesareneededontheHVDCside.Moreautomatedcontrolapparatuscanalsobeused,butatincreasedcost.

4.3.3 ACTransformers

Thegridinterfaceonthepowerconvertersisthree‐phase480‐voltAC.Incommunitieswheretheconverterisconnecteddirectlytothe480‐voltpowerplantbus,notransformerisrequired.Incommunitieswheretheconverterconnectstothelocaldistributiongrid,astep‐uptransformerisrequired.Thetransformerwilltypicallybeathree‐phase480/12.47‐kVtransformer.

4.3.4 GroundingStations

AgroundingstationwillneedtobeprovidedateachHVDCconverterstation,regardlessoftheHVDCcircuitconfiguration.Theconceptualdesignofa1‐MW,50‐kVDCgroundingstationispresentedinAppendixE(FigureE‐1).

Page 43: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 29

5.0 DESIGNCONCEPTSFOROVERHEADINTERTIES

ThefollowingsummarizesdesigncriteriadevelopedfortheconceptualdesignoftheHVDCoverheadintertielines.DesigncriteriaandconceptualdesignsarepresentedindetailinAppendixC.

5.1 OVERHEADDESIGNAPPROACH

Theoverheadintertiedesignconceptspresentedrequiredconsiderationoftypicalsiteconditions,codes,utilityandlenderrequirements,constructionmethodologies,standarddesignpractices,andprojecteconomics.ThefollowingtwodesignapproachesforoverheadHVDCintertieshavebeenevaluated,eachwithacapacitytosupply1MWthroughamonopolar50‐kVDCsystem:

5.1.1 RUSDesignApproach,ModifiedforHVDCInterties

ThefirstconceptualdesignapproachisbasedontheuseofstructuresthatareconstructedinaccordancewithUSDARUS‐typeconstruction(RUSstandardpractice)forconventional12.4/24.9‐kVACdistributionlines.5TheseRUSstandardpracticesarecurrentlyusedtodevelopACintertiesthroughoutAlaskaandarewidelyacceptedbytheutilityindustry.HVDCtransmissionrequiresfewerconductorsthanAC,resultinginreducedloadsonthesupportingstructures.Asaresult,theconceptualdesignsdevelopedusingtheRUSapproachhavelongerrulingspansthantypicalAClines.ThisresultsinfewertransmissionstructuresfortheHVDCintertieandanassociatedcomparativereductioninconstructioncost.

5.1.2 Alaska‐SpecificDesignApproachforHVDCInterties

ThesecondconceptualdesignapproachtakesthelogisticandtechnicalchallengesofconstructioninruralAlaskaintoconsiderationandfocusesonmethodstoreduceconstructioncostswithoutcompromisingperformanceorlong‐termmaintainability.Thisdesignapproachincorporatescost‐savingfeaturesmadepossiblethroughHVDC‐specificdesignalternatives,materials,andconstructionmethods.DesignfeaturesofthisconceptincludetheuseofguyedcompositestructurestoallowsignificantlylongerrulingspansthanispossiblewithRUSstandardpractice.Thereducednumberofstructures,lesscostlyfoundations,andreducednumberofconductorsallresultinadditionalsavingscomparedwithintertiesbuiltinaccordancewithRUSstandardpractices.

ThefollowingthreeHVDCtransmissioncircuitconfigurationsareconsideredforeachoftheHVDCconceptualdesignapproaches:

● Monopolarsingle‐wiretransmissionwithearth‐returnpath(SWER);

● Monopolartwo‐wiretransmissionwithmetallicconductor‐returnpath(TWMR);

● Bipolartwo‐wiretransmission(2‐MWcapacity).

5 Inthisreport,theterm“RUSstandardpractice”referstooverheadintertielinedesignsbasedonthemethodsand

materialspresentedinRUSdesignmanualsfortransmissionanddistributionlineconstruction,includingbutnotlimitedto:REA,1982,RUS,1998,2002,2003a,2003b,2003c,and2009.

Page 44: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 30

SchematicfiguresareprovidedforeachoftheseconceptualdesignsinAppendixC.DetailedreportsthataddressvarioustechnicalaspectsoftheassumedconditionsandloadingsusedtodeveloptheseconceptualdesignsareprovidedasattachmentstoAppendixC.

5.2 GEOTECHNICALCONDITIONS

Basedontheanalysisdescribedbelow,conceptualfoundationdesignalternativesforaguyedpoleutilizethreethermoprobemicropilesforthepolebaseandhelicalanchorsfortheguys.TheoverheadsystemtestsiteinFairbanks,Alaska,featuresinstallationsofbothoftheseprototypefoundations.

5.3 ENVIRONMENTALLOADS

FivestandardNESCloadingcaseswereanalyzedforeachconceptualdesign.TheseloadcasesareconsideredsufficientformostruralAlaskaoverheadintertieapplications.Specificlocationsmaybesubjecttohigherand/orlowerwindand/oriceloadings.6Exceptwherespecificallystatedotherwise,eachoftheconceptualdesignspresentedinthissectioncomplywiththemoststringentoftheseloadconditions.

5.4 CONSTRUCTION,RUSSTANDARDPRACTICETheconceptualdesignsofoverheadintertielinespresentedinthissectionhavebeendevelopedtotakeadvantageofthefollowingfactors:

● Alaskacontractors,linecrews,andutilitylinepersonnelarefamiliarwithRUSstandardpracticematerials,designs,andconstructionpractices,thustheywillbemorefamiliarwiththetechniquesandproceduresforbuilding,maintaining,andrepairingtheselines.

● AlaskaalreadyhasmanymilesofRUSstandard‐practicedistributionandtransmissionlinesbuiltandinservicethroughoutthestate.Utilitiesunderstandtheperformancerecordandissueswiththistypeoflineconstruction.

● Utilitylenders,whichincludesRUS,understandandacceptRUSstandardconstructionpractice,whichcansimplifyobtainingfundsforconstructingnewinterties.

Totakeadvantageofthesefactors,conceptualdesignforHVDCpreservedRUSstandardpracticeconstructiontotheextentpossible,modifyingthepoletopassemblytoaccommodatetheconductor(s),insulator(s),andclearancesforHVDCoperation.TherulingspanisalsoincreasedtotakeadvantageofthefewerwiresandreducedstructureloadsassociatedwiththeHVDCcircuitconfigurations.

StructuralanalysisofconventionaloverheadHVDCtransmissionstructures(adaptedfromRUSstandardpractice)wasperformedbyPolarconsult.AconceptualdesignsummaryispresentedinAppendixCforeachofthelineconfigurationsproposed.

6 Section4.6ofthePhaseIFinalReportprovidesasummaryofenvironmentalloadingsaroundAlaska(Polarconsult,

2009)

Page 45: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 31

5.5 CONSTRUCTION,ALASKA‐SPECIFICCONCEPT

TheconceptualdesignsofoverheadintertielinespresentedinthissectionhavebeendevelopedtoreduceconstructioncostsonruralAlaskainterties.Costreductionisachievedthroughspecialattentiontothefactorslistedbelow.

● Minimizingtherelianceonheavyequipmentthatmustbemobilizedtoaconstructionsite.Iflighterequipmentorlocalequipmentcanbeusedforconstruction,mobilizationcostswillbeless,reducingprojectcosts.

● Maximizingtheflexibilityinconstructionmethodsandseasons.Bydesigningfortheuseofsmallerequipment,greateruseofhelicoptersforconstructionsupport,andsimilartechniques,all‐seasonconstructionbecomespossible,providingincreasedflexibilityforconstructiontechniquesandmethods.Thisincreasedflexibilitycreatesnewopportunitiestoincreaseutilizationofequipment,increasecompetitionforlineconstructionprojects,andreduceprojectcosts.

Thesefactorshavebeenincorporatedintotheconceptualdesignelementslistedbelow.

● Useoftallerstructuresandlongerspans.BecauseHVDCcircuitsrequireonlyoneortwowires,theycanutilizelongerspansthanacomparablethree‐orfour‐wireACcircuit.Increasingspansreducesthenumberofstructuresandfoundationsforagivenlengthofoverheadline,whichreducescosts.Withthisapproach,tallerstructuresareneededtomaintainrequiredclearancesbetweentheconductorandtheground.

● Useofglass‐fiber‐reinforcedpolymer(GFRP)polesinsteadofwoodorsteelpoles.GFRPpoleshavebeenusedforover50yearsinelectricutilityapplications7buthavelittletonohistoryinAlaska’selectricutilityindustry.GFRPpolesarelighterthanwoodorsteelpolessotheycanbetransportedbyasmallhelicoptersuchasaHughes500orBellUH‐1“Huey.”Theyarealsorot‐resistantanddonotleachtoxicpreservativesintothesoilsaroundthepole.ThePhaseIIprojectincludeddemonstrationofafield‐friendlyspliceforGFRPpoles,whichpermitstallpolestobeshippedinpartsandassembledinthefield.ThissplicecanalsobeusedforfieldrepairofdamagedGFRPpoles.

● Useofguyedstructuresinareaswheregeotechnicalconditionspreventcantileveredpolesfrombeingdirectlyburiedinthesoil.Acceptedpracticeforsuchconditionsistodriveasteelpileupto40feetdeepandthenfastenawoodpoletothesteelpile.Installingthesteelpilerequiresmobilizingacraneorotherheavyequipmenttotheprojectsite.Aguyedstructurecanbeinstalledinsuchconditionswithamuchsmallerbasefoundation,astheguyscarrymostofthemoment,andthestructurebasemostlycarriescompressiveloads.

7Ibrahim,2000.

Page 46: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 32

 

5.6 TESTINGOFOVERHEADDESIGNCONCEPTS

TheconceptualoverheaddesignsdescribedinAppendixCusecommerciallyavailableandacceptedmaterials,designs,andconstructionmethods.CertainaspectsoftheconceptualdesignspresentedrepresentinnovationsinoverheadlinedesignthatdonothaveaprovenrecordwithintheutilityindustryinAlaskaconditions.Inordertoevaluatetheperformanceofthesecomponents,theywereinstalledatatestsiteinFairbanks,Alaska.ThissectionsummarizestheobjectivesandinstallationoftheFairbanksTestSite.DetailsofthetestprogramarepresentedinAppendixC.

5.6.1 TestObjectives

TheprimarytestobjectivesoftheFairbanksTestSitearelistedbelow.

● Demonstrateperformanceandassemblytimeofaspliceforaconstant‐sectionGFRPutilitypole.

● Demonstrateinstallationandperformanceofmicro‐thermopilepolefoundations.

● Demonstrateinstallationandperformanceofmicro‐thermopileguyanchors.

● Demonstrateinstallationandperformanceofscrewguyanchors.

● DemonstratetheinstallationandperformanceoftheoverallguyedGFRPpolestructure.

● Demonstratemaintenanceandoperationalcharacteristics.

5.6.2 TestSite

ThetestsiteislocatedonprivatepropertysouthofFarmer’sLoopRoadandnorthofCreamers’FieldinFairbanks.Thesiteconsistsofwarmice‐richsiltypermafrostsoils.Thesitehasanorganiclayerconsistingofdeciduousshrubsandblackspruce.Peatwaspresentatdepthsof1to5feetbelowgroundsurface.TheactivelayerinSeptember2011extendedtoadepthof3feet,withstandingwaterencounteredwithinthevegetativematnearthesurface.Geotechnicalconditionsatthesitearecharacteristicofmarginalwarmpermafrostconditions,asfurtherdescribedinAppendixC.

Figures5‐1through5‐4showtheinstallationofinnovativematerialsandsystemsatthetestsiteinFairbanks.

Page 47: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 33

Figure 5-1 Installing Micro-Thermopile for Guy Anchor

ContractorGeoTekAlaska,Inc.drillingaholeforinstallationofamicro‐thermopileata45‐degreebatterangleusingaGeoProbe8040seriesdrillrig.Themicro‐thermopilewillserveasaguyanchorfortheprototypeguyed

GFRPpoleinstallationattheFairbanksTestSite.(Polarconsult,2011).

Page 48: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 34

Figure 5-2 Assembling the Prototype GFRP Pole Splice

ContractorCityElectric,Inc.installingthefieldsplicefortheprototypeGFRPpole.40‐footand20‐footGFRPpolesegmentsweresplicedtocreatethe60‐footpoleerectedatthesite.Thespliceslidesoverthepolesegmentsandcarriesmomentthroughcontactbetweenthepoleandsplicewalls.Verticalloadsarecarriedthroughthebuttendsofthepolesegments.Noglueoradhesiveisnecessaryforthesplicetodevelopthefullmechanicalstrengthofthepole.Thescrewsservetopreventdifferentialmovementbetweenthepoleandsplice.(Polarconsult,2011)

Page 49: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 35

Figure 5-3 Prototype GFRP Pole Foundation During Installation

DetailofprototypeGFRPpolebaseattheFairbanksTestSite.Theadapterplatewasadjustedduringinstallationsothehingeisorientedinlinewiththeguyanchorinthedistance(orangeflagging).Thiswillallowuseofthe

guyanchortolowerthepolewithawinchifneeded.(Polarconsult,2011)

Page 50: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 36

Figure 5-4 Prototype Pole at the Fairbanks Test Site

ViewoftheprototypeguyedGFRPpoleinstalledattheFairbanksTestSite.Thisphotographistakenatadistanceofapproximately25yardsfromthe60‐foot‐tallpole.Thefourguysandthepolesplicearevisibleinthis

photograph.(Polarconsult,2011)

Page 51: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 37

6.0 SYSTEMECONOMICS

TheextremevarietyofenvironmentalandtechnicalconditionsfoundacrossruralAlaskaresultsinasignificantvariationinintertiecosts.Thetypicalcostforconstructingaconventionaloverheaddistribution‐classACintertieinruralAlaskacanvaryfromaslittleas$100,000permiletoover$600,000permile8inpartsofthestatewithchallenginglogisticsandlittleornotransportation.Intertiecostvariationsalsoaffectsubmarinecables,undergroundcables,andotheroverheadintertieconfigurations.ThedetailsofsystemeconomicsarepresentedinAppendixB.

6.1 COSTCOMPARISONOFACANDHVDCOVERHEADINTERTIES

TwodistinctoverheadHVDCintertieconfigurationshavebeencomparedtoaconventionalACintertietoillustratearangeofHVDCintertieeconomicswithdifferentoverheaddesigns.ThetwoHVDCintertieconfigurationsare:

● Atwo‐wiremonopolarHVDCintertieusingRUSstandardpracticeconstructionmethods.ThisintertieconfigurationrepresentstheupperrangeofestimatedcostforanHVDCoverheadintertieinruralAlaskaapplications.

● AmonopolarSWERHVDCintertieusingAlaska‐specificconstructionmethods.ThisintertieconfigurationrepresentsthelowerrangeofestimatedcostforanHVDCoverheadintertieinruralAlaskaapplications.

TheestimatedcostforHVDCintertiesinmostruralAlaskaapplicationsisexpectedtofallbetweenthecostscitedforthesetwoconfigurations.

6.1.1 InstallationCostComparison

Figure6‐1presentstheestimatedinstalledcostrelativetotheintertielengthforthreedifferentkindsofintertiesbuiltinruralAlaskaconditions:

● AconventionalruralAlaskaintertie,

● Atwo‐wiremonopolarHVDCintertieusingRUS‐typeconstructionmethods,and

● AmonopolarSWERHVDCintertieusingAlaska‐specificconstructionmethods.

Additionally,Figure6‐1illustratestheeconomicbreak‐evenlengthandrelativeincreaseinsavingsforlongerHVDCinterties.ThepointsatwhichtheAC“costline”crosseseitheroftheHVDC“costlines”representstheeconomicbreak‐evenlength.TheestimatedHVDCcostsshowahypotheticalrangeofinstalledcostsanticipatedforlow‐power(under1MW)ruralAlaskaHVDCsystems.

8SeeSectionB.6.1inAppendixBforcostbasisinformation.

Page 52: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 38

Figure 6-1 Comparative Installed Cost: Overhead 1-MW HVDC and AC Interties

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

$25,000,000

$30,000,000

$35,000,000

$40,000,000

$45,000,000

0 10 20 30 40 50 60 70 80 90 100

Intertie Length  (miles)

Probab

le In

stalled Cost of Overhead HVDC vs. AC In

terties

AC Intertie (Standard RUS Construction)

HVDC Intertie (Monopolar, TWMR, Standard RUS Construction)

HVDC Intertie (Monopolar, SWER, Alaska‐Specific Construction)

BREAK‐EVEN COST FOR HVDC INTERTIES: 6 to 22 MILES

(INSTALLED‐COST BASIS)

Note: This chart is based on the assumptions and comparative system costs 

presented in Appendix B. The break‐even point will vary for every intertie project.

COST SAVINGS

RANGE

AC

HVDC

HVDC

Page 53: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 39

6.1.2 Life‐CycleCostComparison

Operatingcosts,maintenancecosts,andelectricalefficiencyaffectthelong‐termeconomicvalueofanintertie.Table6‐1presentscomparativelife‐cyclecostsforhypothetical25‐mile‐longoverheadACandHVDCintertiesinruralAlaska.Alengthof25mileswasselectedasitconservativelyrepresentsthesavingsanticipatedforshortHVDCinterties.Theestimatedlife‐cyclecostfora25‐mile‐longHVDCintertierangesfrom79%to107%ofthelife‐cyclecostofanACintertie.

Table 6-1 Estimated Life-Cycle Costs for 25-mile Overhead AC and HVDC Interties

ParameterStandardRUSACIntertie

MonopolarTwo‐WireHVDCIntertie(RUSConstruction2)

MonopolarSWERHVDCIntertie

(Alaska‐SpecificDesign1)

CostofDiesel($/gallon[gal]) $7.00pergallon

GenerationEfficiency(kWh/gal) 13kWhpergallon

IntertieEfficiency4 97.7% 93.4% 94.5%

NetAnnualEnergyTransmission(kWh) 1,664,400

AnnualTransmissionLosses4(kWh) 38,300 133,000 114,000

AnnualizedValueofTransmissionLosses($) $21,000 $71,000 $61,000

IntertieDesignLife(years) 20years

IntertieAnnualOperationsandMaintenance(O&M)Costs

$40,000 $58,000 $54,000

EffectiveDiscountRate 3%

PresentWorthofTransmissionLosses $307,000 $1,063,000 $912,000

PresentWorthofO&MCosts $595,000 $867,000 $796,000

ConverterStationsInstalledCost $20,000 $2,080,000 $1,160,000

IntertieInstalledCost $9,480,000 $7,120,000 $5,340,000

EstimatedLife‐CycleCost $10,402,000 $11,130,000 $8,208,000

HVDCLife‐CycleCostasPercentofACLife‐CycleCost 107% 79%

PresentWorthSavings(Cost)ofHVDCvs.AC ($728,000) $2,194,000

Notes:1. “Alaska‐SpecificDesign”referstothedesignconceptspresentedinAppendixCofthisreport.2. “RUSConstruction”referstostandardRUSdesignandconstructionmethodsforACinterties,adaptedtoHVDC

applicationsasdescribedinAppendixCofthisreport.3. Allmonetaryvaluesarein2012dollars.4. Efficiencyandlossinformationincludesalltransmissionsystemcomponents.

Page 54: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 40

Figure6‐2illustratestheeconomicbreak‐evenlengthandrelativeincreaseinsavingsforlongerHVDCinterties.ThepointsatwhichtheAC“costline”crosseseitheroftheHVDC“costlines”representstheeconomicbreak‐evenlength.TheestimatedHVDCcostsrepresentahypotheticalrangeoflife‐cyclecostsanticipatedforlow‐power(under1MW)ruralAlaskaHVDCsystems.

Figure 6-2 Comparative Life-Cycle Cost: Overhead 1-MW HVDC and AC Interties

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

$25,000,000

$30,000,000

$35,000,000

$40,000,000

$45,000,000

0 10 20 30 40 50 60 70 80 90 100

Intertie Length  (miles)

Probab

le Life‐Cycle Cost of Overhead HVDC vs. AC In

terties

AC Intertie (Standard RUS Construction)

HVDC Intertie (Monopolar, TWMR, Standard RUS Construction)

HVDC Intertie (Monopolar, SWER, Alaska‐Specific Construction)

BREAK‐EVEN COST FOR HVDC INTERTIES: 12 to 31 MILES

(LIFE CYCLE COST BASIS)

Note: This chart is based on the assumptions and comparative system costs 

presented in Appendix B. The break‐even point will vary for every intertie project.

AC

HVDC

HVDC

COST SAVINGS

RANGE

Page 55: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 41

 

6.2 CASESTUDIES

Thecasestudiesinthissectionprovideproject‐specificexamplesoftheexpectedcostsandresultingbenefitsofusingHVDCsystemstointerconnectcommunitiesandresources.Thesecasestudiesrelyonexistinginformationregardingtheproposedintertieroutes,loads,andrelatedprojectinformation.Figure6‐3presentsafewofthemanypotentiallow‐powerHVDCprojectsitesthroughoutAlaska.

Figure 6-3 Location Map for Potential HVDC Project Sites

Forthepurposesofthisreport,twospecificHVDCprojectsiteswereselectedforevaluation.The“GreensCreek–Hoonah”andthe“Nome–PilgrimHotSprings”intertieprojectsaretypicalofthedesignapproachandeconomicscommontootherHVDCAlaskaninterties.Table6‐2summarizesthecasestudiesconsideredinthissection.

Page 56: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 42

Table 6-2 Summary of Case Studies

HVDCIntertieCaseStudy

TransmissionCircuit

IntertieType

HVDCIntertieCost

Estimate1

ACIntertieCost

Estimate1

EstimatedHVDCSavings1

PercentCapitalCost

Savings

GreensCreek–Hoonah

5‐MWmonopolarHVDCcircuitwithseareturn2

SubmarineCable

$22.2million

$49million

$26.8million 55%

Nome–PilgrimHotSprings

5MWbipolarHVDCcircuit

OverheadLine

$25.7million

$36.3million

$10.6million 29%

Notes:

1. Allcostestimatesarepresentedin2012dollars.

2. Thecasestudyprovidesasubmarineandoverheadintertiecapacityof5MWandconverterstationcapacityof2MW.ThisprovidesanamplemarginforloadgrowthinHoonah.Theconverterstationcapacitycanbeupgradedasneededin500‐kWincrementsupto5MW.

6.2.1 Green’sCreek–HoonahCaseStudy

AnintertiebetweenGreensCreek,ontheAlaskaElectricLightandPowerCompany(AEL&P)gridthatservesJuneau,andthevillageofHoonah,anisolatedmicro‐gridoperatedbytheIPEC,hasbeenunderconsiderationforoveradecade.AEL&PandtheIPEChavecompletedextensivestudiesanddesignworkonthisintertie.Studiesidentifieda25‐mile‐longACsubmarinecableandapproximately4milesofoverheadlinenearHoonahasthemosteconomicalmeanstocompletethisinterconnection.9TheproposedintertierouteisshownonFigure6‐4.

Asthedevelopmentofthisprojectcontinued,thecostsoftheACsubmarinecablehaveescalated,untiltheprojectwasfinallyputonholdduetoitsexcessivecost.Hoonahiscurrentlyexploringlocalhydropowerresourcestoreduceitsenergycostsbutcontinuestoviewanintertieasthebestlong‐termsolutionforitsenergyneeds.

ThisHVDCsystemrepresentsatechnologicaladvancethatcanreducethecostoftheGreensCreek–HoonahintertieandincreaseitseconomicfeasibilityascomparedwithHoonah’sotherenergyoptions.Thefollowingsubsectionsofthiscasestudyprovideahigh‐levelanalysisofthemeritsofanHVDCintertieforHoonah.

Forthepurposesofthiscasestudy,a5‐MWmonopolarHVDCtransmissioncircuitwithseareturnwasselectedtoconnectHoonahwithGreen’sCreek.Thiscircuitconsistsof25milesofsubmarinecableand4milesofoverheadline.Amonopolarcircuitwasselectedbecauseitisexpectedtobetheleast‐costintertiesolutionbetweenHoonahandGreen’sCreek.Otherpotentialconfigurations,suchasabipolarHVDCcircuitutilizingtwosingle‐conductorcables,wouldbemoreexpensivethanthemonopolardesignselected.

9(PowerEngineers,2004)

Page 57: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 43

Theestimatedcapitalcostsincludea5‐MWtransmissioncircuit(submarinecableandoverheadline),and2‐MWconverterstationsatHoonahandGreen’sCreek.Theconverterstationscanbeupgradedto5MWbyadding500‐kWconvertermodulesasHoonah’sloadincreases.IfHoonah’sloadgrowsbeyond5MW,asecondsubmarinecablecanbeinstalledtoprovidea10‐MWbipolartransmissionsystem.

Figure 6-4 Greens Creek – Hoonah Intertie Route

6.2.1.1 EconomicAnalysis

Table6‐3presentstheeconomicanalysisfortheGreensCreek–Hoonahintertiealternatives.TheestimatedinstalledcostfortheHVDCintertieis$22.2million,ascomparedtothecostof$49millionforaconventionalACintertie.TheACintertiecostestimateisbasedonthe2009estimatedcostof$37.5million10adjustedto2012dollars.

10IPEC,2009.

Page 58: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 44

Table 6-3 Estimated Cost for a Greens Creek – Hoonah HVDC Intertie

CostItem EstimatedCost

PreconstructionRight‐of‐wayacquisition,engineering,survey,permitting $1,600,000

Administration/Management $900,000

HVDCConverterStations(powerconverters,seaelectrodes,enclosures,ACandDCsidestationequipment) $2,700,000

SubmarineCableSupplyandInstallation $12,400,000

OverheadHVDCLine:SpaaskiBaytoHoonah $900,000

Contingency(onentireproject,25%)1 $3,700,000

TotalEstimatedCost $22,200,000

Notes:1.Acontingencyof25%isappliedtothecostsdevelopedforthisprojectbasedontheuncertaintiesassociatedwiththeproject.Asignificantamountofworkhasalreadybeendonetocharacterizethebathymetryandseafloorconditionsalongtheproposedcableroute.

Page 59: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 45

Table6‐4presentsestimatedbenefit‐costratiosfortheGreensCreek–Hoonahintertieunderseveralloadgrowthscenarios.ThisanalysisindicatesacleareconomicadvantagetoanHVDCintertiebasedonreasonableloadgrowthforecastsforHoonah.

Table 6-4 Estimated Benefit-Cost Ratio of Greens Creek – Hoonah HVDC Intertie

ItemLoadGrowthScenario

ExistingLoad 165%Growth 200%Growth6

AnnualHoonahEnergyGeneration(kWh/yr)1 5,150,000 8,500,000 9,780,000

AEL&PAvoidedCostofEnergy(Juneau)2 $0.06perkWh

IPECAvoidedCostofEnergy(Hoonah)1 $0.20perkWh

IntertieOutageRate3 2%

AnnualHoonahSavings4 $707,000 $1,170,000 $1,340,000

IPECOperation,Maintenance,Repair,ReplacementandRehabilitation(OMR&R)AnnualCosts5 $90,000 $90,000 $100,000

NetAnnualSavings(Cost) $617,000 $1,150,000 $1,340,000

IntertieLifeandDiscountRate 30years,3%

PresentWorthofAnnualSavings(Costs) $12,070,000 $21,090,000 $24,500,000

EstimatedInstalledCost $22,200,000 $22,200,000 $22.200,000

EstimatedBenefit‐CostRatio 0.54 0.95 1.10

Notes:

1. BasedonPowerCostEqualization(PCE)reportsfor2007through2009(AEA,2010a).

2. ApproximateAEL&Penergycost.IPEChascapacity,sonodemandorcapacitychargesareincluded.

3. Assumedvalue.

4. AnnualsavingsarebasedonthedifferentialcostofenergyanddonotconsidereconomicbenefitsinHoonahfromlowercostenergy,oreffectstoAEL&Pofincreasedenergysales.

5. IPEC’sestimatedoperations,maintenance,repair,androutinereplacementcostsincludecostsfortheconverterstations,savingsfromdecreasedoperationandoverhaulofthedieselpowerplantinHoonah,andaone‐timecablerepaireventoverthe30‐yearanalysisperiod.

6. Hoonah’speakloadsundera200%loadgrowthscenariowouldexceedthe2‐MWcapacityoftheintertieconverterstations.Intertiethroughputisreducedby5%toreflectdieselgenerationinHoonah.

 

Page 60: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 46

6.2.2 PilgrimHotSprings–Nome

PilgrimHotSpringsisageothermalresourcelocatedapproximately60milesnorthofNome.IthasbeenproposedasapowersourcetoreduceNome’srelianceondieselfuelforelectricalgeneration.ACEPiscurrentlystudyingthePilgrimHotSpringsgeothermalresourcetobettercharacterizetheresource’spotentialforpowergenerationandotherapplications.ForpurposesofsizingthetransmissionlinefromPilgrimHotSprings,anelectricalgeneratingcapacityandtransmissioncapacityof5MWisassumed,basedonconversationswithACEP’smanagerforthePilgrimHotSpringsassessmentproject.11TheproposedtransmissionrouteisshownonFigure6‐5.

AbipolarHVDCcircuitusingoverheadlineswasselectedfortheHVDCintertie.Thebipolarconfigurationwasselectedbecauseitprovidesincreasedreliabilitycomparedtoamonopolarlineatareasonableadditionalcost.

ConceptualpowerlinecostsforoverheadACandHVDCintertieswereestimatedtoevaluatethebenefitsofconnectingPilgrimHotSpringstoNomeusinganHVDCintertie.ThecostestimatesindicatethatanHVDCtransmissionlinewouldcost29%lessthananACtransmissionline.

Aroutingstudywasnotperformedaspartofthiscasestudy.Powerlineswereroutedalongtheexistingroadcorridor.Thisisassumedtobetheleast‐costrouteforthepowerlines,astheroadcanbeusedtosupporttheconstructionandlong‐termmaintenanceoftheline.Aroutingstudymayidentifyotherroutesthataremorefavorableduetogeotechnical,landstatus,environmental,orotherfactors.

11PersonalcommunicationwithMarcusMager,2012.

Page 61: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 47

Figure 6-5 Prospective Transmission Route from Pilgrim Hot Springs to Nome

Page 62: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 48

 

6.2.2.1 EconomicAnalysis

Table6‐5presentstheeconomicanalysisforthePilgrimHotSprings–Nomeintertiealternatives.TheestimatedinstalledcostfortheHVDCintertiealternativeis$25.7million,ascomparedtothecostof$36.3millionforaconventionalACintertie.

NoinformationisavailablefortheinstalledcostofageothermalpowerplantatPilgrimHotSpringsorthecostoftheenergyitwouldgenerate,soabenefit‐costratiooftheintertiealternativeswasnotevaluated.

Table 6-5 Estimated Installed Cost for a 5-MW Pilgrim Hot Springs – Nome Intertie

CostItem

EstimatedInstalledCostforBipolarHVDC

Intertie

EstimatedInstalledCostforACIntertie

EstimatedHVDCSavings

PercentCostSavings

PreconstructionActivities(right‐of‐wayacquisition,design,survey,permitting)

$3,400,000 $3,400,000 ‐ ‐

Administration/Management $1,000,000 $1,300,000 ‐ ‐

ConverterStationConstruction $4,600,000 $3,000,000 ‐ ‐

OverheadIntertieConstruction $10,800,000 $20,200,000 ‐ ‐

Contingency(30%)1 $5,900,000 $8,400,000 ‐ ‐

TotalEstimatedCost $25,700,000 $36,300,000 $10,600,000 29%

Note:1. A30%contingencywasappliedtothecostsforthisprojectbecausenoinformationwasavailableforthe

transmissionroute.Thislackofdatacreatesrisksduetofactorssuchaslandavailability,geotechnicalconditions,structural(windandice)loadings,andenvironmental(bird,wildlife,andaesthetics)factors.Someoftheserisksaremitigatedbytheuseofcostdatafortherobustconceptualdesigns(i.e.,Alaska‐specificconstruction)usedfortheHVDCsystem.TheAlaska‐specificconceptualdesignisassumedtobeadequatefortheexpectedgeotechnicalandstructuralconditionsalongtheroute.Environmentalandlandavailabilityissues,whichcouldrequirealongerrouteordeparturefromtheroadcorridor,poserelativelygreaterrisksthanlinedesignconsiderations.Thenetresultofthesefactorsresultsinthe30%contingencyusedforthecasestudyeconomics.

Page 63: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 49

7.0 CONCLUSIONSANDRECOMMENDATIONS

7.1 CONCLUSIONS

PhaseIIhasdemonstratedthattheconvertertechnologyistechnicallyviableandthetransmissionsystemiseconomicallyfeasible.KeyPhaseIIfindingsare:

● Low‐powerHVDCconvertertechnologyisexpectedtobecommerciallyavailableat$250perkilowattperconverter.

● Estimatesofconstructioncostsforaconceptual25‐mileoverheadHVDCintertieindicatecapitalcostsavingsofapproximately30%comparedwithaconventionaloverheadACintertie.Estimatedlife‐cyclecostsrangefrom79%to107%ofthelife‐cyclecostofanACintertie.

● LongeroverheadHVDCintertiescanexpectcapitalcostsavingsofupto40%.

● SignificantsavingsarepossibleforsubmarinecableandundergroundcableapplicationsusingHVDCsystems.Estimatedcapitalcostsavingsona25‐milelow‐powerHVDCsubmarinecableintertieareover50%comparedtoACalternatives.

BasedonPhaseIIfindings,thebenefitsoflow‐powerHVDCsystemsforAlaskaaresubstantial,andcontinueddevelopmentofthissystemisrecommended.

7.2 OPPORTUNITIESANDBARRIERS

BasedonanalysisandstudyconductedduringthisPhaseIIproject,PolarconsulthasconcludedthatthisHVDCtechnologypresentsthefollowingopportunitiesforAlaska’sutilityindustryandruralcommunities:

● Lessexpensiveruralelectricinterties,leadingtolower‐costenergyandincreasedenergyindependenceforruralcommunities.

● Interconnectiontocurrentlystrandedenergyresources.

● Interconnectioncostsavingsbycombiningruralelectricandtelecommunicationsinterties.

Thesuccessfulcommercializationandadoptionoflow‐powerHVDCtechnologyinAlaskarequiresovercomingthefollowingbarriers:

● Completionofthecommercialdevelopmentanddemonstrationoftheconvertertechnology.Continueddevelopmentoftheprototypeconverters,culminatinginindependenttestingoftheconvertersanddeploymentonanAlaskautilitysystem,isneededtoprovethattheconvertersareacommerciallyviabletechnology.

● Acceptanceanduseoflow‐powerHVDCtechnologybyAlaska’sutilityindustry.Continuedinvolvementofin‐stateandinternationalstakeholderswiththeon‐goingdevelopmentofthistechnologyisconsiderednecessarytosurmountingthisbarrier.

● DevelopmentanddemonstrationofstandardsandcontrolprotocolsforMTDCtransmissionnetworks,whichareneededtobuildcost‐effectiveregionalHVDCpowernetworksinruralAlaska.

Page 64: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE 50

7.3 RECOMMENDATIONS

Basedontheconclusionsandfindingsofthisproject,thefollowingactionsarerecommended.

PhaseIIIprogramactivities:

● Continueddevelopmentofthepowerconvertertechnologytocommercializetheexistingprototypeconverterdesign.SolicitationofadditionalHVDCconvertermanufacturersiswarrantedtoencouragediversityofsuppliersandcompetition;

● Independenttestingoftheconverterstovalidateefficiencyandperformance,followedbydeploymentonanAlaskanutilitysystemtovalidatefunctionalityandreliabilityinacommercialsetting;

● FurtherdevelopmentofMTDCtransmissionsystemsinterconnectionandcontroltechnologies;and

● Continuedinvolvementofin‐statestakeholdersinthedevelopmentofthistechnology.

Stakeholderactions:

● Incorporatelow‐powerHVDCtechnologyintoAlaska’sregionalandstatewideenergyplansandpolicies;

● ContinuecoordinationwiththeStateofAlaskatoallowaproject‐specificwaiveroftheNESCtoallowtheuseofSWERcircuits;

● EncourageplannedruralpowerandtelecommunicationsintertiestoincorporateHVDCtechnologyintheireconomicandtechnicalanalysis,aswellastheirenvironmentalandpermittingreviewprocesses;

● Engagethetelecommunicationsindustrytoraiseawarenessofthesynergiespossiblebetweenlow‐powerHVDCtransmissionandfibernetworksinruralAlaska;and

● Collaboratewithinternationalstakeholderstoidentifysynergiesandlessonslearnedfromparalleltechnologydevelopmentefforts.Coordinateondevelopmentofapplicablepolicies/standardsandidentificationofmarketstohelpexpeditethecommercializationandreducethecostsoflow‐powerHVDCsystems.

Page 65: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-1

APPENDIXA

HVDCOVERVIEW

Page 66: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-2

Thispageintentionallyblank.

Page 67: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-3

TABLEOFCONTENTS

A.1 HIGH‐VOLTAGEDIRECTCURRENT(HVDC)TECHNOLOGY..................................................................5

A.2 SINGLE‐WIREEARTHRETURN(SWER)CIRCUITS...................................................................................7 A.2.1 WHYUSESWER?.............................................................................................................................................................7

A.3 SWERINALASKA.....................................................................................................................................................8 A.3.1 BETHEL–NAPAKIAKACSWERLINE..........................................................................................................................8 A.3.2 KOBUK–SHUNGNAKACSWERLINE..........................................................................................................................8 A.3.3 FUTUREOFSWERINALASKA........................................................................................................................................8

A.4 HVDCFORALASKA.................................................................................................................................................9

Page 68: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-4

Thispageintentionallyblank.

Page 69: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-5

A.1 HIGH‐VOLTAGEDIRECTCURRENT(HVDC)TECHNOLOGY

High‐voltagedirectcurrent(HVDC)convertertechnologyhasadvancedtousehigh‐efficiencysolid‐statehardware,andHVDClinksareutilizedforelectricaltransmissionthroughouttheworld.Whilethetechnologyhasadvancedconsiderablysincethe1950s,utilityapplicationofHVDCremainslimitedtotransmissionfunctions.Thesmallestutility‐gradeHVDCsystemsaredesignedtotransmitapproximately50megawatts(MW)12.SomenotableHVDCinstallationsinclude:

● SwedishMainlandtoGotlandIsland:20MW,100kilovolt(kV),monopolarsubmarinecablewithseareturn.Commissionedin1956,thiswasoneofthefirstHVDCintertiesinstalledintheworld.Thisoriginalsystemwasdecommissionedin198713.

● PacificIntertie–Celilo,Oregon,toSylmar,California:846‐mile,3,100MW,500kV,bipolaroverheadline.Commissionedin1970.

● BritishColumbiaMainlandtoVancouverIsland,Canada:45‐mile,682MW,260‐280kV,bipolarsubmarineandoverheadsystem.Thefirstpolewascommissionedin1968,andasecondpolewascommissionedin197714.

● NelsonRiverBipolarSystem,NelsonRiverHydroComplextoSouthernManitoba,Canada:TwobipolartransmissionsystemsoperatebetweenthehydropowerprojectsalongtheNelsonRiverinnorthernManitobaandWinnipeginthesouthernpartoftheprovince.Thefirstsystemisa540‐mile,1,620MW,450kVoverheadbipolarcircuitcommissionedin1977.Thesecondisa560‐mile,1,800MW,500kVoverheadbipolarcircuitcommissionedinstagesbetween1978and1985.Notably,bothsystemstraversepermafrostterrainsimilartothatfoundinAlaskaandcanoperateinSWERmode,moving1,000sofamperesofcurrentthroughearth‐return15.

● Cross‐SoundCable,NewHaven,Connecticut,toLongIsland,NewYork:24‐mile,330MW,150kVbipolarsubmarinecable.Commissionedin2002,thiscableusesABB'sHVDCLitetechnology.BothHVDCconductorsandafiber‐optictelecommunicationscablearebundledintoasinglecabletosimplifyinstallation16.

● England–FranceCrossChannelIntertie:38‐mile,160MW,100kVbipolarsubmarinecable.Theoriginalsystemwascommissionedin1961andreplacedin1986byalargersystemoperatingat270kVand2,000MW.Abipolarsystemwasoriginallyinstalledtoreducemagneticanomaliesthatcouldinterferewithshipping.

● Sardinia–Corsica–ItalianMainland,Italy:500MW,200kVbothearthandseareturns.Thefirst200MWpoleofthissystemwascommissionedin1965.Asecond300MWpolewasinstalledin1992.Thissystemisunusualbecauseitisamultipointsystem(servingthreeloadcenters),unlikemostHVDCinterties,whichtransmitpowerbetweenonlytwopoints.

12“HVDCLite,”distributedbyABB,isoneexampleofthesmallerutility‐gradeHVDCsystems.13 Theoriginalsystemusedon‐shoregroundinggridstocompletethetransmissioncircuitviaseaand/orseabedpathways.This

firstHVDClinkwasaugmentedbyasecond150MWmonopolarHVDClinktotheislandin1983,andathird150MWmonopolarlinkin1987.Today,thesetwonewercircuitsareoperatedtogetherasabipolartransmissionlink.

14 Thefirstmonopolarlineisratedfor312MWat260kV,andthesecondmonopolarlineisratedat370MWat280kV.15 http://www.hydro.mb.ca/corporate/facilities/ts_nelson.shtml16 CrossSoundCableConnectorProjectLiterature,www.abb.com

Page 70: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-6

● Fiveback‐to‐backHVDCconverterstations17interconnecttheTexasgridandU.S.electricgridinneighboringstates.Mostofthesestationswerecommissionedinthe1980s.Becauseofthesestations,TexashasanasynchronousgridconnectiontotheremainderoftheLower48.

● ThreeGorgesDamtoShanghai,China:530‐mile,3,000MW,500kV,bipolaroverheadline.FourHVDClinesareplannedbetweenThreeGorgesandChina'seasterncoastalregions.Thefirstbipolarcircuitwascommissionedin2003andthesecondin2006.

● VictoriatoTasmania,Australia:500MW,400kV,monopolarsubmarinecablewithseareturn.Commissionedin2005.

● SwedentoGermany,BalticCable:600MW,450kV,withearthreturnviadeepholeelectrodes.Commissionedin1993.

HVDClinkscanbesuperiortohigh‐voltagealternatingcurrent(AC)linksforseveralkeyreasons:

● HVDClinksarelesscostlyand/ormoreefficientthanAClinksundercertaincircumstances.

● Longintertiesutilizinginsulatedcables(asforsubmarineapplications)arepossiblewithHVDCelectricity,butprohibitivelydifficultwithACelectricityduetocablecapacitanceandreactivepowerlosses.

● HVDClinksprovideanasynchronousconnectionbetweenACelectricalgrids.Analogoustoaclutchonamechanicalsystem,anHVDCintertieallowseachACsystemtooperateatitsownphaseandfrequencyandstillallowpowertransferbetweenthesystems.ThiscanincreasethestabilityofbothACgrids.

● Foragivenpowertransferrequirement,HVDCintertiescanrequirelessright‐of‐waythancomparableACinterties.Theycanalsohaveavarietyofotherregulatory,permitting,orenvironmentaladvantagescomparedtoACinterties.

BecauseofthehighcostoftheconvertersystemsnecessarytoconvertHVDCtoamorereadilyusedACwaveform,HVDCisgenerallylimitedtotransmissionapplications.Accordingly,mostorallutilityHVDCsystemsinusetodayarepoint‐to‐pointtransmissionlines,withnointermediatetake‐offpointsorsubstationsforcommunitiesenroute.

Forthesmall‐scaleruralAlaskaHVDCapplicationsconsideredinthisstudy,thereisstillaneconomicbarrierduetothecostoftheHVDCconverters(estimatedat$250,000perMWin2012dollars).Forexample,aremotelodgeorfishcamplikelycannotjustifythecosttotaptheHVDCline,butmostvillagescan.

AsHVDCintertiesareconsideredforruralAlaskaapplications,utilitiesmaydesiretoextendACdistributionasanunderbuildoroverbuildonanoverheadHVDCline.Similarly,otherutilitiesmaydesiretoutilizetheoverheadstructurestoco‐locatetheircables.Thispracticeispossiblesolongasapplicablecoderequirementsandsafetyprovisionsarefollowed.Itmaybedesirabletouseconventionalconstructionintheimmediatevicinityofvillagestofacilitatecolocationofmultipleutilitycables,transitioningtoadifferent,optimizedoverheadstructureforHVDConceawayfromthevillage.

17 ThefiveHVDCsystemsarethe220‐MWback‐to‐backNorthDCTie,600‐MWback‐to‐backEastDCTie,36MVAback‐to‐back

EGPSDCTie,150MVAback‐to‐backRAILDCTie,and80MVALaredovariablefrequencytransformer(VFT)Tie.(www.ercot.com).

Page 71: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-7

A.2 SINGLE‐WIREEARTHRETURN(SWER)CIRCUITS

Initssimplestform,anelectricalcircuitrequirestwocurrentpathways,typicallywires.Onewiregoesfromthepowersupplytotheload,andasecondwiregoesfromtheloadbacktothepowersupply.Bothsingle‐phaseACandDCcircuitsrelyonthisbasicconfiguration.Thewirefromthepowersupplytotheloadisusuallyatanincreasedvoltagerelativetoground,andsoitisinsulatedforsafetyandtopreventshortcircuits.Thewirefromtheloadbacktothepowersupplyisusuallyatamuchlowervoltagerelativetogroundandthusisusuallybutnotalwaysinsulated.

Insingle‐wireearthreturn(SWER)circuits,thewirethatservesasthesecondcurrentpathwayfromtheloadbacktothepowersupplyisreplacedwithasuitable,convenient,andsafecurrentpathway.Inthemostgeneralcase,this“non‐wire”pathwaycanbeacarortruckchassis,themetalhandleofaflashlight,theearth,naturalwaterbodies,orotherobjectsthatcansafelycompletetheelectricalcircuit.

Seareturncircuitsaresimilartoearthreturncircuits.Theonlydifferenceisthatthesea,oranywaterbody,isusedasthepredominantreturncircuitpathway.Parallelpathways,suchastheseabed,arealsoavailableforcurrentflow.

A.2.1 WhyUseSWER?

TheprimaryadvantagesofferedbySWERcircuitsinclude:

● Lowercosts(eliminatethesecondconductor).

● Higherefficiency(lowerelectricallosses).

TheprimaryconcernsassociatedwithSWERcircuitsinclude:

● AvoidingcorrosionofburiedorsubmarinemetallicobjectsinthevicinityoftheSWERcircuit.

● Aswithallelectricalsystems,safety.

SWERcircuitsarewidelyusedforutilitytransmissionanddistributionofelectricityallovertheworld.NumerousHVDCintertiesareSWERcircuits,consistingofasinglehigh‐voltagecableandanearthorseareturntocompletethetransmissioncircuit.ManyoftheseareinstalledinclimatesandconditionssimilartoAlaska,notablyinScandinavia.Inmanynations,single‐phaseACSWERcircuitsareacceptedpracticeandareindustrystandardforservingruralareas.

NationsandjurisdictionsthatuseSWERACcircuitstoservetheirruralareaseconomicallyincludethefollowing18,19.

● Australia(over100,000milesinservice)

● Cambodia(Electricite’duCambodge)

● NewZealand

● Vietnam

● Laos(Electricite’duLaos)

● SouthAfrica(EskonDistribution)

18 “SingleWireEarthReturnforRemoteRuralDistribution,ReducingCostandImprovingReliability.”ConradW.Holland.

MaunsellLtd.,AnAECOMCompany.19 “SingleWirePowerinAlaska.”StateofAlaska,DivisionofEnergyandPowerDevelopment.R.W.RutherfordAssociates.1982.

Page 72: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-8

● Saskatchewan

● India

● Brazil

A.3 SWERINALASKA

Atleasttwosingle‐phaseACSWERcircuitshavebeensuccessfullybuiltandoperatedinAlaska.TheseACSWERcircuitsdemonstratethatSWERisaproven,beneficial,andappropriatetechnologyforruralAlaskatransmissionapplications.

A.3.1 Bethel–NapakiakACSWERLine

In1981,a10.5‐mile14.4kVsingle‐phaseACSWERlinewasconstructedtoconnectthesmallvillageofNapakiaktotheCityofBethel.Thislineusedbipodstructurestosuspenda7#8Alumoweldconductor.

Thislinewasconstructedatacostof$23,000permile(1980$)andoperatedsuccessfullyformanyyears.Arguably,thelinehadtwoshortcomings,neitherrelatedtoitsSWERoperation:(1)thestructuraldesignofthelinereliedupontheconductortoprovidelongitudinalsupporttothebipodpolesbetweendeadends,andonatleastoneoccasionaconductorbreakcausedaseriesofstructurestofalldown;and(2)overtime,theloadinNapakiakexceededtheline'scapacity.However,thelinewasanunqualifiedsuccessatdemonstratingthatSWERcanreducethecostsofpowertransmissioninruralAlaska.

Commonmisperceptionsaboutthislinehavegivenitanegativereputation,whichisoftenincorrectlyattributedtoits“innovative”SWERdesign.Thelinedidsufferhighlosses,butthesecanbeattributedtounmeteredloadsinNapakiakandthepoorconditionofthedistributionsysteminNapakiak.

TheAlaskaEnergyAuthorityreplacedtheBethel‐Napakiaklinewithaconventionalthree‐phaselinein2010.Theinstalledcostofthisreplacementwasapproximately$344,000permilein2012dollars,approximatelythreetimesgreaterthantheinflation‐adjustedcostoftheoriginalline20.

A.3.2 Kobuk–ShungnakACSWERLine

A10‐milesingle‐phaseACSWERlinewasconstructedtoconnectthevillageofShungnaktoKobukinnorthwesternAlaska.ThelineandtheSWERsystemworkedsuccessfully;however,thesupportstructureswereconstructedoflocalsprucetrees,andeventuallythebasesrotted.LiketheBethel–NapakiakSWERline,thislinealsosuccessfullydemonstratedSWERviabilityinpermafrostregions.In1991,this10‐milelinewasreplacedwithaconventionalthree‐phase7.2/12.4kVAClinewithpolesattachedtodrivensteelH‐pilesatacostof$1.1million,orabout$110,000permilein1991dollars21.

A.3.3 FutureofSWERinAlaska

ThetransitionofmostAlaskavillagestothree‐phasedistributionsystemshasdiminishedthevalueofsingle‐phaseACSWERinterties.ACphaseconverterswouldbenecessarytointerfacetheintertiewithoneorbothvillagegrids.Inaddition,thenationalelectricalcodesadoptedbytheStateofAlaskadonotallowtheuseofSWERcircuitsforroutinepowertransmissionordistribution.Perhapsbecauseofthesefactors,thereiscurrentlyagenerallackofinterestinSWERtechnologyinAlaska.

20 (AEA,2007);(DC,2010).21 Petrie,Brent.AlaskaVillageElectricCooperative,Inc.PersonalCommunication.February2008.

Page 73: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-9

Despitesuchfactors,SWERcircuitsremainaprovenandcost‐effectiveoptionforruralAlaskaapplications,andtheywarrantseriousconsideration.CoupledwithHVDC,SWERofferscostandtechnicaladvantagesthathavethepotentialtorevolutionizeruralpowertransmissioninAlaska.

AffordableenergyisavitalunderpinningofcreatingasustainableeconomicbaseforAlaska'sruralareas.Affordabletransmissioniskeytoachievingaffordableenergy,andthecouplingofSWERandHVDCpresentsthebrightestopportunityforachievingaffordabletransmissioninAlaska.Accordingly,thefutureofSWERinAlaskaisverypromising.

A.4 HVDCFORALASKA

ThelistofexistingHVDCprojectsinSectionA.2illustratesthefactthattoday'scommercialHVDCtechnologyremainslimitedtolarge‐scaletransferofelectricity,normallymeasuredinthe100sor1,000sofmegawatts.SuchtechnologyhasverylimitedapplicationinAlaska,asourlargestutilitygrid,alongtherailbelt,hasapeakloadofwellunder1,000MW.Mostruralloadsaremeasuredinthe100sofkW.

ThelackofcommercialHVDCtechnologyinthekilowattclassnecessaryforruralAlaskaapplicationsmeansthatthenumerousbenefitsofferedbyHVDCtransmissionarenotpresentlyavailabletoAlaska'sruralcommunities.ThekeyobjectiveandimpetusforthisprojectistolowerthecostofruralAlaskaintertiesbyextendingthereachofcommerciallyavailableHVDCtechnologydowntothekilowattclassneededtoserveAlaska'sruralenergytransmissionneeds.

TheapplicationsforthistechnologyinAlaskaarenumerousandinclude:

● ConnectingBethelandnearbyvillageswithawindfarmalongtheBeringSeacoast.

● ConnectingvillagesalongtheYukonRiversuchasKoyukuk,Nulato,Ruby,andKaltagwiththeproposedToshibanuclearbatteryinGalena.

● Connecting25southwesterncommunitiestoaproposed25‐MWgeothermalplantnearKingSalmon.

● ConnectingNorthSlopecommunitiessuchasAtqusukwithBarrowtoshareinthelow‐costelectricityderivedfromBarrow’sgasfields.

● DevelopingthegeothermalresourceatPilgrimHotSpringsandtransmitthepowertoNomeviaHVDCintertie.

● CompletingconnectionsintheSoutheastIntertieviaanaffordableHVDCsubmarinecable. 

A.3.9 DesignConsiderationsforSmallAlaskaHVDCInterties

ManyofthetechnicalaspectsofdesigningandbuildingsmallHVDCintertiesinAlaskaaremuchthesameasforbuildingintertiesanywhere.ThesingledominatingfactorthatsetsconstructioninruralAlaskaapartislogistics.Mostprojectshavelittleornosupportinfrastructure,rangingfromthebasicssuchasmodernlodgingforworkerstoavailabilityoftransportationinfrastructure,heavyequipment,skilledlabor,andsoon.

ManymajorconstructionprojectsaddressthelogisticalchallengesofruralAlaskabyimportingeverythingnecessarytogetthejobdonebyconventionalmeans.Thisworks,butisverycostly.

Adifferentsolutiontothelogisticschallengeistotailorthedesigntouseavailablelocalresourcestotheextentpossible.Thisisaverychallengingproposition,buttherewards–lowerconstructioncosts–aresubstantial.Ingeneralterms,designingforAlaskalogisticsmeans:

Page 74: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE A-10

● Usematerialsandequipmentthatarereadilyshippedbycommontransportationmethods,suchassmallcargoaircraft22.Usematerialsandconstructionmethodsthatcanutilizesmall,lowgroundpressureequipmenttoenableconstructionduringsummerorautumnthawedconditions.

● Usematerialsandconstructionmethodsthatemploylocallyavailableequipmentfortransportandconstructionasmuchaspossible.

● Reducetheamountofconstructionandfabricationrequiredinthefieldandontheline.Pre‐manufactureandpreassemblebeforeshippingtothevillagesorinthevillagesbeforeshippingtothefieldtoreducecostsandincreasequality.

● Optimizetheconstructionandassemblymethodstoemploylocallyavailablelabor.

22 ThelargestcargoaircraftsuitableforAlaskalogisticplanningisaHerculesC‐130,butmanyvillageairstripscannot

accommodateaHercules.AmoreuniversalcargoaircraftforremoteAlaskaprojectsisaSherpaSD‐330orsimilarsmallcargoaircraft.

Page 75: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-1

APPENDIXB

ECONOMICANALYSIS

Page 76: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-2

Thispageintentionallyblank.

Page 77: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-3

TABLEOFCONTENTS

B.1 INTRODUCTION........................................................................................................................................................7

B.2 ECONOMICANALYSIS............................................................................................................................................8 B.2.1 COMPARATIVECOST:ACVERSUSHVDCOVERHEADINTERTIES.............................................................................8 B.2.2 INSTALLATIONCOSTCOMPARISON................................................................................................................................8 B.2.3 LIFE‐CYCLECOSTCOMPARISON...................................................................................................................................10

B.3 COSTANALYSISBASIS.........................................................................................................................................12 B.3.1 GENERATIONANDLOADASSUMPTIONS......................................................................................................................12 B.3.2 SYSTEMEFFICIENCYASSUMPTIONS.............................................................................................................................12 B.3.3 OPERATION,MAINTENANCE,ANDREPAIRASSUMPTIONS.......................................................................................12 B.3.4 ECONOMICASSUMPTIONS..............................................................................................................................................13 B.3.5 INSTALLEDCOSTASSUMPTIONS...................................................................................................................................13

B.4 CASESTUDIES.........................................................................................................................................................14 B.4.1 GREEN’SCREEK–HOONAHCASESTUDY....................................................................................................................14 B.4.2 PILGRIMHOTSPRINGS–NOME....................................................................................................................................19

B.5 DETAILEDHVDCINTERTIECOSTINFORMATION..................................................................................23 B.5.1 OVERHEADINTERTIECOSTDETAIL.............................................................................................................................23 B.5.2 SUBMARINECABLEINTERTIECOSTDETAIL...............................................................................................................25 B.5.3 UNDERGROUNDCABLEINTERTIECOSTDETAIL........................................................................................................25 B.5.4 CONVERTERSTATIONCOSTDETAIL............................................................................................................................26

B.6 DETAILEDACINTERTIECOSTINFORMATION........................................................................................30 B.6.1 COSTBASELINESFOROVERHEADACINTERTIES......................................................................................................31 B.6.2 COSTBASELINEFORSUBMARINECABLEACINTERTIES..........................................................................................33

Page 78: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-4

Thispageintentionallyblank.

Page 79: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-5

LISTOFTABLES

TableB‐1 EstimatedLife‐CycleCostsfor25‐mileOverheadACandHVDCInterties.......................10

TableB‐2 SummaryofCaseStudies......................................................................................................................14

TableB‐3 EstimatedCostforanGreensCreek–HoonahHVDCIntertie...............................................17

TableB‐4 EstimatedBenefit‐CostRatioofGreensCreek–HoonahHVDCIntertie..........................18

TableB‐5 EstimatedInstalledCostfora5‐MWPilgrimHotSprings–NomeIntertie.....................22

TableB‐6 EstimatedCostfora25‐mileOverheadHVDCIntertie............................................................24

TableB‐7 EstimatedCostsfora25‐mileUndergroundHVDCIntertie..................................................26

TableB‐8 1‐MWHVDCConverterStationCostEstimate.............................................................................27

TableB‐9 HVDCConverterEnclosureCostDetail...........................................................................................27

TableB‐10 SwitchgearandSwitchyardCostDetail..........................................................................................28

TableB‐11 HVDCGroundingStationCostDetail................................................................................................29

TableB‐12 CostBaselinesforRemoteAlaskaACIntertieConstruction..................................................30

TableB‐13 EstimatedCostsforOverheadACInterties...................................................................................31

TableB‐14 InstalledCostsofRecentRemoteAlaskaOverheadACInterties.........................................32

TableB‐15 InstalledCostsofRecentRemoteAlaskaSubmarineCableInterties.................................33

Page 80: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-6

LISTOFFIGURES

FigureB‐1 ComparativeInstalledCost:Overhead1‐MWHVDCandACInterties.................................9

FigureB‐2 ComparativeLife‐CycleCost:Overhead1‐MWHVDCandACInterties............................11

FigureB‐3 GreensCreek–HoonahIntertieRoute............................................................................................15

FigureB‐4 ProspectiveTransmissionRoutefromPilgrimHotSpringstoNome................................20

Page 81: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-7

 

B.1 INTRODUCTION

TheextremevarietyofenvironmentalandtechnicalconditionsfoundacrossruralAlaskaresultsinasignificantvariationinintertiecosts.Thetypicalcostforconstructingaconventionaloverheaddistribution‐classalternatingcurrent(AC)intertieinruralAlaskacanvaryfromaslittleas$100,000permileinareaswithgoodlogisticsupportgeotechnicalconditionsandtransportationinfrastructure(roadsystem,southeast)toover$600,000permile23inpartsofthestatewithchallenginglogisticsandlittleornotransportationinfrastructure(remoteinterior,northwest,orYukon‐Kuskokwimdeltaregions).

Intertiecostvariationsalsoaffectsubmarinecables,undergroundcables,andotheroverheadintertieconfigurations.

Thisappendixprovidesthefollowingeconomicanalyses:

● ComparativepresentworthanalysisofconceptualACandhigh‐voltagedirectcurrent(HVDC)interties;

● CasestudiesofAlaskaHVDCinterties;

● EstimatedcostsforconceptualHVDCinterties;and

● BaselinecostsforruralAlaskaACinterties.

23SeeSectionB.6.1forinformationonthecostbasisofruralAlaskaACinterties.

Page 82: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-8

B.2 ECONOMICANALYSIS

ThissectionevaluatescomparativecostsforconceptualACandHVDCinterties.BecauseHVDCintertiesincurtheaddedexpenseofconverterstations,shortHVDCinterties(underapproximately6to31miles)willgenerallynotbecost‐effectivecomparedwithACinterties,dependingonproject‐specificconditions.

Astheintertielengthincreases,thelowerper‐milecostofthetransmissionlineoffsetstheadditionalcostofthepowerconverters.HVDCintertiesshorterthanacertaineconomic“break‐even”lengthwillbemorecostlythanacomparableACintertie.TherelativesavingspossiblewithanHVDCtransmissionsystemincreasesforintertielengthsabovethisbreak‐evenlength.

Basedonspecificprojectconditions,andontheassumptionsandanalysisdescribedherein,theconceptualbreak‐evenlengthforoverheadintertiesisapproximately6to22milesonaninstalled‐costbasis,and12to31milesonalife‐cyclecostbasis.Theconditionsandassumptionsusedtodeveloptheseeconomicbreak‐evenlengthestimatesareprovidedinthisappendix.

B.2.1 ComparativeCost:ACversusHVDCOverheadInterties

TwodistinctHVDCintertieconfigurationshavebeencomparedtoaconventionalACintertietoillustratethedifferenceinprojecteconomics.ThetwoHVDCintertieconfigurationsare:

● Atwo‐wiremonopolarHVDCintertieusingU.S.DepartmentofAgriculture(USDA)RuralUtilitiesService(RUS)‐typeconstructionmethods.ThisintertieconfigurationrepresentstheupperrangeofestimatedcostforanHVDCoverheadintertieinruralAlaskaapplications.

● Amonopolarsingle‐wireearthreturn(SWER)HVDCintertieusingAlaska‐specificconstructionmethods.ThisintertieconfigurationrepresentsthelowerrangeofestimatedcostforanHVDCoverheadintertieinruralAlaskaapplications.

ThecostforHVDCintertiesinmostruralAlaskaapplicationsareexpectedtofallbetweenthecostestimatescitedforthesetwoconfigurations.

B.2.2 InstallationCostComparison

FigureB‐1presentstheestimatedinstalledcostrelativetotheintertielengthforthreedifferentkindsofoverheadintertiesbuiltinruralAlaskaconditions:

● AconventionalruralAlaskaintertie,

● Atwo‐wiremonopolarHVDCintertieusingRUS‐typeconstructionmethods,and

● AmonopolarSWERHVDCintertieusingAlaska‐specificconstructionmethods.

Page 83: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-9

Inaddition,FigureB‐1illustratestheeconomicbreak‐evenlength,andrelativeincreaseinsavingsforlongerHVDCinterties.ThepointsatwhichtheAC“costline”crosseseitheroftheHVDC“costlines”representstheeconomicbreak‐evenlength.TheestimatedHVDCcostsrepresentahypotheticalrangeofinstalledcostsanticipatedforlow‐power(under1megawatt[MW])ruralAlaskaHVDCsystems.

Figure B-1 Comparative Installed Cost: Overhead 1-MW HVDC and AC Interties

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

$25,000,000

$30,000,000

$35,000,000

$40,000,000

$45,000,000

0 10 20 30 40 50 60 70 80 90 100

Intertie Length  (miles)

Probab

le In

stalled Cost of Overhead HVDC vs. AC In

terties

AC Intertie (Standard RUS Construction)

HVDC Intertie (Monopolar, TWMR, Standard RUS Construction)

HVDC Intertie (Monopolar, SWER, Alaska‐Specific Construction)

BREAK‐EVEN COST FOR HVDC INTERTIES: 6 to 22 MILES

(INSTALLED‐COST BASIS)

Note: This chart is based on the assumptions and comparative system costs 

presented in Appendix B. The break‐even point will vary for every intertie project.

COST SAVINGS

RANGE

AC

HVDC

HVDC

Page 84: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-10

B.2.3 Life‐CycleCostComparison

Operatingcosts,maintenancecosts,andefficiencyaffectthelong‐termeconomicvalueofanintertie.TableB‐1presentscomparativelife‐cyclecostsforhypothetical25‐mile‐longoverheadACandHVDCintertiesinruralAlaska.Alengthof25mileswasselectedasitrepresentsthesavingspossibleusingarelativelyshortHVDCintertie.Theestimatedlife‐cyclecostfora25‐mile‐longHVDCintertierangesfrom79%to107%ofthelife‐cyclecostofanACintertie.

Table B-1 Estimated Life-Cycle Costs for 25-mile Overhead AC and HVDC Interties

ParameterStandardRUSAC

Intertie

MonopolarTwo‐WireHVDCIntertie(RUSConstruction2)

MonopolarSWERHVDCIntertie

(AlaskaSpecificDesign1)

CostofDiesel($/gal) $7.00pergallon

GenerationEfficiency(kWh/gal) 13kWhpergallon

IntertieEfficiency4 97.7% 93.4% 94.5%

NetAnnualEnergyTransmission(kWh) 1,664,400

AnnualTransmissionLosses4(kWh) 38,300 133,000 114,000

AnnualizedValueofTransmissionLosses($) $21,000 $71,000 $61,000

IntertieDesignLife(years) 20years

IntertieAnnualO&MCosts $40,000 $58,000 $54,000

EffectiveDiscountRate 3%

PresentWorthofTransmissionLosses $307,000 $1,063,000 $912,000

PresentWorthofO&MCosts $595,000 $867,000 $796,000

ConverterStationsInstalledCost $20,000 $2,080,000 $1,160,000

IntertieInstalledCost $9,480,000 $7,120,000 $5,340,000

ESTIMATEDLIFE‐CYCLECOST $10,402,000 $11,130,000 $8,208,000

HVDCLIFE‐CYCLECOSTASPERCENTOFACLIFE‐CYCLECOST 107% 79%

PRESENTWORTHSAVINGS(COST)OFHVDCVS.AC ($728,000) $2,194,000

Notes:1. “Alaska‐SpecificDesign”referstothedesignconceptspresentedinAppendixCofthisreport.2. “RUSConstruction”referstostandardRUSdesignandconstructionmethodsforACinterties,adaptedtoHVDCapplications

asdescribedinAppendixCofthisreport.3. Allmonetaryvaluesarein2012dollars.4. Efficiencyandlossinformationincludesalltransmissionsystemcomponents.

Page 85: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-11

FigureB‐2illustratestheeconomicbreak‐evenlength,andrelativeincreaseinsavingsforlongerHVDCinterties.ThepointsatwhichtheAC“costline”crosseseitheroftheHVDC“costlines”representstheeconomicbreak‐evenlength.TheestimatedHVDCcostsrepresentahypotheticalrangeoflife‐cyclecostsanticipatedforlow‐power(under1MW)ruralAlaskaHVDCsystems.

Figure B-2 Comparative Life-Cycle Cost: Overhead 1-MW HVDC and AC Interties

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

$25,000,000

$30,000,000

$35,000,000

$40,000,000

$45,000,000

0 10 20 30 40 50 60 70 80 90 100

Intertie Length  (miles)

Probab

le Life‐Cycle Cost of Overhead HVDC vs. AC In

terties

AC Intertie (Standard RUS Construction)

HVDC Intertie (Monopolar, TWMR, Standard RUS Construction)

HVDC Intertie (Monopolar, SWER, Alaska‐Specific Construction)

BREAK‐EVEN COST FOR HVDC INTERTIES: 12 to 31 MILES

(LIFE CYCLE COST BASIS)

Note: This chart is based on the assumptions and comparative system costs 

presented in Appendix B. The break‐even point will vary for every intertie project.

AC

HVDC

HVDC

COST SAVINGS

RANGE

Page 86: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-12

B.3 COSTANALYSISBASIS

B.3.1 GenerationandLoadAssumptions

Thefollowinggenerationandloadassumptionsareusedasthebasisofthecostanalysis:

● Energytransmittedoverallintertieconfigurationsisassumedtobegeneratedbyadiesel‐electricplantoperatingataconstantefficiencyof13kilowatt‐hours(kWh)pergallon;

● Thepriceofdieselisassumedtobe$7.00pergallon;and

● Noescalatorisappliedtothepriceoffuelovertime.

B.3.2 SystemEfficiencyAssumptions

ThefollowingcircuitpathisassumedfortheACintertiecase:

● Generationat480voltsalternatingcurrent(VAC)incommunity“A”;

● Stepupto7.2/12.47kilovolts(kV)ACatthepowerplantincommunity“A”;and

● Transmissionat7.2/12.47kVACtothereceivingcommunity“B.”

ThefollowingcircuitpathisassumedfortheHVDCintertiecases:

● Generationat480VACincommunity“A,”

● Conversionfrom480VACto50kVdirectcurrent(DC)atthecommunity“A”powerplant,

● Transmissionat50kVDCtothereceivingcommunity“B,”

● Conversionfrom50kVDCto480VACatthepowerplantincommunity“B,”and

● Step‐upfrom480VACto7.2/12.47kVACincommunity“B.”

Thefollowingadditionalassumptionshavebeenmade:

● Bothloadpathsincludeasingle480Vto7.2/12.47kVACtransformer;thecomparativeanalysisdoesnotneedtoconsiderlossesinthistransformer.

● IntertielinelossesarebasedontheoperatingvoltagesandconductorsdescribedinAppendixCforeachintertieconfiguration.

● TwodifferentHVDCconverterefficiencieswereusedtocharacterizetherangeofcomparativeeconomicsforHVDCinterties:

● TheRUS‐basedHVDCintertiecaseusesaconverterefficiencyof96.2%,whichistheefficiencypublishedbyPrincetonPowerSystems,Inc.(PPS)fortheprototypeconverterat50%load(seeAppendixF).

● TheAlaska‐specificHVDCintertiecaseusesahigherconverterefficiencyof97.2%.Thishypotheticalefficiencyresultsinimprovedcomparativeeconomicperformance.

● Transmissionsystemlossesarevaluedbasedontheavoidedcostoffuel.Allotherutilitycostsareassumedtobefixedandnotaffectedbytransmissionsystemlosses.

B.3.3 Operation,Maintenance,andRepairAssumptions

Anannualbudgetof$7,500to$12,300perconverterisprovidedformaintenance,repair,andscheduledcomponentsreplacement.ForHVDCinterties,the$12,300figureisusedfortheRUS‐basedHVDCintertiecase,and$7,500isusedfortheAlaska‐specificHVDCintertiecase.The$7,500perconverter

Page 87: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-13

maintenance,repair,andreplacementbudgetisbasedontheexpectedlifeandreplacementcostofmajorcomponents.Thesecomponentsincludethepowerelectronicsboards,controller,andothermajoritemsthatareexpectedtorequirereplacementduringthe20‐yearlifeofthesystem.SeeAppendixFfordetailsonconvertercomponentlifeandreplacementcosts.

Anannualmaintenanceandrepairbudgetof$1,500permileisassumedforallthreeoverheadintertieconfigurations.

B.3.4 EconomicAssumptions

Adiscountrateof3%hasbeenappliedtobringfuturecashflows(linelosses;OperationandMaintenance,Repair,Replacement,andRehabilitation[OMR&R]costs)topresentvalues.Forpurposesofthiscomparativeanalysis,aprojectlifeof20yearsisusedforallinterties,andnosalvagevalue,disposal,orreplacementcostareconsideredattheendofthe20‐yearlife.

B.3.5 InstalledCostAssumptions

TherangeofinstalledcostsdevelopedfortheconverterstationsinSectionB.5wasusedforthecomparativeeconomicanalysis.ForHVDCinterties,aninstalledcostof$1,040,000perstationisusedfortheRUS‐basedHVDCintertiecase,and$580,000isusedfortheAlaska‐specificHVDCintertiecase

Therangeofinstalledcostsforthethreeintertieconfigurationsarebasedontheestimatedintertiecostspresentedinthefollowingsectionsofthisappendix.

Page 88: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-14

B.4 CASESTUDIES

Thecasestudiesinthissectionprovideproject‐specificexamplesoftheexpectedcostsandresultingbenefitsofusingHVDCsystemstointerconnectcommunitiesandresources.Thesecasestudiesrelyonexistinginformationregardingtheproposedintertieroutes,loads,andrelatedprojectinformation.

TableB‐2summarizesthecasestudiesconsideredinthissection.

Table B-2 Summary of Case Studies

HVDCIntertieCaseStudy

TransmissionCircuit

IntertieType

HVDCIntertieCost

Estimate1

ACIntertieCost

Estimate1

EstimatedHVDCSavings1

PercentCapitalCost

Savings

GreensCreek–Hoonah

5‐MWmonopolarHVDCcircuitwithseareturn2

SubmarineCable

$22.2million $49million

$26.8million 55%

Nome–PilgrimHotSprings

5MWbipolarHVDCcircuit

OverheadLine

$25.7million

$36.3million

$10.6million 29%

Notes:

1. Allcostestimatesarepresentedin2012dollars.

2. Thecasestudyprovidesasubmarineandoverheadintertiecapacityof5MW,andconverterstationcapacityof2MW.ThisprovidesamplemarginforloadgrowthinHoonah.Theconverterstationcapacitycanbeupgradedas‐neededin500kWincrementsupto5MW.

B.4.1 Green’sCreek–HoonahCaseStudy

AnintertiebetweenGreensCreek,ontheAlaskaElectricLightandPower,Inc.(AEL&P)gridthatservesJuneau,andthevillageofHoonah,anisolatedmicro‐gridoperatedbytheInsidePassageElectricCooperative,Inc.(IPEC)hasbeenunderconsiderationforoveradecade.AEL&PandIPEChavecompletedextensivestudyanddesignworkonthisintertie.Studiesidentifieda25‐mile‐longACsubmarinecableandapproximately4milesofoverheadlinenearHoonahasthemosteconomicalmeanstocompletethisinterconnection.24TheproposedintertierouteisshownonFigureB‐3.

Asthedevelopmentofthisprojectcontinued,thecostsoftheACsubmarinecablehaveescalated,untiltheprojectwasfinallyputonholdduetoitsexcessivecost.Hoonahiscurrentlyexploringlocalhydropowerresourcestoreduceitsenergycostsbutcontinuestoviewanintertieasthebestlong‐termsolutionforitsenergyneeds.

ThisHVDCsystemrepresentsatechnologicaladvancethatcanreducethecostoftheGreensCreek–HoonahintertieandincreaseitseconomicfeasibilityascomparedwithHoonah’sotherenergyoptions.Thefollowingsubsectionsofthiscasestudyprovideahigh‐levelanalysisofthemeritsofanHVDCintertieforHoonah.

24(PowerEngineers,2004)

Page 89: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-15

Forpurposesofthiscasestudy,a5‐MWmonopolarHVDCtransmissioncircuitwithseareturnwasselectedtoconnectHoonahwithGreen’sCreek.Thiscircuitconsistsof25milesofsubmarinecableand4milesofoverheadline.Amonopolarcircuitwasselectedbecauseitisexpectedtobetheleast‐costintertiesolutionbetweenHoonahandGreen’sCreek.Otherpotentialconfigurations,suchasabipolarHVDCcircuitutilizingtwosingle‐conductorcables,wouldbemoreexpensivethanthemonopolardesignselected.

Theestimatedcapitalcostsincludea5MWtransmissioncircuit(submarinecableandoverheadline),and2MWconverterstationsatHoonahandGreen’sCreek.Theconverterstationscanbeupgradedto5MWbyadding500kWconvertermodulesasHoonah’sloadincreases.IfHoonah’sloadgrowsbeyond5MW,asecondsubmarinecablecanbeinstalledtoprovidea10MWbipolartransmissionsystem.

Figure B-3 Greens Creek – Hoonah Intertie Route

Page 90: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-16

 

B.4.1.1 ConceptualDesignBasis

B.4.1.1.1 Load

Hoonah’sannualkWhgenerationisapproximately5,000to5,500megawatt‐hours(MWh).ThepeakloadinHoonahisestimatedat1,200kW.25Aninitialintertiepowercapacityof2,000kWwouldserve100%ofthecommunity’sexistingneedsandprovidea67%marginforfutureloadgrowth(forhandlingpeakload).

B.4.1.1.2 ConceptualIntertieDesign

AmonopolarHVDCintertiecircuitwithsea‐returnisconsideredfortheconceptualdesignoftheGreensCreek–Hoonahintertie.Theintertiehasaninitialcapacityof2,000kW,buttheproposedsubmarinecablecanbeoperatedat5,000kWbyinstallingadditionalmodularpowerconvertersandrelatedupgradesateitherendoftheHVDCsystem.Ahigher‐capacityupgradeto10MWispossiblethroughfurtherconverterstationexpansionandinstallationofasecondcabletoformabipolarHVDCsystem.TheinitialHVDCsystemwouldconsistofthefollowingmajorcomponents:

● AnHVDCconverterstationatHawkInletontheGreensCreekendoftheintertiewitharatedcapacityof2,000kW.Thisstationwouldrequirea69‐kVto480‐volt(V)step‐downtransformer,four500‐kWHVDCconvertermodules,aseareturnelectroderatedfor40amperesofcurrent,andassociatedcontrolsandprotectiveequipment.

● 25milesofmonopolarHVDCsubmarinecable.Thiscablewouldhavearatedcapacityof5MWat50kVDC(100amperes).Thiscablewouldincludea35squaremillimeter(mm2)copperconductor,across‐linkedpolyethylenedielectric,anextrudedleadalloysheath,andtwolayersofcounter‐laidgalvanizedsteelarmorwire.26Afiber‐opticbundleisassumedtobeincludedeitherinthecableconstructionorwithinoneofthearmorwirepositionstofacilitatebroadbandcommunications.

● AsubmarinecablelandingstationatSpasskiBaynearHoonah.ThisstationwouldhousetheshoreendofthesubmarinecableandtransitiontoanoverheadHVDCconductor.Thestationwouldalsoincludeasecondsea‐returnelectrodetocompletethesea‐returncircuit.

● A3.5‐mileoverheadmonopolarHVDCtransmissionlinewithmetallicreturnfromSpasskiBaytotheexistingHoonahpowerhouse.Thistwo‐wireoverheadlinewouldhaveonewireat+50kVDCandthesecondwireclosetoearthpotential.

● Asecond2,000‐kWHVDCconverterstationadjacenttotheexistingHoonahpowerhouse.Thisstationwouldhousethefour500‐kWHVDCpowerconvertersandanACtransformertoconverterthe480VACoutputto4,160VACtointerfacewiththepowerplantbusvoltage.

25AEA,2010a;AEA,2010b26SeeFigure2inAttachmentD‐1toAppendixDofthisreport.

Page 91: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-17

 

B.4.1.2 EconomicAnalysis

TableB‐3presentstheeconomicanalysisfortheGreensCreek–Hoonahintertiealternatives.TheestimatedinstalledcostfortheHVDCintertieis$22.2million,ascomparedtothecostof$49millionforaconventionalACintertie.TheACintertiecostestimateisbasedonthe2009estimatedcostof$37.5million27adjustedto2012dollars.

Table B-3 Estimated Cost for an Greens Creek – Hoonah HVDC Intertie

CostItem EstimatedCost

PreconstructionRight‐of‐wayacquisition,engineering,survey,permitting $1,600,000

Administration/Management $900,000

HVDCConverterStations(powerconverters,seaelectrodes,enclosures,ACandDCsidestationequipment) $2,700,000

SubmarineCableSupplyandInstallation $12,400,000

OverheadHVDCLine:SpaaskiBaytoHoonah $900,000

Contingency(onentireproject,25%)1 $3,700,000

TotalEstimatedCost $22,200,000

Notes:1.Acontingencyof25%isappliedtothecostsdevelopedforthisprojectbasedontheuncertaintiesassociatedwiththeproject.Asignificantamountofworkhasalreadybeendonetocharacterizethebathymetryandseafloorconditionsalongtheproposedcableroute.

27IPEC,2009.

Page 92: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-18

TableB‐4presentsestimatedbenefit‐costratiosfortheGreensCreek–Hoonahintertieunderseveralloadgrowthscenarios.ThisanalysisindicatesacleareconomicadvantagetoanHVDCintertiebasedonreasonableloadgrowthforecastsforHoonah.

Table B-4 Estimated Benefit-Cost Ratio of Greens Creek – Hoonah HVDC Intertie

ItemLoadGrowthScenario

ExistingLoad 165%Growth 200%Growth6

AnnualHoonahEnergyGeneration(kWh/yr)1 5,150,000 8,500,000 9,780,000

AEL&PAvoidedCostofEnergy(Juneau)2 $0.06perkWh

IPECAvoidedCostofEnergy(Hoonah)1 $0.20perkWh

IntertieOutageRate3 2%

AnnualHoonahSavings4 $707,000 $1,170,000 $1,340,000

IPECOperation,Maintenance,Repair,ReplacementandRehabilitation(OMR&R)AnnualCosts5 $90,000 $90,000 $100,000

NetAnnualSavings(Cost) $617,000 $1,150,000 $1,340,000

IntertieLifeandDiscountRate 30years,3%

PresentWorthofAnnualSavings(Costs) $12,070,000 $21,090,000 $24,500,000

EstimatedInstalledCost $22,200,000 $22,200,000 $22.200,000

EstimatedBenefit‐CostRatio 0.54 0.95 1.10

Notes:

1. BasedonPowerCostEqualization(PCE)reportsfor2007through2009(AEA,2010a).

2. ApproximateAEL&Penergycost.IPEChascapacity,sonodemandorcapacitychargesareincluded.

3. Assumedvalue.

4. AnnualsavingsarebasedonthedifferentialcostofenergyanddonotconsidereconomicbenefitsinHoonahfromlowercostenergy,oreffectstoAEL&Pofincreasedenergysales.

5. IPEC’sestimatedoperations,maintenance,repair,androutinereplacementcostsincludecostsfortheconverterstations,savingsfromdecreasedoperationandoverhaulofthedieselpowerplantinHoonah,andaone‐timecablerepaireventoverthe30‐yearanalysisperiod.

6. Hoonah’speakloadsundera200%loadgrowthscenariowouldexceedthe2‐MWcapacityoftheintertieconverterstations.Intertiethroughputisreducedby5%toreflectdieselgenerationinHoonah.

Page 93: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-19

 

B.4.2 PilgrimHotSprings–Nome

PilgrimHotSpringsisageothermalresourcelocatedapproximately60milesnorthofNome.IthasbeenproposedasapowersourcetoreduceNome’srelianceondieselfuelforelectricalgeneration.ACEPiscurrentlystudyingthePilgrimHotSpringsgeothermalresourcetobettercharacterizetheresource’spotentialforpowergenerationandotherapplications.ForpurposesofsizingthetransmissionlinefromPilgrimHotSprings,anelectricalgeneratingcapacityandtransmissioncapacityof5MWisassumed,basedonconversationswithACEP’smanagerforthePilgrimHotSpringsassessmentproject.28TheproposedtransmissionrouteisshownonFigureB‐4.

AbipolarHVDCcircuitusingoverheadlineswasselectedfortheHVDCintertie.Thebipolarconfigurationwasselectedbecauseitprovidesincreasedreliabilitycomparedtoamonopolarlineatareasonableadditionalcost.

ConceptualpowerlinecostsforoverheadACandHVDCintertieswereestimatedtoevaluatethebenefitsofconnectingPilgrimHotSpringstoNomeusinganHVDCintertie.ThecostestimatesindicatethatanHVDCtransmissionlinewouldcost29%lessthananACtransmissionline.

28PersonalcommunicationwithMarcusMager,2012.

Page 94: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-20

Figure B-4 Prospective Transmission Route from Pilgrim Hot Springs to Nome

 

 

B.4.2.1 ConceptualDesignBasis

Aroutingstudywasnotperformedaspartofthiscasestudy.Theintertierouteisassumedtofollowtheapproximately70‐mileroadcorridorfromNometoPilgrimHotSprings.Thisisassumedtobetheleast‐costrouteforthepowerlines,astheroadcanbeusedtosupporttheconstructionandlong‐termmaintenanceoftheline.Aroutingstudymayidentifyotherroutesthataremorefavorableduetogeotechnical,landstatus,environmental,orotherfactors.

Forthisanalysis,thetransmissionroutedistanceisassumedtobe60miles.

Page 95: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-21

B.4.2.1.1 Load

Nome’saverageannualelectricityusageisapproximately3,500kW,andmonthlypeakdemandisbetween4and10MW.TheassumedsizeofthePilgrimHotSpringsgeothermalpowerplantisassumedtobe5MW.Theintertieisthereforeassumedtohaveacapacityof5MWandoperateatbetween2and5MW,dependingoninstantaneousdemandinNome.

B.4.2.1.2 ConceptualACIntertieDesign

TheconceptualdesignfortheACintertieisathree‐wire69‐kVACoverheadlineseton45‐footwoodpoleswitharulingspanof400feet.Allpolesareassumedtobefastenedtosteelpilefoundationsformomentsupportandtoresistfrostjackingforces.

TheACtransmissionsystemwouldconsistofthefollowingmajorcomponents:

● A5‐MWgeothermalpowerplantatPilgrimHotSpringsgeneratingat4,160V.

● Asubstationandswitchyardtoincreasevoltagefrom4,160Vto69kV.

● Anapproximately60‐mile‐longoverheadintertiefromPilgrimHotSpringstoNome.

● AsubstationandswitchyardinNometoisolateNomefromthetransmissionlineandstepdownthevoltagefrom69kVto12.47kVfordistributioninNome.

B.4.2.1.3 ConceptualHVDCIntertieDesign

TheconceptualdesignfortheHVDCintertieisabipolarcircuitoperatingat+50and–50kVDC.Thetwocircuitswouldbesupportedonaguyedglass‐fiber‐reinforcedpolymer(GFRP)polefittedwithacrossarmandsuspensioninsulators.Arulingspanof1,000feetisassumed.ThedesignissimilartothatshownonFigureC‐9.

TheHVDCtransmissionsystemwouldconsistofthefollowingmajorcomponents:

● A5‐MWgeothermalpowerplantatPilgrimHotSpringsgeneratingat480V.Itmaybepreferabletoinsteadgenerateat4,160Vandhaveastep‐downtransformertothe480Vinterfacevoltagetothepowerconverters.

● AbipolarHVDCconverterstationconsistingoftwobanksoffive500‐kWpowerconverters.Eachbankwouldforma2.5‐MWpoleonthebipolartransmissionsystem.

● Anapproximately60‐mile‐longbipolarHVDCtransmissionlinefromPilgrimHotSpringstoNome.

● AsecondbipolarHVDCconverterstationinNome.

● AnACtransformertostepuptheACoutputfromtheconvertersfrom480Vupto7.2/12.47kVfordistributioninNome.

Page 96: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-22

B.4.2.2 EconomicAnalysis

TableB‐5presentstheeconomicanalysisforthePilgrimHotSprings–Nomeintertiealternatives.TheestimatedinstalledcostfortheHVDCintertiealternativeis$25.7million,ascomparedtothecostof$36.3millionforaconventionalACintertie.

NoinformationisavailablefortheinstalledcostofageothermalpowerplantatPilgrimHotSpringsorthecostoftheenergyitwouldgenerate,soabenefit‐costratiooftheintertiealternativeswasnotevaluated.

Table B-5 Estimated Installed Cost for a 5-MW Pilgrim Hot Springs – Nome Intertie

CostItemEstimatedInstalledCostforBipolarHVDCIntertie

EstimatedInstalledCostforACIntertie

EstimatedHVDCSavings

PercentCostSavings

PreconstructionActivities(right‐ofwayacquisition,design,survey,permitting)

$3,400,000 $3,400,000 ‐ ‐

Administration/Management $1,000,000 $1,300,000 ‐ ‐

ConverterStationConstruction $4,600,000 $3,000,000 ‐ ‐

OverheadIntertieConstruction $10,800,000 $20,200,000 ‐ ‐

Contingency(30%)1 $5,900,000 $8,400,000 ‐ ‐

TotalEstimatedCost $25,700,000 $36,300,000 $10,600,000 29%

Note:

1. A30%contingencywasappliedtothecostsforthisprojectbecausenoinformationwasavailableforthetransmissionroute.Thislackofdatacreatesrisksduetofactorssuchaslandavailability,geotechnicalconditions,structural(windandice)loadings,andenvironmental(bird,wildlife,andaesthetics)factors.Someoftheserisksaremitigatedbytheuseofcostdatafortherobustconceptualdesigns(i.e.,Alaska‐specificconstruction)usedfortheHVDCsystem.TheAlaska‐specificconceptualdesignisassumedtobeadequatefortheexpectedgeotechnicalandstructuralconditionsalongtheroute.Environmentalandlandavailabilityissues,whichcouldrequirealongerrouteordeparturefromtheroadcorridor,poserelativelygreaterrisksthanlinedesignconsiderations.Thenetresultofthesefactorsresultsinthe30%contingencyusedforthecasestudyeconomics.

Page 97: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-23

B.5 DETAILEDHVDCINTERTIECOSTINFORMATION

B.5.1 OverheadIntertieCostDetail

ThisreportconsidersdifferentoverheaddesignconceptsforHVDCinterties.Thissectionpresentsarangeofestimatedcostsfortheseconcepts.

Thetwo‐wiremonopolarintertieadaptedfromstandardRUSpracticeisestimatedtohavethehighestinstalledcost.Incontrast,themonopolarSWERintertiebasedonAlaska‐specificdesignconceptsisestimatedtohavethelowestinstalledcost.

TableB‐6presentsabreakdownoftheestimatedinstalledcostsfor25‐mileoverheadintertiesinruralAlaskausingthedesigncasesandconceptspresentedinAppendixC.

Page 98: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-24

Table B-6 Estimated Cost for a 25-mile Overhead HVDC Intertie

CostItemMonopolarSWER,AlaskaSpecificConstruction

Two‐WireMonopolarHVDC,RUS–BasedConstruction

Per‐MileCost ProjectCost Per‐MileCost ProjectCost

PreconstructionRight‐of‐wayacquisition,design,survey,permitting $58,000 $1,450,000 $56,000 $1,400,000

Administration/Management $13,000 $325,000 $17,000 $425,000

Materials(intertieonly) $48,000 $1,200,000 $47,000 $1,175,000

ConverterStations(onper‐milebasis) $62,000 $1,550,000 $62,000 $1,550,000

Shipping $15,000 $375,000 $25,000 $625,000

Mobilization/Demobilization $37,000 $925,000 $94,000 $2,350,000

Labor $67,000 $1,675,000 $71,000 $1,775,000

TotalCost $300,000 $7,500,000 $372,000 $9,300,000

Note:Lineitemcostsincludeanembedded25%contingency.

Page 99: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-25

B.5.2 SubmarineCableIntertieCostDetail

Anumberofsite‐specificfactorsinfluencethecostofsubmarinecableapplicationsforHVDCapplicationsinAlaska.Thesearethefollowing:

● CablelayingvesselsarespecializedequipmentthatmustbemobilizedtoAlaska.MobilizingthesevesselstoAlaskaiscostlyandprojectdependant.Mobilizationcostsresultinshortsubmarineintertiesbeingsignificantlymoreexpensiveonaper‐milebasisthanlongsubmarineinterties.

● Marinetrafficinfluencessubmarineintertiecosts.Shallowercableroutesmustconsidercommercialfishingactivity,anchoring,andrelatedmarinetrafficthatmayposeahazardtothecable.

● Theseafloorconditionsalongthecableroutealsoinfluencecosts.Steepslopes,ruggedexposedrock,orunstableslopeswilltendtoincreasecostsorprojectrisk.

● Thedepthofthecableroutewillinfluencecosts.Deeperroutesrequirestronger,heavier,andmorecostlycables,whichinturncanrequirelarger,moreexpensivecablelayingvessels.

Asaresult,agenericper‐milecostoflow‐powersubmarinecablesisnotmeaningfulwithoutconsiderationoftheproject‐specificfactors.

B.5.3 UndergroundCableIntertieCostDetail

Anumberofsite‐specificfactorswillstronglyinfluencethetechnicalfeasibilityandcostofundergroundcableapplicationsforlow‐powerHVDCapplicationsinAlaska.Thesearethefollowing:

● Presenceofgroundsusceptibletofrostcrackingorpolygonalcracking.Thesegroundcrackscanimposelargetensionforcesoncablesandcausemechanicalfailureofthecable,resultinginelectricalfaults.

● Geotechnicalconditionsalongthecableroutewillinfluencethecostofcableinstallation.

● Steepterrainorotherlocalconditionsmaypreventuseofundergroundcable.

EstimatedcostsforHVDCintertiesusingundergroundcablesarepresentedinTableB‐7.

Page 100: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-26

Table B-7 Estimated Costs for a 25-mile Underground HVDC Intertie

CostItem EstimatedPer‐MileCost

PreconstructionRight‐of‐wayacquisition,design,survey,permitting $45,000

Administration/Management $13,000

Materials(intertieonly) $80,000

Converterstations(onpermilebasis) $62,000

Shipping $20,000

Mobilization/Demobilization $10,000

Labor $20,000

TotalCost $250,000

Note:Lineitemcostsincludeanembedded25%contingency.

TheestimatedcostsinTableB‐7arebasedonthefollowingassumptions:

● Terrainandconditionsaresuitableforuseofatrack‐mountedtrenchersuchasaDitchWitchRT115Quad,whichcancutatrenchthroughfrozengroundduringthewintermonthsovermostterrain;

● 1/0fullconcentricneutraljacketed35‐kVACcablewithethylenepropylenerubber(EPR)dielectricina2‐inchduct;

● Awaterblockingantifreezegelcompoundisused;

● Afiber‐opticcableinductisinstalledinthesametrench;

● Limitedbrushingisnecessarytocleartheroute;

● Cablereelsarespottedalongthelinewithahelicopter;and

● Thecableinstallationdepthisaminimumof18inches.

B.5.4 ConverterStationCostDetail

TheHVDCconverterstationswillincludethemajorcomponents:

● HVDCpowerconverters;

● Converterenclosures,whichmayconsistofdedicatedenclosuresoruseofanexistingbuilding,suchasanexistingpowerplant;

● ProtectionandswitchingequipmentontheACandHVDCsidesoftheconverters;

● ACtransformers,dependingontheACinterfacevoltageandwiring;and

● Groundingstations,includingthegroundconductorfromtheconverterstationtothegroundingstation.

Theestimatedinstalledcomponentcostsfora1‐MWmonopolarHVDCconverterstationispresentedinTableB‐8.Therangeofcostsisbasedonthepresenceofexistinginfrastructureandproject‐specificconditions.

Page 101: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-27

Table B-8 1-MW HVDC Converter Station Cost Estimate

CostItem EstimatedCost

1‐MWHVDCPowerConverter $220,000to$280,000

ConverterEnclosure $40,000to$160,000

AC‐SideandHVDC‐SideProtectiveandSwitchingEquipment $100,000to$190,000

1‐megavoltamperes(MVA)ACTransformer(7.2/12.4kV–480V) $0to$30,000

GroundingStation $100,000to$170,000

Contingency(25%) $120,000to$210,000

Total,1‐MWHVDCConverterStation $580,000to$1,040,000

B.5.4.1 ConverterCostDetail

BasedonPhaseIIdevelopmentefforts,PPSestimatesthatthecommercialcostoftheHVDCpowerconverterswillbe$250,000+/‐10%per1‐MWpowerconverter.PPSstatesthatasmanufacturingvolumesincrease,theper‐convertercostshoulddecrease.PPSforecastsa5%to10%discountat10unitsanda20%to30%discountat100units.SeeAppendixFforamoredetaileddiscussionofconvertercosts.

B.5.4.2 ConverterEnclosureCostDetail

Estimatedcostsassumethatamodular,prefabricatedenclosurewillbesenttothecommunitywiththetwo500‐kWpowerconverterunitsalreadyinstalled.Thisconvertermodulewillthenbesetinplaceonasuitablefoundation.EstimatedcostsarelistedinTableB‐9.

Table B-9 HVDC Converter Enclosure Cost Detail

CostItem EstimatedCost

PowerConverterEnclosure $68,000

Foundation $30,000

Labor $27,000

Shipping $35,000

Total,1‐MWHVDCConverterEnclosure $160,000

Page 102: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-28

IncommunitiesthatwillbeprimarilyservedbyanHVDCintertie,itmaybeappropriatetolocatetheconvertersinsidetheexistingpowerhouseorothersuitableexistingstructure.Thiswouldhavethefollowingadvantages:

● Theexistingpowerhousewouldalreadyhaveastep‐downtransformersizedforthefullcommunityload,

● Wasteheatfromtheconverterswouldprovideallorpartoftheheatforthepowerplantbuilding,and

● Thiswouldachieveprojectcostreductionbyeliminatingtheneedforadedicatedconverterenclosureandtheneedtopurchaseorleaselandtositetheconverter.

B.5.4.3 SwitchgearandSwitchyardEquipmentCostDetail

SwitchgearisrequiredontheACsideoftheconvertersforisolationandprotectionpurposes.Dependingonthedesireddegreeofsystemautomation,theswitchgearmayalsointerfacebetweentheconvertercontrolsandthepowerplantcontrolstoallowremotedispatchofgeneratorsandtheHVDCpowerconverter.

Similarisolation,protection,andmonitoringequipmentisneededintheHVDCswitchyardontheHVDCsideoftheconverter.Ataminimum,manualdisconnectswitches(nonloadbreak),surgearrestors,andfusesarerequired.CurrentandvoltagesensorsareneededontheHVDClineaswell.

EstimatedswitchgearandswitchyardcostsarepresentedinTableB‐10.

Table B-10 Switchgear and Switchyard Cost Detail

CostItem EstimatedCost

ACSwitchgearSection(Fuses,DisconnectSwitches[loadbreak]) $25,000to$35,000

HVDCManualDisconnectSwitch(nonloadbreak) $2,000to$20,000

HVDCSurgeArrestor $10,000to$15,000

HVDCFuse $2,000to$8,000

ACandDCSensors $30,000to$48,000

OtherMaterials $12,000to$16,000

Shipping $5,000to$18,000

Labor $14,000to$20,000

Total,1‐MWHVDCConverterStationSwitchgearandSwitchyard $100,000to$190,000

Page 103: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-29

 

B.5.4.4 ACTransformerCostDetail

Thegridinterfaceonthepowerconvertersisthree‐phase480‐VAC.Incommunitieswheretheconverterisconnecteddirectlytothe480‐Vpowerplantbuss,noadditionaltransformerisrequired.Incommunitieswheretheconverterconnectstothelocaldistributiongrid,astep‐uptransformerisrequired.Thetransformerisassumedtobeathree‐phase480/12.47kVtransformer.

B.5.4.5 GroundingStationCostDetail

AgroundingstationwillneedtobeprovidedateachHVDCconverterstation,regardlessoftheHVDCcircuitconfiguration.Theconceptualdesignofa1‐MW50kVDCgroundingstationispresentedinAppendixE.EstimatedcostsforthisstationarepresentedinTableB‐11,andinclude1mileofoverheadlinebetweentheconverterstationandthegroundingstation.

Costsforgroundingstationswilldependonthelocalgeotechnicalconditions,thedistancebetweentheconverterandgroundingstations,andotherfactors.

Table B-11 HVDC Grounding Station Cost Detail

CostItem ConceptualCost

SiteInvestigations $26,000to$33,000

Materials $25,000to$45,000

Labor $34,000to$46,000

Equipment $7,000to$12,000

Shipping $8,000to$34,000

Total,1‐MWHVDCGroundingStation $100,000to$170,000

Page 104: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-30

B.6 DETAILEDACINTERTIECOSTINFORMATION

ThissectionpresentscostbaselinesforremoteAlaskaACintertiestoallowcomparisontotheHVDCalternativespresentedinthisreport.CostbaselinesforACintertieprojectsweredevelopedusingtwomethods.Thefirstmethodwastodevelopconceptualcostestimatesconsideringunitcostsforlabor,materials,mobilization,etc.Thesecondmethodwastoreview,whereavailable,theactualcostsofrecentrelevantACintertieprojectsinAlaska.Forbothmethods,twotypesofintertieswereanalyzed:

1. OverheadintertielinesinarcticandsubarcticregionsofwesternAlaska.Theseregionspresentsomeofthegreatestgeotechnicalandlogisticalchallenges;therefore,theytendtohavethehighestinstalledcostsforoverheadinterties.

2. SubmarinecableintertiesinruralAlaska.FormanypartsofAlaska,andinparticularthesoutheast,submarinecablesaretheonlyviablemeansofbuildingapowerintertie.

ThecostbaselinesaresummarizedinTableB‐12.

Table B-12 Cost Baselines for Remote Alaska AC Intertie Construction

TypeofACElectricIntertie1CostBaselineby

UnitCost/QuantityMethodCostBaselinefromRecent

ProjectExperience

OverheadInterties2 $440,000permile $450,000permile+/‐50%

SubmarineCableInterties3 N/A $1,300,000permile+/‐35%

Notes:1. Intertiepowercapacitywillaffectcost.Seesubsequentnotesforthespecifictypesofintertiesconsideredtodevelop

theseconceptualcosts.2. IntertiesarestandardRUSthree‐phase14.4/24.9kVconstruction,usingsteelpilefoundations.3. Intertiesaresingle‐bundledthree‐conductorarmoredcable.

Page 105: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-31

B.6.1 CostBaselinesforOverheadACInterties

B.6.1.1 CostBaselineforOverheadACIntertiesUsingUnitCostsandQuantities

AcostbaselinefortypicalACtransmissionsystemshasbeenestimatedfor10‐mileand25‐mileintertieconcepts.Theseconceptsarebasedonastandardfour‐wirethree‐phase14.4/24.9kVRUSpowerlineusingdrivensteelpilefoundations.TheestimatedinstalledcostsarepresentedinTableB‐13.

Table B-13 Estimated Costs for Overhead AC Interties

CostItem10‐MileIntertie 25‐Mileintertie

Per‐MileCost

ProjectCostPer‐MileCost

ProjectCost

PreconstructionRight‐of‐wayacquisition,design,survey,permitting

$61,000 $610,000 $39,000 $975,000

Administration/Management $18,000 $180,000 $18,000 $425,000

Materials $71,000 $710,000 $71,000 $1,775,000

Shipping $36,000 $360,000 $33,000 $825,000

Mobilization/Demobilization $136,000 $1,360,000 $125,000 $3,125,000

Labor $111,000 $1,110,000 $111,000 $2,675,000

TotalCost $440,000 $4,400,000 $397,000 $9,875,000

Theper‐milecostofoverheadACintertiesdecreasesastheintertiegetslonger.Thisisinfluencedbythefollowingfactors:

● Thescopeandcomplexityofenvironmental,right‐of‐way,design,andpermittingissuesfortheproject.

● Thequalityofaccesscorridorsalongtheintertieroute.Theestimatedcostsassumethatper‐milelaborcostsareindependentofintertielength.

● Theconstructionplanandschedule.Theestimatedcostsassumethatper‐milemobilization/demobilizationcostsdecreaseslightlywithincreasingintertielength.

Thisreportfindsthatper‐milecostsfortypicaloverheadACintertiesdecreaseapproximately10%astheintertielengthincreasesfrom10to25miles.Further,anadditionaldecreaseof5%occursfrom25to50miles.Costsareconstantonaper‐milebasisfrom50to100miles.

Page 106: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-32

 

B.6.1.2 CostBaselineforOverheadACIntertiesUsingComparableProjectCosts

ConstructioncostdatacompiledforsevenremoteoverheadintertielinesbuiltinwesternAlaskaoverthepast20yearsarepresentedinTableB‐14.ThelinesselectedareconsideredrepresentativeofthemostdifficultlogisticalandgeotechnicalconditionscommoninAlaska.BasedonTableB‐14,theconceptualper‐milecostforaremoteAlaskaoverheadACintertieis$450,000permile,+/‐50%(2012$).

ThecostdataarepresentedasageneralcostbaselineforremoteAlaskaoverheadinterties.

Table B-14 Installed Costs of Recent Remote Alaska Overhead AC Interties

IntertieProjectInstalledCost1

YearBuilt

Length

(miles)Per‐MileCost(2012$)2

Kobuk–Shungnak3 $1.1M 1991 11 $276,500

ToksookBay–Tununak4,5 $2.0M 2005 6.6 $440,200

Nunapitchuk–OldKasigluk–AkulaHts.5,6 $1.9M 2006 4.2 $594,400

ToksookBay–Nightmute7,8 $6.9M 2009 18 $495,800

Bethel–Napakiak5,9 $3.1M 2010 10.5 $344,400

BrevigMission–Teller10 $4.7M 2011 6.8 $730,200

Emmonak–Alakanuk11 $2.9M 2011 11 $267,300

AverageCostperMile,2012Dollars: $449,800

AverageCostperMile,(ExcludingHighestandLowest‐CostProjects): $430,300

Notes:1. Installedcostsareinnominaldollarsatthetimeofconstruction.Duetothelimiteddetailandvarietyofsourcesforcost

data,itisnotalwayspossibletodiscernifcostsforagivenprojectincludepreconstruction,construction,sharedmobilizationwithseparatebutconcurrentprojects,andsimilarcomplicatingfactors.Adjustingfortheseunknownfactorsmayincreaseordecreasetheprojectcostthatispresentedinthetable.

2. Projectcostsareadjustedto2012dollarsusingacustomescalatorbasedonAlaskalaborcostsandcommoditypricesrelevanttooverheadintertieconstruction.

3. Estimatedcostfortheproject.TheprojectconsistedofreplacinganACSWERintertiewithaconventionalRUSACintertie(Petrie,personalcommunication,2012).

4. TheprojectconsistedofanewoverheadACintertie(DenaliCommission,2008b).5. EntireintertiewassetonH‐pileorroundpilefoundations(DenaliCommission,2008a,2008b,and2010).6. TheprojectconsistedofreplacinganexistingoverheadACintertiewithanewoverheadACintertie.Thecostwas

reducedby$300,000forstep‐downtransformersforservicesalongtheintertieroutethatarenotpartofthe“intertie”cost(DenaliCommission,2008a)

7. TheprojectconsistedofanewoverheadACintertie(DenaliCommission,2009).8. Approximately30%ofintertieissetonsteelpilefoundations(DenaliCommission,2009).9. TheprojectconsistedofreplacinganACSWERintertiewithaconventionalRUSACintertie(DenaliCommission,2010).10. TheprojectconsistedofanewACintertieincludingoverhead,underground,andsubmarinecablesegments.Cost

includespreconstructionandbudgetedconstruction(DenaliCommission,2011).11. Thisistheestimatedcostforaproposedintertiebuiltin2011.Theintertieprojectsharedmobilizationcostswith

concurrentinstallationofwindturbinesinEmmonak(AVEC,2008).

Page 107: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-33

 

B.6.2 CostBaselineforSubmarineCableACInterties

ConstructioncostdatawerecompiledforthreeACsubmarinepowercablesinstalledorproposedinAlaskaoverthepast15years;thesedataarepresentedinTableB‐15.Veryfew“low‐power”ACsubmarinecableshavebeenbuiltinAlaska–thecablesinTableB‐15eachhaveacapacityof10to15MW.Theselineswerereviewedbecausetheyarethesmallestsubmarinecableswithavailablecostdata.Theindicatedconceptualper‐milecostforaACsubmarineintertieinAlaskais$1,300,000permile,+/‐35%(2012$).

Submarinecablecostsareprojectdependentandhaveasignificantcostvariability.Shortcableprojectsinparticularcanbeexpectedtohavesignificantlyhigherper‐milecostduetothefixedmobilizationcostofspecializedcable‐layingvessels.

ThecostdataprovideageneralcostbaselineforremoteAlaskasubmarinepowercables.

Table B-15 Installed Costs of Recent Remote Alaska Submarine Cable Interties

IntertieProjectInstalledCost1

YearBuilt/Proposed

Length(miles)

Per‐MileCost(2012$)2

Haines–Skagway3 $5.86M 1998 15 $880,000

Homer–SouthKatchemakBay5 $2.5M 2001 4.5 $1,200,000

Green’sCreek–Hoonah4 $37.5M 2009 29 $1,700,000

AverageCostperMile,2012Dollars: $1,300,000

Notes:1. Installedcostsareinnominaldollarsatthetimeofconstruction.Duetothelimiteddetailandvarietyofsourcesforcost

data,itisnotalwayspossibletodiscernifcostsforagivenprojectincludepreconstruction,construction,sharedmobilizationwithseparatebutconcurrentprojects,andsimilarcomplicatingfactors.Adjustingfortheseunknownfactorsmayincreaseordecreasetheprojectcostthatispresentedinthetable.

2. Projectcostsareadjustedto2012dollarsusingacustomescalatorbasedonAlaskalaborcostsandcommoditypricesrelevanttopowerlineconstruction.

3. TheHaines‐Skagwaycablehasamaximumdepthof1,500feetandaratedcapacityof15MW(INEEL,1998).4. TheGreen’sCreek–Hoonahcablehasnotbeenbuiltduetoitscost.Installedcostsarethemostrecentestimates

available.Thiscablerouteincludesdepthsto2,600feet.Costsincludeapproximately4milesofoverheadline(IPEC,2009).

5. TheHomer–SouthKatchemakBaycablehasamaximumdepthof600feetandaratedcapacityofapproximately12MW(AJOC,2001).

Page 108: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE B-34

Thispageintentionallyblank.

Page 109: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-1

APPENDIXC

CONCEPTUALDESIGNOF

OVERHEADHVDCINTERTIELINES

Page 110: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-2

Thispageintentionallyblank.

Page 111: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-3

TABLEOFCONTENTS

C.1 INTRODUCTION........................................................................................................................................................7 C.1.1 RURALUTILITIESSERVICE(RUS)DESIGNAPPROACH,MODIFIEDFORHVDCINTERTIES................................7 C.1.2 ALASKA‐SPECIFICDESIGNAPPROACHFORHVDCINTERTIES..................................................................................7

C.2 DESIGNCRITERIAFOROVERHEADINTERTIELINES.............................................................................8 C.2.1 GEOTECHNICALCONDITIONS...........................................................................................................................................8 C.2.2 ENVIRONMENTALLOADS.................................................................................................................................................8

C.3 CONCEPTUALDESIGNOFOVERHEADHVDCTRANSMISSION,RUSSTANDARDPRACTICE10 C.3.1 CONVENTIONALACINTERTIEDESIGN........................................................................................................................10 C.3.2 MONOPOLARSINGLE‐WIRETRANSMISSIONWITHEARTH‐RETURNPATH(SWER),CONVENTIONALLYBUILT

............................................................................................................................................................................................13 C.3.3 MONOPOLARTWO‐WIRETRANSMISSIONWITHMETALLICCONDUCTOR‐RETURNPATH(TWMR),

CONVENTIONALLYBUILT...............................................................................................................................................16 C.3.4 BIPOLARTWO‐WIRETRANSMISSION,CONVENTIONALLYBUILT...........................................................................19

C.4 CONCEPTUALDESIGNOFOVERHEADHVDCTRANSMISSION,ALASKA‐SPECIFICMETHODS22 C.4.1 MONOPOLARSINGLE‐WIRETRANSMISSIONWITHEARTH‐RETURNPATH(SWER,ALASKA‐SPECIFICDESIGN

............................................................................................................................................................................................23 C.4.2 MONOPOLARTWO‐WIRETRANSMISSIONWITHMETALLICCONDUCTOR‐RETURNPATH(TWMR),ALASKA‐

SPECIFICDESIGN.............................................................................................................................................................26 C.4.3 BIPOLARHVDCINTERTIELINE,ALASKASPECIFICDESIGN...................................................................................29 C.4.4 CONCEPTUALDESIGNANALYSIS...................................................................................................................................32 C.4.5 MAINTENANCEMETHODS..............................................................................................................................................33

C.5 CONCEPTUALDESIGNANALYSIS...................................................................................................................35 C.5.1 STRUCTURALDESIGN......................................................................................................................................................35 C.5.2 FOUNDATIONDESIGN.....................................................................................................................................................35 C.5.3 ANALYSISOFTHERMOPROBEPERFORMANCE............................................................................................................35 C.5.4 ELECTRICALDESIGN.......................................................................................................................................................44

C.6 TESTINGOFOVERHEADDESIGNCONCEPTS............................................................................................49 C.6.1 TESTOBJECTIVES............................................................................................................................................................49 C.6.2 TESTSITE.........................................................................................................................................................................49 C.6.3 INSTALLATION..................................................................................................................................................................49 C.6.4 MONITORING....................................................................................................................................................................50

APPENDIXCATTACHMENTS...........................................................................................................................................63 ATTACHMENTC‐1:ZARLINGAEROCONSULTING(ZAE)THERMALANALYSISOFTHERMOPILE.....................................63 ATTACHMENTC‐2:ARCTICFOUNDATIONS,INC.(AFI)SHOPDRAWINGS............................................................................91

Page 112: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-4

Thispageintentionallyblank.

Page 113: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-5

LISTOFTABLES

TableC‐1 ConceptualDesignDataforConventionalACIntertieLine....................................................12

TableC‐2 ConceptualDesignDataforConventionallyBuiltMonopolarSWERHVDCIntertieLine..........................................................................................................................................................................15

TableC‐3 ConceptualDesignDataforConventionallyBuiltMonopolarHVDCwithMetallicReturn..........................................................................................................................................................................18

TableC‐4 ConceptualDesignDataforConventionallyBuiltBipolarHVDCIntertieLine...............21

TableC‐5 ConceptualDesignDataforAlaska‐SpecificMonopolarSWERHVDCIntertieLine....25

TableC‐6 ConceptualDesignDataforAlaska‐SpecificMonopolarMetallic‐ReturnIntertieLine28

TableC‐7 ConceptualDesignDataforAlaska‐SpecificBipolarHVDCIntertieLine..........................31

TableC‐8 SummaryofResultsfromThermoprobeModelingbyZAE....................................................37

Page 114: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-6

LISTOFFIGURES

FigureC‐1 TangentPoleforConventionalACIntertieLine..........................................................................11

FigureC‐2 ConventionalTangentPoleforMonopolarSWERHVDCIntertieLine..............................14

FigureC‐3 ConventionalTangentPoleforMonopolarHVDCwithMetallicReturn...........................17

FigureC‐4 ConventionalTangentPoleforBipolarHVDCIntertieLine...................................................20

FigureC‐5 Alaska‐SpecificTangentPoleforMonopolarSWERHVDCIntertieLine..........................24

FigureC‐6 Alaska‐SpecificTangentPoleforMonopolarMetallic‐ReturnIntertieLine....................27

FigureC‐7 Alaska‐SpecificTangentPoleforBipolarHVDCIntertieLine...............................................30

FigureC‐8 PrototypeMicro‐ThermopileTripodPoleFoundation............................................................38

FigureC‐9 ShopDrawingofPrototypeGFRPPoleBaseAdapterforMicro‐ThermopileFoundation(Sheet1of3)..............................................................................................................................................39

FigureC‐10 ShopDrawingofPrototypeGFRPPoleBaseAdapterforMicro‐ThermopileFoundation(Sheet2of3)..............................................................................................................................................40

FigureC‐11 ShopDrawingofPrototypeGFRPPoleBaseAdapterforMicro‐ThermopileFoundation(Sheet3of3)..............................................................................................................................................41

FigureC‐12 GalvanizedScrewAnchorswith8‐InchFlights...........................................................................43

FigureC‐13 TypicalBipolarHVDCTransmissionLineUsingSuspensionInsulators...........................45

FigureC‐14 TypicalTangentStructureUsingPostInsulators.......................................................................46

FigureC‐15 TypicalAngleStructureUsingSuspensionandPostInsulators...........................................47

FigureC‐16 TypicalTangentStructureUsingSuspensionandPostInsulators......................................48

FigureC‐17 InstallingMicro‐ThermopileforGuyAnchor...............................................................................51

FigureC‐18 SettingMicro‐ThermopileGuyAnchorwithSandSlurryBackfill.......................................52

FigureC‐19 InstallingMicro‐ThermopileforGuyAnchor...............................................................................53

FigureC‐20 Micro‐ThermopilesStagedatFairbanksTestSiteforInstallationofPrototypeFoundations..........................................................................................................................................................................54

FigureC‐21 Micro‐ThermopileTripodforPrototypePoleFoundation.....................................................55

FigureC‐22 InstallingHelicalScrewAnchorforGuyAnchor.........................................................................56

FigureC‐23 GuyAttachedtoMicro‐ThermopileFoundation.........................................................................57

FigureC‐24 AssemblingthePrototypeGFRPPoleSplice.................................................................................58

FigureC‐25 InstalledGFRPPole,Micro‐Thermopiles,andAdapterPlate.................................................59

FigureC‐26 PrototypeGFRPPoleFoundationDuringInstallation..............................................................60

FigureC‐27 PrototypePoleattheFairbanksTestSite......................................................................................61

FigureC‐28 PrototypePoleattheFairbanksTestSite......................................................................................62

Page 115: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-7

C.1 INTRODUCTION

Theconceptualoverheadtransmissionlinedesignalternativespresentedinthisappendixrequiredconsiderationofsite‐specificconditions,codes,utilityandlenderrequirements,constructionmethodologies,standarddesignpractices,andprojecteconomics.

Twoconceptualdesignapproachesforoverheadhigh‐voltagedirectcurrent(HVDC)intertieshavebeenevaluated,eachwithacapacitytosupply1megawatt(MW)at50kilovolts(kV)DC:(1)U.S.DepartmentofAgriculture(USDA)RuralUtilitiesService(RUS)designapproach,modifiedforHVDCinterties;and(2)Alaska‐specificdesignapproachforHVDCinterties.Eachisdescribedbelow.

C.1.1 RuralUtilitiesService(RUS)DesignApproach,ModifiedforHVDCInterties

ThefirstconceptualdesignapproachisbasedontheuseofstructuresthatareconstructedinaccordancewiththeRUSstandardpracticesforconventional12.4/24.9kilovolt(kV)alternatingcurrent(AC)distributionlines.29TheseRUSstandardpracticesarecurrentlyusedtodevelopACintertiesthroughoutAlaskaandarewidelyacceptedbytheutilityindustry.HVDCtransmissionrequiresfewerconductorsthanAC,resultinginreducedloadsonthesupportingstructures.Asaresult,theconceptualdesignsdevelopedwiththeRUSapproachhavelongerrulingspansthantypicalAClines.ThisresultsinfewertransmissionstructuresfortheHVDCintertieandanassociatedcomparativereductioninconstructioncost.

C.1.2 Alaska‐specificDesignApproachforHVDCInterties

ThesecondconceptualdesignapproachtakesthelogisticandtechnicalchallengesofconstructioninruralAlaskaintoconsiderationandfocusesonmethodstoreduceconstructioncostswithoutcompromisingperformanceorlong‐termmaintainability.Thisdesignapproachincorporatescost‐savingfeaturesmadepossiblethroughHVDC‐specificdesignalternatives,materials,andconstructionmethods.DesignfeaturesofthisconceptincludetheuseofguyedcompositestructurestoallowsignificantlylongerrulingspansthanispossiblewithRUSstandardpractice.Thereducednumberofstructures,lesscostlyfoundations,andreducednumberofconductorsallresultinadditionalsavingscomparedwithintertiesbuilttoRUSstandardpractices.

ThefollowingthreeHVDCtransmissioncircuitconfigurationsareconsideredforeachoftheHVDCconceptualdesignapproaches:

● Monopolarsingle‐wiretransmissionwithearth‐returnpath(SWER);

● Monopolartwo‐wiretransmissionwithmetallicconductor‐returnpath(TWMR);

● Bipolartwo‐wiretransmission.

Schematicfiguresareprovidedinthisappendixforeachoftheseconceptualdesigns.Detailedreportsthataddressvarioustechnicalaspectsoftheassumedconditionsandloadingsusedtodeveloptheseconceptualdesignsareprovidedasattachmentstothisappendix.

29 Inthisreport,theterm“RUSstandardpractice”referstooverheadintertielinedesignsbasedonthemethodsandmaterials

presentedinRUSdesignmanualsfortransmissionanddistributionlineconstruction,includingbutnotlimitedto:REA,1982,RUS,1998,2002,2003a,2003b,2003c,and2009.

Page 116: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-8

C.2 DESIGNCRITERIAFOROVERHEADINTERTIELINES

ThefollowingdesigncriteriahasbeendevelopedasabasisfortheconceptualdesignoftheHVDCoverheadintertielines.

C.2.1 GeotechnicalConditions

Basedontheanalysisdescribedbelow,conceptualfoundationdesignalternativesforaguyedpoleutilizethreethermoprobemicropilesforthepolebaseandhelicalanchorsfortheguys.TheconceptualfoundationdesignalternativesarepresentedonFiguresC‐9throughC‐11.Theoverheadsystemtestsiteincludesinstallationofbothoftheseprototypefoundations,aswellasthermoprobemicropilesandscrewanchorstorestraintheguywires.

PolarconsultcontractedwithGolderAssociates,Inc.(Golder)toidentifyandcharacterizethemostcommongeotechnicalconditionsthatposethegreatesttechnicalandeconomicchallengesforruralAlaskaoverheadintertielinesascurrentlydesigned.

Insummary,GolderidentifiedthreeconceptualgeotechnicalconditionsrepresentingthegreatesteconomicchallengeforruralAlaskaoverheadinterties.Thesearesummarizedbelow.

Profile“A”:Icy,“warm”permafrostcomprisedprimarilyoflow‐plasticitymineralsiltbelowanactivelayerwithhigherorganiccontent.Thepermafrosttemperatureintheupper15feetbeneaththeactivelayerwouldhaveamaximumtemperature(occurringinlateautumn)of31.0to31.5°F.Theactivelayerisassumedtobeapproximately3.5feetthick,consistingoforganicsoilsandsurfacepeat.Surfacevegetationintheprojectfootprintisassumedtoremainundisturbedbylineconstruction.ThisprofileisintendedtorepresentagenericgeotechnicalprofileinthelowerYukonandKuskokwimareas.

Profile“B”:Warmanddegradingpermafrost,primarilylow‐tomoderate‐plasticitymineralsiltwithelevatedporewatersalinity.Taliksorthinunbondedsoillayersmaybepresentinthefrozensoilmatrixwithin15to20feetbelowgrade.Temperaturesareexpectedtoaverage31.5to31.8°Fintheuppermost15feetbelowtheactivelayer.Degradingpermafrostconditionsareexpectedbelowtheactivelayerinsomeareasalongtheintertiealignment.Surfacevegetationintheprojectfootprintisassumedtoremainundisturbedbylineconstruction.ThisprofileisintendedtorepresentagenericgeotechnicalprofilealongcoastalareasofwesternAlaska.

Profile“C”:Thawedorunfrozenmineralsoil,generallysandywithsiltcontentsof20%to40%totaldryweight.Highlydegradedpermafrostwithsignificantthawedzonesispresentbelowtheactivelayer.Soilmoisturecontentsrepresentsaturatedconditionsandnosignificantporewatersalinityispresent.Ahigherorganiccontentactivelayerispresent,withgrasses,brush,andtreesforvegetation.Theactivelayerisapproximately5feet.ThisprofileisintendedtorepresentagenericgeotechnicalprofilealongthepermafrostmarginininteriorAlaskaorinlandareaswithsignificantpermafrostdegradation.

C.2.2 EnvironmentalLoads

Thefollowingloadingswereanalyzedforeachconceptualdesign:

Case1:NationalElectricalSafetyCode(NESC)250B=½inchofice,4poundspersquarefoot(psf)wind.

Case2:NESC250C=noice,120mphwind.

Page 117: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-9

Case3:NESC250D=¼inchofice,80mphwind.

Case4:Highice=1inchice,nowind,30degreesFahrenheit(°F).

Case5:Noiceorwind.

TheseloadcasesareconsideredsufficientformanyruralAlaskaoverheadintertieapplications.Specificlocationsmaybesubjecttohigherand/orlowerwindand/oriceloadings.30Exceptwherespecificallystatedotherwise,eachoftheconceptualdesignspresentedinthissectioncomplywiththemoststringentoftheseloadconditions.

30 Section4.6ofthePhaseIFinalReportprovidesasummaryofenvironmentalloadingsaroundAlaska(Polarconsult,2009)

Page 118: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-10

C.3 CONCEPTUALDESIGNOFOVERHEADHVDCTRANSMISSION,RUSSTANDARDPRACTICE

Theconceptualdesignsofoverheadintertielinespresentedinthissectionhavebeendevelopedtotakeadvantageofthefollowingfactors:

● Alaskacontractors,linecrews,andutilitylinepersonnelarefamiliarwithRUSstandardpracticematerials,designs,andconstructionpractices,thustheywillbemorefamiliarwiththetechniquesandproceduresforbuilding,maintaining,andrepairingtheselines.

● AlaskaalreadyhasmanymilesofRUSstandard‐practicedistributionandtransmissionlinesbuiltandinservicethroughoutthestate.Utilitiesunderstandtheperformancerecordandissueswiththistypeoflineconstruction.

● Utilitylenders,whichincludesRUS,understandandacceptRUSstandardconstructionpractice,whichcansimplifyobtainingfundsforconstructingnewinterties.

Totakeadvantageofthesefactors,conceptualdesignforHVDCpreservedRUSstandardpracticeconstructiontotheextentpossible,modifyingthepoletopassemblytoaccommodatetheconductor(s),insulator(s),andclearancesforHVDCoperation.TherulingspanisalsoincreasedtotakeadvantageofthefewerwiresandreducedstructureloadsassociatedwiththeHVDCcircuitconfigurations.

StructuralanalysisofconventionaloverheadHVDCtransmissionstructures(adaptedfromRUSstandardpractice)wasperformedbyPolarconsult.Aconceptualdesignsummaryispresentedinthefollowingsectionsforeachlineconfiguration.

C.3.1 ConventionalACIntertieDesign

ConventionalACintertiedesignsforlow‐power(under1MW)ruralAlaskaACintertielinesareconsideredinthisstudyforthefollowingreasons:

1. ThemajorityofexistingruralAlaskaintertiesarebuiltperRUSstandardpractice.Thus,thisconventionalACoverheadlineconfigurationisthebaselineforcomparisonsofcapitalcost,electricalefficiency,andothermetricsbywhichtheHVDCintertiesystemsareevaluatedinthisreport.

2. TheRUSstandardpracticeconstructionthatisusedformostACintertielinesinruralAlaskahasbeenusedinthisreportasthebasisforconceptualdesignofconventionallybuiltHVDCintertielines.

MostruralAlaskaACintertielinesaredesignedandconstructedperRUSstandardpractice,whichtypicallyusesdirect‐burialcantileveredwoodpoles.31Manyintertielines,suchasthoseintheYukon‐Kuskokwimregion,cannotusedirect‐burialcantileveredwoodpoledesignsduetotheadversegeotechnicalconditions.Intheseproblemareas,thewoodpoleiscommonlyattachedtoasteelpiledriventoadepthofasmuchas40feettoprovideanadequatefoundationforthecantileveredpole.Thewoodpolesaretypically35to45feetinlength,dependingonthesiteconditionsandlinedesign.

ThepolessupportastandardRUStangentpole‐topassemblyaspresentedonFigureC‐1.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐1.

31 SeeRUS,1998;RUS,2005.

Page 119: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-11

Figure C-1 Tangent Pole for Conventional AC Intertie Line

ImageCredit:RUS,1998

Page 120: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-12

Table C-1 Conceptual Design Data for Conventional AC Intertie Line

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 1 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

RUS STD. AC CONSTRUCTION 14.4 / 24.9 KV AC

THREE‐PHASE 14.4 / 24.9 Kv AC INTERTIE TYPE

STANDARD RUS CONSTRUCTION THREE PHASE AC DIST LINE < 1 MW

TYPE OF TANGENT STRUCTURE: BASE POLE:

WOOD POLE 35 FT CLASS 1

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION COMMON NEUTRAL

SIZE: 1/0 (raven) 1/0 (raven)

STRANDING: 6/1 6/1

MATERIAL: ACSR   ACSR  

DIAMETER (IN): 0.398 0.398

WEIGHT (LBS/FT): 0.145 0.145

RATED STRENGTH (LBS): 4,380 4,380

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) COMMON NEUTRAL (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial 0.5 in. radial

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 30.6 psf 120 mph 30.6 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial 0.25 in. radial

WIND: (transverse) 80 mph 13.6 psf 80 mph 13.6 psf

IV. SAG & TENSION DATA

RULING SPAN: 250 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION COMMON NEUTRAL

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 1,333 642 1,333 642

30% 15% 30% 15%

NESC b. LOADED TEMP: 0 F lbs: 2,190 2,190

50% 50%

   MAXIMUM ICE TEMP: 30 F lbs: 2,488 2,488

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 1,875 1,875

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 1,868 1,868

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 3.61 3.61

   UNLOADED HIGH TEMP TEMP: 212 F 3.56 3.56

   MAXIMUM ICE TEMP: 30 F 5.93 5.93

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 3.73 3.73

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.2 21.2 5.0

VI. RIGHT OF WAY

WIDTH: 30 FT. AT EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 35 FT. AT EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 121: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-13

C.3.2 MonopolarSingle‐WireTransmissionwithEarth‐ReturnPath(SWER),ConventionallyBuilt

TheRUSstandardpracticeforanAClineconstruction(FigureC‐2)canbeadaptedforamonopolarSWERHVDCline.Thenecessarychangesarelistedbelow:

● Eliminationofthefour(orthree)conductors,insulators,andthecross‐armassembly.

● Additionofasingleconductorratedforthestructuralloadsandelectricalrequirementsoftheline.Aluminumconductorsteelreinforced(ACSR)4/0Penguinwasselectedfortheconceptualdesign.

● Addasinglelinepostinsulatorratedfornominal50kVDCandthestructuralloadsfromtheconductors.A115kVACNGKpolymerlinepostinsulator(#L4‐SN321‐15U)wasselectedfortheconceptualdesign.32

● Increasetherulingspanbetweenthepolesfrom250feet(typicalforAClines)to500feet.

Atangentpole‐topassemblyforaconventionallybuiltmonopolarHVDCSWERintertieisshownonFigureC‐2.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐2.

32 TheinsulatordesignisconsideredconservativeandisanticipatedtobeadequateformostregionsofAlaska.Insulatorsrated

atalowervoltagemaybeappropriateforsomeintertielines.

Page 122: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-14

Figure C-2 Conventional Tangent Pole for Monopolar SWER HVDC Intertie Line

Page 123: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-15

Table C-2 Conceptual Design Data for Conventionally Built Monopolar SWER HVDC Intertie Line

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 1 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

RUS STD. AS HVDC SWER 50 KV HVDC

MONOPOLAR HVDC OVERHEAD INTERTIE, SWER CIRCUIT TYPE

STANDARD RUS CONSTRUCTION MONOPOLAR HVDC SWER

TYPE OF TANGENT STRUCTURE: BASE POLE:

WOOD POLE 35 FT CLASS 1

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION COMMON NEUTRAL

SIZE: 4/0 'PENGUIN' (NONE)

STRANDING: 6/1

MATERIAL: ACSR  

DIAMETER (IN): 0.563

WEIGHT (LBS/FT): 0.291

RATED STRENGTH (LBS): 8,350

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) COMMON NEUTRAL (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial (NONE)

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 31.1 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial

WIND: (transverse) 80 mph 13.8 psf

IV. SAG & TENSION DATA

RULING SPAN: 500 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION COMMON NEUTRAL

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 1,999 1,142 (NONE)

24% 14%

NESC b. LOADED TEMP: 0 F lbs: 4,175

50%

   MAXIMUM ICE TEMP: 30 F lbs: 4,982

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 3,915

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 3,013

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 9.71

   UNLOADED HIGH TEMP TEMP: 212 F 11.32

   MAXIMUM ICE TEMP: 30 F 14.06

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 10.44

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.7 21.7 5.0

VI. RIGHT OF WAY

WIDTH: 40 FT. AT EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 45 FT. AT EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 124: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-16

C.3.3 MonopolarTwo‐WireTransmissionwithMetallicConductor‐ReturnPath(TWMR),ConventionallyBuilt

ThestandardRUSdesignforanAClinecanbeadaptedforamonopolarHVDClinewithmetallicreturn.Necessaryadaptationsarelistedbelow:

● Eliminatethefour(orthree)conductors,insulators,andthecross‐armassembly.

● Increasetherulingspanfortheintertielinefromatypical250feetupto500feet.

● Addonecantileveredlinepostinsulatorratedfornominal50kVDCandthestructuralloadsfromtheconductors.115kVACNGKpolymerlinepostinsulators(#L4‐SN321‐23)wereselectedfortheconceptualdesign.

● Addoneoffsetneutralbracketforthemetallicreturnconductor.

● Addtwoconductorsratedforthestructuralloadsandelectricalrequirementsoftheline.ACSR4/0Penguinwasselectedfortheconceptualdesignforbothhigh‐voltageconductors.

Atangentpole‐topassemblyforthisconceptualdesignisshownonFigureC‐3.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐3.

Page 125: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-17

Figure C-3 Conventional Tangent Pole for Monopolar HVDC with Metallic Return

Page 126: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-18

Table C-3 Conceptual Design Data for Conventionally Built Monopolar HVDC with Metallic Return

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 1 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

RUS STD. AS HVDC TWMR 50 KV HVDC

MONOPOLAR HVDC INTERTIE ‐ TWMR CIRCUIT TYPE

(METALLIC RETURN) MONOPOLAR HVDC ‐ METALLIC RETURN

STANDARD RUS CONSTRUCTION TYPE OF TANGENT STRUCTURE: BASE POLE:

WOOD POLE 45 FT CLASS 1

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION COMMON NEUTRAL

SIZE: 4/0 'PENGUIN' 4/0 'PENGUIN'

STRANDING: 6/1 6/1

MATERIAL: ACSR   ACSR  

DIAMETER (IN): 0.563 0.563

WEIGHT (LBS/FT): 0.291 0.291

RATED STRENGTH (LBS): 8,350 8,350

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) COMMON NEUTRAL (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial 0.5 in. radial

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 32.2 psf 120 mph 32.2 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial 0.25 in. radial

WIND: (transverse) 80 mph 14.3 psf 80 mph 14.3 psf

IV. SAG & TENSION DATA

RULING SPAN: 500 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION COMMON NEUTRAL

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 1,999 1,142 1,999 1,142

24% 14% 24% 14%

NESC b. LOADED TEMP: 0 F lbs: 4,175 4,175

50% 50%

   MAXIMUM ICE TEMP: 30 F lbs: 4,982 4,982

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 3,983 3,983

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 3,013 3,013

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 9.71 9.71

   UNLOADED HIGH TEMP TEMP: 212 F 11.32 11.32

   MAXIMUM ICE TEMP: 30 F 14.06 14.06

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 10.44 10.44

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.7 21.7 5.0

VI. RIGHT OF WAY

WIDTH: 50 FT. AT EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 45 FT. AT EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 127: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-19

C.3.4 BipolarTwo‐WireTransmission,ConventionallyBuilt

ThestandardRUSdesignforanAClinecanbeadaptedforabipolarHVDCline.Necessaryadaptationsarelistedbelow:

● Eliminatethefour(orthree)conductors,insulators,andthecross‐armassembly.

● Increasetherulingspanfortheintertielinefromatypical250feetupto500feet.

● Addtwocantileveredpostinsulatorsratedfornominal50kVDCandthestructuralloadsfromtheconductors.A115kVACNGKpolymerlinepostinsulator(#L4‐SN321‐15U)wasselectedfortheconceptualdesign.

● Addtwoconductorsratedforthestructuralloadsandelectricalrequirementsoftheline.ACSR4/0Penguinwasselectedfortheconceptualdesignforboththehigh‐voltageandmetallic‐returnconductors.

Atangentpole‐topassemblyforthisconceptualdesignisshownonFigureC‐4.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐4.

Page 128: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-20

Figure C-4 Conventional Tangent Pole for Bipolar HVDC Intertie Line

Page 129: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-21

Table C-4 Conceptual Design Data for Conventionally Built Bipolar HVDC Intertie Line

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 2 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

RUS STD. AS BIPOLAR HVDC +/‐ 50 KV HVDC

BIPOLAR HVDC INTERTIE TYPE

STANDARD RUS CONSTRUCTION BIPOLAR HVDC

TYPE OF TANGENT STRUCTURE: BASE POLE:

WOOD POLE 40 FT CLASS 1

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION + 50 kVDC TRANSMISSION ‐ 50 kVDC

SIZE: 4/0 'PENGUIN' 4/0 'PENGUIN'

STRANDING: 6/1 6/1

MATERIAL: ACSR   ACSR  

DIAMETER (IN): 0.563 0.563

WEIGHT (LBS/FT): 0.291 0.291

RATED STRENGTH (LBS): 8,350 8,350

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) TRANSMISSION (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial 0.5 in. radial

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 31.2 psf 120 mph 31.2 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial 0.25 in. radial

WIND: (transverse) 80 mph 13.9 psf 80 mph 13.9 psf

IV. SAG & TENSION DATA

RULING SPAN: 500 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION TRANSMISSION

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 1,999 1,142 1,999 1,142

24% 14% 24% 14%

NESC b. LOADED TEMP: 0 F lbs: 4,175 4,175

50% 50%

   MAXIMUM ICE TEMP: 30 F lbs: 4,982 4,982

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 3,922 3,922

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 3,013 3,013

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 9.71 9.71

   UNLOADED HIGH TEMP TEMP: 212 F 11.32 11.32

   MAXIMUM ICE TEMP: 30 F 14.06 14.06

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 10.44 10.44

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.7 21.7 5.0

VI. RIGHT OF WAY

WIDTH: 50 FT. AT EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 45 FT. AT EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 130: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-22

C.4 CONCEPTUALDESIGNOFOVERHEADHVDCTRANSMISSION,ALASKA‐SPECIFICMETHODS

TheconceptualdesignsofoverheadintertielinespresentedinthissectionhavebeendevelopedtoreduceconstructioncostsonruralAlaskainterties.Costreductionisachievedthroughspecialattentiontothefactorslistedbelow.

● Minimizingtherelianceonheavyequipmentthatmustbemobilizedtoaconstructionsite.Iflighterequipmentorlocalequipmentcanbeusedforconstruction,mobilizationcostswillbeless,reducingprojectcosts.

● Maximizingtheflexibilityinconstructionmethodsandseasons.Bydesigningfortheuseofsmallerequipment,greateruseofhelicoptersforconstructionsupport,andsimilartechniques,all‐seasonconstructionbecomespossible,creatingnewopportunitiestoincreaseutilizationofequipment,increasecompetitionforlineconstructionprojects,andreduceprojectcosts.

Thesefactorshavebeenincorporatedintotheconceptualdesignelementslistedbelow.

● Useoftallerstructuresandlongerspans.BecauseHVDCcircuitsrequireonlyoneortwowires,theycanutilizelongerspansthanacomparablethree‐orfour‐wireACcircuit.Increasingspansreducesthenumberofstructuresandfoundationsforagivenlengthofoverheadline,whichreducescosts.Withthisapproach,tallerstructuresareneededtomaintainrequiredclearancesbetweentheconductorandtheground.

● Useofglass‐fiber‐reinforcedpolymer(GFRP)polesinsteadofwoodorsteelpoles.GFRPpoleshavebeenusedforover50yearsinelectricutilityapplications33buthavelittletonohistoryinAlaska’selectricutilityindustry.GFRPpolesarelighterthanwoodorsteelpolessotheycanbetransportedbyasmallhelicoptersuchasaHughes500orBellUH‐1“Huey.”Theyarealsorot‐resistantanddonotleachtoxicpreservativesintothesoilsaroundthepole.ThePhaseIIprojectincludeddemonstrationofafield‐friendlyspliceforGFRPpoles,whichpermitstallpolestobeshippedinpartsandassembledinthefield.ThissplicecanalsobeusedforfieldrepairofdamagedGFRPpoles.

● Useofguyedstructuresinareaswheregeotechnicalconditionspreventcantileveredpolesfrombeingdirectlyburiedinthesoil.Acceptedpracticeforsuchconditionsistodriveasteelpileupto40feetdeepandthenfastenawoodpoletothesteelpile.Installingthesteelpilerequiresmobilizingacraneorotherheavyequipmenttotheprojectsite.Aguyedstructurecanbeinstalledinsuchconditionswithamuchsmallerbasefoundation,astheguyscarrymostofthemoment,andthestructurebasemostlycarriescompressiveloads.

ThefollowingsectionsdescribeconceptualdesignsusingtheseAlaska‐specificmethodsforthefollowingtypesofHVDCcircuits:

● MonopolarSWER;

● MonopolarTWMR;

● Bipolartwo‐wiretransmission.

Inallcases,theconceptualdesignspresentedinthefollowingsectionscomplywiththedesigncriteria,loadfactors,andstrengthfactorssetforthinSectionC.2ofthisappendixandbyRUS.34

33Ibrahim,2000.34 RUS,2009

Page 131: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-23

C.4.1 MonopolarSingle‐WireTransmissionwithEarth‐ReturnPath(SWER,Alaska‐SpecificDesign

TheAlaska‐specificconceptualdesignforamonopolarHVDClineconsistsofthefollowingelements:

● Single19#10Alumoweldconductorinstalledatarulingspanof1,000feet.

● Asinglelinepostinsulatorratedfornominal50kVDCandthestructuralloadsfromtheconductors.A115kVACNGKpolymerlinepostinsulator(#L4‐SN321‐15U)wasselectedfortheconceptualdesign.35

● A14‐inch‐diameter,0.375‐inchwall,50‐foot‐tallGFRPpole.Thispolecanbeincreasedto70feetifneededwithoutmodificationforspansupto1,500feetorforincreasedgroundorterrainclearances.

● Fourguysattachedtothepoletopinstalledata45‐degreeangletotheconductoranda45‐degreeangletoground.

● Guyanchorsconsistingoftwoflightsof8‐inchscrewanchorsdriven10to15feetintotheground.

● Apolebasefoundationconsistingofthree1½‐inchby25‐footthermoprobemicropilesinstalledtoadepthof20feet.Theremaining5feetserveasthethermoproberadiator.

Atangentpole‐topassemblyforthismonopolarHVDCSWERintertieconceptualdesignisshownonFigureC‐5.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐5.

35 TheinsulatordesignisconsideredconservativeandisanticipatedtobeadequateformostregionsofAlaska.Insulatorsrated

atalowervoltagemaybeappropriateforsomeintertielines.

Page 132: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-24

Figure C-5 Alaska-Specific Tangent Pole for Monopolar SWER HVDC Intertie Line

Page 133: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-25

Table C-5 Conceptual Design Data for Alaska-Specific Monopolar SWER HVDC Intertie Line

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 1 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

AK SPECIFIC HVDC SWER DES. 50 KV HVDC

MONOPOLAR HVDC OVERHEAD INTERTIE, SWER CIRCUIT TYPE

ALASKA‐SPECIFIC CONSTRUCTION MONOPOLAR HVDC SWER

TYPE OF TANGENT STRUCTURE: BASE POLE:

GUYED FRP POLE 45 FT FRP POLE

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION COMMON NEUTRAL

SIZE: 19#10 ALUMOWELD (NONE)

STRANDING: 19#10

MATERIAL: ALUMOWELD

DIAMETER (IN): 0.509

WEIGHT (LBS/FT): 0.449

RATED STRENGTH (LBS): 27,190

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) COMMON NEUTRAL (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial (NONE)

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 32.2 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial

WIND: (transverse) 80 mph 14.3 psf

IV. SAG & TENSION DATA

RULING SPAN: 1,000 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION COMMON NEUTRAL

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 8,071 6,798 (NONE)

30% 25%

NESC b. LOADED TEMP: 0 F lbs: 11,246

41%

   MAXIMUM ICE TEMP: 30 F lbs: 12,637

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 10,075

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 9,736

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 15.97

   UNLOADED HIGH TEMP TEMP: 212 F 13.73

   MAXIMUM ICE TEMP: 30 F 23.85

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 15.02

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.7 21.7 5.0

VI. RIGHT OF WAY

WIDTH: 60 FT. AT EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 70 FT. FOOTPRINT OF 4‐GUYED STRUCTURE, GUYS AT 45 DEGREES TO LINE

WIDTH: 95 FT. FOOTPRINT OF 4‐GUYED STRUCTURE, GUYS IN LINE AND NORMAL TO CONDUCTOR.

WIDTH: 55 FT. AT EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 134: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-26

C.4.2 MonopolarTwo‐WireTransmissionwithMetallicConductor‐ReturnPath(TWMR),Alaska‐SpecificDesign

TheAlaska‐specificconceptualdesignforamonopolarHVDCline(FigureC‐6)canbeadaptedforatwo‐wiremonopolarHVDClinewithmetallicreturn.Thenecessarychangesarelistedbelow:

● IncreasetheGFRPpoleheightfrom50feetto65feet.NochangeisneededinthepolesectionormaterialundertheloadcaseslistedinSectionC.2.

● Additionofasecond19#10Alumoweldconductorsupportedbyanoffsetbracket15feetbelowthetopofthepole.Atthisattachmentpoint,thissecondconductorwillhaveadequateclearancefromtheguys,ground,andthehigh‐voltageconductorunderallloadconditionslistedinSectionC.2ofthisappendix.

● Maintaintherulingspanat1,000feet.

Atangentpole‐topassemblyforaconventionallybuilttwo‐wiremonopolarHVDCintertieisshownonFigureC‐6.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐6.

Page 135: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-27

Figure C-6 Alaska-Specific Tangent Pole for Monopolar Metallic-Return Intertie Line

Page 136: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-28

Table C-6 Conceptual Design Data for Alaska-Specific Monopolar Metallic-Return Intertie Line

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 1 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

AK SPECIFIC HVDC SWER DES. 50 KV HVDC

MONOPOLAR HVDC OVERHEAD INTERTIE TMWR CIRCUIT TYPE

(METALLIC RETURN) MONOPOLAR HVDC WITH METALLIC RETURN

ALASKA‐SPECIFIC CONSTRUCTION TYPE OF TANGENT STRUCTURE: BASE POLE:

GUYED FRP POLE 65 FT FRP POLE

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION COMMON NEUTRAL

SIZE: 19#10 ALUMOWELD 19#10 ALUMOWELD

STRANDING: 19#10 19#10

MATERIAL: ALUMOWELD ALUMOWELD

DIAMETER (IN): 0.509 0.509

WEIGHT (LBS/FT): 0.449 0.449

RATED STRENGTH (LBS): 27,190 27,190

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) COMMON NEUTRAL (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial 0.5 in. radial

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 34.0 psf 120 mph 34.0 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial 0.3 in. radial

WIND: (transverse) 80 mph 15.1 psf 80 mph 15.1 psf

IV. SAG & TENSION DATA

RULING SPAN: 1,000 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION COMMON NEUTRAL

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 8,071 6,798 8,071 6,798

30% 25% 30% 25%

NESC b. LOADED TEMP: 0 F lbs: 11,246 11,246

41% 41%

   MAXIMUM ICE TEMP: 30 F lbs: 12,637 12,637

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 10,075 10,075

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 9,736 9,736

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 15.97 15.97

   UNLOADED HIGH TEMP TEMP: 212 F 13.73 13.73

   MAXIMUM ICE TEMP: 30 F 23.85 23.85

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 15.02 15.02

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.7 21.7 5.0

VI. RIGHT OF WAY

WIDTH: 60 FT. FOR EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 100 FT. FOOTPRINT OF 4‐GUYED STRUCTURE, GUYS AT 45 DEGREES TO LINE

WIDTH: 135 FT. FOOTPRINT OF 4‐GUYED STRUCTURE, GUYS IN LINE AND NORMAL TO CONDUCTOR.

WIDTH: 60 FT. FOR EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 137: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-29

C.4.3 BipolarHVDCIntertieLine,AlaskaSpecificDesign

TheAlaska‐specificconceptualdesignforamonopolarHVDCline(FigureC‐7)canbeadaptedforatwo‐wirebipolarHVDCline.Thenecessarychangesarelistedbelow:

● IncreasetheGFRPpoleheightfrom50feetto55feet.Nochangeisneededinthepolesectionormaterial.

● Eliminatethepost‐topinsulatorandaddtwo8‐foot‐longcross‐arms.APowertrusion#SH2096100Norequalwasselectedfortheconceptualdesign.

● Installtwosuspensioninsulatorsoffeachendofthecross‐arm.A115‐kVACNGKsuspensioninsulator#251‐SE510‐EEorequalwasselectedfortheconceptualdesign.

● Use19#10Alumoweldastheconductorforboththepositiveandnegativepolesofthecircuit.

● Maintainthesamespanlengthof1,000feet.

Atangentpole‐topassemblyforanAlaska‐specificbipolartwo‐wireHVDCintertieisshownonFigureC‐7.TheconceptualdesigndataforthistypeoflineconstructionisprovidedinTableC‐7.

Page 138: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-30

Figure C-7 Alaska-Specific Tangent Pole for Bipolar HVDC Intertie Line

Page 139: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-31

Table C-7 Conceptual Design Data for Alaska-Specific Bipolar HVDC Intertie Line

I. GENERAL INFORMATION

PROJECT: CONCEPTUAL 1 MW HVDC LINESUMMARY OF CONCEPTUAL DESIGN DATA LINE IDENTIFICATION: VOLTAGE:

AK SPECIFIC HVDC SWER DES. 50 KV HVDC

BIPOLAR HVDC INTERTIE TYPE

ALASKA‐SPECIFIC CONSTRUCTION BIPOLAR HVDC

TYPE OF TANGENT STRUCTURE: BASE POLE:

GUYED FRP POLE 55 FT FRP POLE

DESIGNED BY: POLARCONSULT ALASKA (CONCEPT DESIGN)

II. CONDUCTOR DATA TRANSMISSION COMMON NEUTRAL

SIZE: 19#10 ALUMOWELD 19#10 ALUMOWELD

STRANDING: 19#10 19#10

MATERIAL: ALUMOWELD ALUMOWELD

DIAMETER (IN): 0.509 0.509

WEIGHT (LBS/FT): 0.449 0.449

RATED STRENGTH (LBS): 27,190 27,190

III. DESIGN LOADS

NESC LOADING DISTRICT: HEAVY TRANSMISSION (LBS/FT) COMMON NEUTRAL (LBS/FT)

   a. ICE (IN.): (vertical) 0.5 in. radial 0.5 in. radial

   b. WIND ON ICED COND (PSF): (transverse) 4.0 psf 4.0 psf

   c. CONSTANT K: (resultant + K) 0.3 psf 0.3 psf

EXTREME ICE (NO WIND): (vertical) 1.0 in. radial 1.0 in. radial

EXTREME WIND (NO ICE): (transverse) 120 mph 32.3 psf 120 mph 32.3 psf

EXTREME ICE + WIND:

ICE: (vertical) 0.25 in. radial 0.3 in. radial

WIND: (transverse) 80 mph 14.3 psf 80 mph 14.3 psf

IV. SAG & TENSION DATA

RULING SPAN: 1,000 ft.

SOURCE OF SAG/TENSION DATA: SOUTHWIRE SAG10 TRANSMISSION COMMON NEUTRAL

TENSIONS (% RATED STRENGTH) INITIAL FINAL INITIAL FINAL

NESC a. UNLOADED  TEMP: 60 F lbs: 8,071 6,798 8,071 6,798

30% 25% 30% 25%

NESC b. LOADED TEMP: 0 F lbs: 11,246 11,246

41% 41%

   MAXIMUM ICE TEMP: 30 F lbs: 12,637 12,637

   HIGH WIND (NO ICE) TEMP: 60 F lbs: 10,075 10,075

   UNLOADED LOW TEMPERATUR TEMP: ‐20 F lbs: 9,736 9,736

SAGS (FT)

   NESC DISTRICT LOADED  TEMP: 0 F 15.97 15.97

   UNLOADED HIGH TEMP TEMP: 212 F 13.73 13.73

   MAXIMUM ICE TEMP: 30 F 23.85 23.85

   LOADED 1/2" ICE, NO WIND TEMP: 32 F 15.02 15.02

V. CLEARANCES

MINIMUM CLEARANCES TO BE MAINTAINED AT: EXTREME ICE LOADING

CLEARANCES IN FEET RAILROADS ROADS CULTIVATED AREAS (REMOTE AREAS) ADD'L ALLOWANCE

TRANSMISSION CLR. TO GROUND NA 21.7 21.7 5.0

VI. RIGHT OF WAY

WIDTH: 60 FT. FOR EXTREME WIND, FINAL SAG, AREAS WITH TYP. STRUCTURES ADJ. TO ROW

WIDTH: 95 FT. FOOTPRINT OF 4‐GUYED STRUCTURE, GUYS AT 45 DEGREES TO LINE

WIDTH: 125 FT. FOOTPRINT OF 4‐GUYED STRUCTURE, GUYS IN LINE AND NORMAL TO CONDUCTOR.

WIDTH: 55 FT. FOR EXTREME WIND, FINAL SAG, CLEARANCE TO VEGETATION AT LINE ELEV.

Page 140: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-32

C.4.4 ConceptualDesignAnalysis

Theconceptualdesignofoverheadtransmissionstructuresandfoundationsconsideredmethodsforconstruction,long‐termoperation,maintenance,repair,andreplacementoftheHVDCtransmissioninfrastructure.

C.4.4.1 ConstructionMethods

Thecost‐reductionpotentialofHVDConruralAlaskaprojectsmayberealizedusingoptimizedconstructionmethods.

Theuseoflightweightoverheadstructuresandfoundationsallowssignificantlatitudefortheconstructionandmaintenanceofthelines.Theuseofhelicopterstostagethematerialsandconstructionequipmentbecomespossible.

ConventionalACtransmissionlineconstructionistypicallyperformedinthewintertosupporttheheavyequipmentrequiredforconstruction.Thisequipmentoftenincludeslargepile‐drivingordrillingmachinesthatcanonlybeoperatedonfrozenground.Theresultingwinterconstructionschedule,combinedwithsummermobilizationoftheequipment,contributessignificantlytothehighcostofACinterties.

ACtransmissionstructuresandfoundationsareusuallybasedonacantileverpoledesign.Forthelow‐strengthgeotechnicalconditionsfoundinmuchofruralAlaska,thisdesignapproachisinefficientcomparedtotheuseofaxiallyloadedguyedstructuresproposedintheHVDCconceptualdesign.

TheHVDCconstructionapproachcanutilizeHughes500orBellUH‐1typehelicopters,whicharecommonlyavailableinAlaska.Thesehelicoptershaveaslingcapacityofapproximately1,000and3,000pounds,respectively.TheHVDCcompositepolestructures,guywires,screwfoundations,thermoprobefoundations,andothertransmissioncomponentscanbereadilystagedbythesehelicopters.Installationequipmentandotherconstructiontoolsareavailableinsizesthatcanbeliftedbyhelicopter.

Inaddition,thisconstructionapproachinvolvestheuseoftracked,low‐ground‐pressurevehicleswithattachmentsoptimizedfortheinstallationoftheHVDCfoundationsanderectionofthecompositepolestructures.TheidealvehiclewouldbesimilartoahydraulicallydrivenBBCarrier.TheBBCarrierwasapredecessorofNodwelltrackedvehicles,butmuchsmaller36.Thehydraulicdrivesystemcanbeusedtopowerdrills,winches,spades,impactdrivers,andotheronboardequipmentusedforlineconstruction37.

C.4.4.2 RecommendedConstructionApproach

ThefollowingnarrativesetsforththegeneralconstructionapproachrecommendedfortheconceptualoverheadHVDCintertiedesignpresentedherein.Preferredconstructionmethodsforanyspecificintertiewilldifferfromthisapproachandwillaffectconstructioncosts.

1. Identifyandprocurepropertyrightstotheintertiealignment.Standardpracticesforthiseffortareappropriateandarenotduplicatedhere.

36 TheBBCarrierwasmanufacturedinthelate1950sandearly1960sbyBombardier.Itisnolongerinproductionandisquite

raretoday.Itfeaturedagrossvehicleweightofabout2,000pounds,apayloadcapacityofabout1,000pounds,andagroundpressureoflessthanonepsi.Itsdrivetrainusedaplanetarytransmission,maintainingpowertobothtracksduringturns,whichreducedthetendencyofthesevehiclestodamagefragiletundravegetation.

37 A20,000to30,000‐ft‐lbhydraulicimpactdriverheadonasmallboomwouldbeusefulfordrivingfoundationscrewanchors.

Page 141: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-33

2. Sendanengineeringcrewandsurveypartytosurveythelineanddeterminepolelocationsinthefield.Surveyingandpreliminarylinedesignmaybecompletedbeforehandbyremotemethods(e.g.,lightdetectionandranging[LIDAR]survey).Theengineeringcrewwillconductgeotechnicaltestingateachpolesitetodeterminethetypeoffoundationrequired.Asappropriate,theengineeringcrewmayadjustpolelocationsbasedonencounteredconditions.

3. Orderandshipmaterialstotheprojectsite.Dependingontheproject,oneorbothvillageswillbeusedasthebaseofoperations.Itmaybecost‐effectivetopreassemblepoleorfoundationunitspriortoshippingtothesite.

4. Prepareandinstallpolefoundations.Dependingontheproject,polefoundationsmaybeshippedreadytoinstallormayrequiresomeassemblyinthevillage.Oncereadytodeploytothefield,thefoundationsforeachpole(polebaseandthreeguyfoundations)willbeairliftedtothepolesitebyhelicopter.Asmalllow‐ground‐pressurevehiclewillbeusedtoinstallthefoundations.Dependingontheterrain,thisstagemayoccurduringthelatewinterorsummermonths.Thegroundvehiclewillremaininthefield,andpersonnelandconsumableswillbetransportedtothevehicledailybyair.Thiswillreducetransittimes.

5. Prepareandassemblepoles.Thiswilloccurinoneorbothvillagesandmayincludesplicingthepoles,attachingthepoletopandbasehardware,attachingthepostinsulatorandstringingblocks,andattachingtheguywiresandhardware.Anassembledpolewillbepackagedinamannersuitableforairliftandclearlylabeledsoitisdeployedtotheproperfoundation.

6. Poleinstallation.Eachassembledpolewillbeairliftedbyhelicoptertothepole'sfoundation.Thepolewillbespottedonthegroundbythehelicopterandagroundcrew.ThegroundcrewwilluseanA‐frameandtheirsmall,low‐ground‐pressurevehicletoerectthepoleusingtwooftheguyanchorsashoistpoints.Alternatively,thehelicoptercouldbeusedforfastererectingandsecuringofthepole.Oncethepoleiserected,plumbed,andguystensioned,thecrewwilldrivetothenextfoundationsite.Dependingonhelicopterlogistics,itmaybecost‐effectivetoemploytwogroundcrewsforthisactivity.Groundcrewsandconsumableswillbemobilizedtothelinedailybyhelicopter.

7. Stringingandsettingtheconductor.Thestringinglinewillbedeployedbyhelicopter.Onceinplace,theconductorwillbestagedbyhelicopteranddeployedbygroundcrews.AHughes‐500canliftapproximately2,000feetofconductoratatime.Oncetheconductorisstrung,groundcrewswillascendeachpoletoset,tension,andfixtheconductor.Armorwrapandvibrationdamperswillbeinstalledatthistime.

C.4.5 MaintenanceMethods

Thissectiondiscussestheconceptualmaintenanceandrepairmethodsthatareappropriateforthelong‐span,tall‐poleHVDCSWERoverheadintertie.Whilesometopicsmaybegenerallyapplicabletothemaintenanceandrepairofoverheadinterties,thisdiscussionfocusesonandisspecifictothisparticularintertiedesignconcept.

Fiberglasspolescannotbeclimbedusingthespur‐and‐beltmethodcommonlyemployedtoclimbwoodpoles.Instead,apulleyandcableorropesystemwouldbeanintegralpartofthefiberglasspole.Thepulleywouldbeinstalledinthepoletop,andthecablewouldtraveldownthepoleinterior.Thelinecrewisenvisionedtouseaharnessandwinchapparatustoattachtothepoleapparatusandusethissystemtoliftalinemantothepoletopformaintenance.

Page 142: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-34

Thisapproachoffersseveraladvantagescomparedwithconventionalpoleclimbingmethods.

● Theequipmentandinherentsafetyoftheapproachenableslessexperiencedcrewstoascendthepoles.

● Pole‐topmaintenanceiseasierorpossibleduringcolderweatheroradverseconditions.

● Ascent,descent,andtop‐siteworkisfasterbecausethecrewisnotasfatigued.

● Workislessphysicallydemanding,reducingthelikelihoodoffatigue‐relatedaccidents.

Page 143: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-35

C.5 CONCEPTUALDESIGNANALYSIS

Themajorityofthedesignanalysisfortheoverheadtransmissionconceptspresentedinthisstudyfollowsestablisheddesignpracticesthatarefoundinindustryliterature.38ThissectiondiscussesspecificaspectsoftheconceptualdesignofHVDCsystemsthatareuniquetoAlaskaandwarrantmoredetaileddiscussion.

C.5.1 StructuralDesign

PolarconsultcontractedwithLineDesignEngineering,Inc.(LDE)forassistanceinthestructuralandcodeanalysisofAlaska‐specificoverheadHVDCtransmissionstructuredesignconcepts.

C.5.2 FoundationDesign

PolarconsulttaskedGolderwithdevelopingconceptualfoundationdesignsfortherepresentativesoilsandgeotechnicalconditionsdiscussedinthisreport.Golderproposedthreefoundationdesignconceptsthatprovideeconomicalfoundationoptionsforsupportingguyedpowerpolesintherepresentativegeotechnicalconditions.Thesearesummarizedbelow.

● Passivelycooledthermoprobemicropiles,installedunderthepoletoreceivecompressiveloads.ArcticFoundations,Inc.(AFI)wasidentifiedasanexperiencedmanufacturerofsuchfoundationsystems.

● Small‐diameterhelicalanchors,installedunderthepoletoreceivecompressiveloadsorinstalledattheguystoreceivetensionloads.Thermopilescouldbeinstalledadjacenttotheseanchorstodecreasetemperaturesinthebearingsoils,whichwillincreasetheanchorstrength.

● Smaller‐diameter(4‐to6‐inch)verticalpilesforbothpolesandguys,installedwithimpacthammersusingsmallertrackedrigs.Thermopilescouldbeinstalledadjacenttotheseanchorstodecreasetemperaturesinthebearingsoilsandincreasepilestrength.

Existingconventionalfoundationmethodsweremaintainedforconventionalintertielineconstruction.Thisconsistsofeitherdirectburialofawoodpoleinsuitablesoilsorfasteningawoodpoletoadrivensteelpileinthemoredifficultgeotechnicalconditions.

Forguyedpowerpoles,asetofthree1½‐inch‐diameterthermoprobemicropilesinstalledtoadepthof20feetwitha5‐footradiatorsectionabovegroundareusedastheconceptualdesignforthepolebase,andhelicalanchorsareusedastheconceptualdesignforthepoleguys.

C.5.3 AnalysisofThermoprobePerformance

PolarconsultcontractedwithZarlingAeroEngineers(ZAE)tomodeltheseasonalthermalperformanceofapassivecoolingelementsuchasathermoprobemicropile.ZAEmodeledawarmpermafrostconditionanalogoustoGolder’sgeotechnicalProfile“C”usingthickandthinorganiclayersandcurrentclimatedataformarginalpermafrostintheFairbanksarea.Thermoprobeswiththermalconductancesof1.0Britishthermalunit(Btu)/hr‐ft‐°Fand2.0Btu/hr‐ft‐°Fwereconsidered.39ZAEalsoevaluatedtheeffectofplacinga4‐inch‐thicklayerofrigidinsulationonthegroundsurfacewithin4feetofthethermoprobe.

38RepresentativepublicationsincludeRUS,2001;RUS,2003a;RUS,2009;Naidu,1996;KZK,2006;Skrotzki,1980;Southwire,2008;andThrash,2007.39The1.5‐inch‐diameter,25‐foot‐longthermoprobesinstalledattheFairbanksTestSite(seeSectionC.6ofthisappendix)haveanestimatedthermalconductanceof0.3Btu/hr‐ft‐°F(AFI,2011).

Page 144: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-36

ZAErepeatedthisanalysiswithwarmerclimateconditionstoforecasttheperformanceofthethermoprobesunderawarmingclimateinthe2060to2069decade.TheresultsoftheseanalysesaresummarizedinTableC‐8.ZAE’stechnicalanalysisandreportisincludedasAttachmentC‐1tothisappendix.

TableC‐8presentsthefollowingmodelresultsthatdirectlypertaintothestructuralperformanceofthethermoprobes:

1. Maximumdepthoftheactivelayer(occursinlatefall).Thisdefineshowmuchoftheupperportionofthethermoprobeisinthawed,structurallyweaksoilsthatprovidedlimitedlateralsupporttothethermopile.Forstructuralanalysis,thisportionofthethermoprobeisassumedtobeanunsupportedcolumnthatmustbestiffenoughtotransfercompressiveloadsfromthetopofthethermoprobedowntothepermafrostregionwithoutbuckling.

2. Averagemaximumtemperatureofthepermafrost1footfromthethermopileinearlyfall(maximumannualtemperature).Thisdefinestheminimumstrengthofthesoilaroundthethermoprobeandthebearingstrengthofthethermopiletoresistbothcompressiveandtensionloads.

TheresultsofZAE’sanalysis(TableC‐8)areexplainedbelow.Itisimportanttoemphasizethattheseresultsarespecifictothesoilparameters,thermoprobeperformance,andclimateconditionsmodeled.Othermodelinputsmayproducesignificantlydifferentresults.

1. Underthegeotechnicalconditionsmodeled,a4‐inchlayerofrigidfoaminsulationinstalledatthesurfaceandextendingradiallyoutfromthethermoprobefor4feetcanreducethemaximumdepthoftheactivelayerby1to2feet.Duetothemodeststructuralbenefit,expectedcost,anddifficultyofinstallingandmaintainingsuchaninsulationassembly,thisinsulationelementisnotincludedintheconceptualfoundationdesigns.

2. Underallgeotechnicalconditionsmodeled,thethermoprobelowersthesoiltemperatureimmediatelysurroundingthethermoprobethroughouttheyear.Thiseffectismostpronouncedduringthewintermonthswhenthethermoprobeisextractingheatfromthesoilandcoolsthesoilbyupto5°Fsurroundingthethermoprobe.Thiscoldbulbpersiststhroughthesummer,resultinginanend‐of‐summerresidualthermalanomalyofafew1/10ths°Finthesoilsurroundingthethermoprobe.Thisresultsignificantlyenhancesthecompressiveandtensioncapacityofthethermoprobeduringthewinterandspringmonthsandproducesalesser(anddecreasing)enhancementthroughthesummerandintofall.Thethermoprobeimmediatelystartscoolingthesurroundingsoilsuponthereturnoffreezingnighttimeconditionsinthelatefall.

Page 145: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-37

Table C-8 Summary of Results from Thermoprobe Modeling by ZAE

  Thermoprobeconductance=1.0Btu/hr‐ft‐°F  Thermoprobeconductance=2.0Btu/hr‐ft‐°F  ThinOrganicLayer ThickOrganicLayer  ThinOrganicLayer ThickOrganicLayer

ExistingClimateConditions (Fairbanks,1971–2000) 

4”SurfaceInsulation

NoSurfaceInsulation

4”SurfaceInsulation

NoSurfaceInsulation 

4”SurfaceInsulation

NoSurfaceInsulation

4”SurfaceInsulation

NoSurfaceInsulation

Maximumdepthofactivelayerwithoutthermoprobe(atthermoprobe)1  6.5feet  3feet  6.5feet  3feet 

Maximumdepthofactivelayerwiththermoprobe(atthermoprobe)  5.1feet  6.5feet  <1foot  3feet  5feet  6.0feet  <1foot  3feet 

Averageearlywintersoiltemperatureonefootfromthermoprobe  30°F  30°F  30°F  30°F  28°F  28°F  28°F  28°F 

Endofsummer/earlyfalltemperaturesonefootfromthermoprobe  30‐35°F  30‐35°F  30‐32°F  30‐34°F  30‐35°F  30‐35°F  29‐33°F  29‐34°F 

Projected2060‐2069ClimateConditionsforFairbanks(+2.7°Fincreaseinannualmeantemperature) 

Maximumdepthofactivelayerwithoutthermoprobe(atthermoprobe)1  8feet  8feet  3.5feet  3.5feet  NA  NA  NA  NA 

Maximumdepthofactivelayerwiththermoprobe(atthermoprobe)  6.5feet  7.5feet  1foot  3.5feet  NA  NA  NA  NA 

Averageearlywintersoiltemperatureonefootfromthermoprobe  31°F  31°F  31.5°F  31.5°F  NA  NA  NA  NA 

Endofsummer/earlyfalltemperaturesonefootfromthermoprobe  31‐37°F  31‐37°F  31‐34°F  31‐35°F  NA  NA  NA  NA 

SeethefullZAEreport,AttachmentC‐1tothisappendix,formoredetailedinformation. 1 Temperatureat11feetfromthermoprobe,whichisthelimitofthemodelgraphicsinthereport.NA: Notanalyzed.

Page 146: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-38

C.5.3.1 ThermoprobeConceptualDesign

AFIdevelopedconceptualthermopiledesignsbasedonthestructuralloadsgivenfortheAlaska‐specificintertiestructures.ThedesignandfabricationsheetsfortheAFIthermopileareincludedasAttachmentC‐2.

Polefoundationsusingeitherasingle3‐inchthermopileorasetofthree1½‐inchthermopilesarebothpractical.1½‐inchthermopilescanbeinstalledbysmallerequipmentthana3‐inchpile,althoughthematerialcostandinstallationtimewillbothbesomewhathigherthanforasingle3‐inchthermopile.Onsomeprojects,theuseofsmallerequipmentisexpectedtoresultinsufficientsavingsinspiteoftheincreasedmaterialandlaborcosts.

FiguresC‐9throughC‐11presenttheadapterplatedevelopedtomateaGFRPpoletothree1½‐inchthermopiles.FigureC‐8belowshowstheprototypeinstallationofthispolefoundationdesigninstalledatthefoundationtestsiteinFairbanks.TheFairbankstestingisdescribedingreaterdetailinSectionC.6ofthisappendix.

Figure C-8 Prototype Micro-Thermopile Tripod Pole Foundation

Fairbanks,Alaska.Polarconsult,2011

Page 147: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONSPHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-39

Figure C-9 Shop Drawing of Prototype GFRP Pole Base Adapter for Micro-Thermopile Foundation (Sheet 1 of 3)

Page 148: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONSPHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-40

Figure C-10 Shop Drawing of Prototype GFRP Pole Base Adapter for Micro-Thermopile Foundation (Sheet 2 of 3)

Page 149: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONSPHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-41

Figure C-11 Shop Drawing of Prototype GFRP Pole Base Adapter for Micro-Thermopile Foundation (Sheet 3 of 3)

Page 150: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONSPHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-42

Thispageintentionallyblank.

Page 151: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-43

C.5.3.2 ScrewAnchorConceptualDesign

BasedontheconceptualdesignanalysispreparedbyGolder,screwanchorsfittedwithtwoflightsof8‐inchhelicesanddriventoadepthof10to15feetbelowthegroundsurfacewillbesuitableforanchoringmostguys.IntheconceptualsoilspresentedbyGolder,theseanchorscanbeinstalledwithatorqueof10,000to15,000foot‐pounds.Guysatanglestructuresordeadendsmayrequiretwoormoreanchors.RepresentativescrewanchorsareshownonFigureC‐12.

Figure C-12 Galvanized Screw Anchors with 8-Inch Flights

Palletofgalvanizedscrewanchorswith8‐inchflights.SimilaranchorsaresuitableforrestrainingguysforAlaska‐specifictransmissionstructuresinmanychallengingsoils.(Polarconsult,2011;PhotographcourtesyofAlaska

FoundationTechnology,Inc.)

Page 152: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-44

C.5.4 ElectricalDesign

C.5.4.1 Conductor

A1‐MWtransmissioncapacityat50kVDCequatestoanominalpeakampacityof20amperes.Overloadorfaultconditionsarehigher.TheeconomicallyallowableconductorlossesontheHVDClineweresetat3%lossesat100%nominalcapacity.Fora25‐mile,1‐MW,two‐wiremonopolarintertie,thisisapproximatelyequivalentto1.5ohmsperconductor‐mile.TherequiredconductorresistanceisthesameforamonopolarSWERtransmissioncircuit,providedthatthegroundinggridsandearthreturnpathwayhaveatotalresistanceequaltoorlessthan37.5ohms.

Thestructuralrequirementsoftheconductorarepartofalargertechnicalandeconomicanalysisoftheoverheadsystemdesign.ForruralAlaskaintertielines,longerspansandfewerfoundationswillgenerallyresultinloweroverallcapitalcosts.Thisdesigndecisioncallsforstrongerconductorstowithstandthehigherstressesfromenvironmentalloadsandtallerpolestomaintaingroundclearancesundermaximumsagconditions.

ForconventionallybuiltHVDCintertiedesignconcepts,thesedesignconsiderationsresultedintheselectionofa4/0ACSRPenguinconductorforallHVDCcircuitconfigurations.

ForAlaska‐specificHVDCintertiedesignconcepts,thesedesignconsiderationsresultedintheselectionofa19#10AlumoweldconductorforallHVDCcircuitconfigurations.

C.5.4.2 Insulators

InsulatorsinDCapplicationsaremoresusceptiblethanACinsulatorstotheaccumulationofcontaminationontheinsulatorsheds.Thisisduetothepresenceofastaticelectricfieldaroundthehigh‐voltageconductor,whichattractschargedparticlestowardtheconductor.ThisattractionofchargedparticlesresultsinmoreparticleslandingonandcontaminatingtheinsulatorthanoccursoncomparableACsystems.ThisisbecausethealternatingelectricfieldaroundanACconductordoesnotimpartanetattractiontochargedparticles.

Periodicrainsandotherweathereventscandislodgetheseparticlesfromtheinsulatorsheds.Variousspecialcoatingscanalsohelptorepelparticles.Iftheinsulatorprovidesasufficientlylongleakagepathtoaccommodatetheaccumulatedcontamination,thennoactionisrequired.Insomeclimates,itisnecessarytowashtheinsulatorsperiodically.Thiscanbedonefromsuitablyequippedhelicoptersorlinetrucks.

OnmostruralAlaskaintertielines,washinginsulatorswouldbecostprohibitive,andwhenpossible,theinsulatorsshouldbedesignedtowithstandlong‐termaccumulationofcontamination.DesignguidanceforHVDCinsulatorsindicatethatinsulatorsratedfor34.5to42kVACserviceareadequatefor50kVDC,dependingonthedegreeofenvironmentalcontaminationandself‐cleaningconditionsthatexistalongtheintertieroute.40

DuetothewiderangeofenvironmentalconditionspresentinAlaska,averyconservativeconceptualinsulatordesignhasbeenadoptedtoprovideasubstantialallowanceforinsulatorcontamination.Indiscussionswithinsulatormanufacturers,insulatorsratedfor115kVAChavebeenselectedfortheconceptualdesign.Thisprovidesaleakagepathlengththatismorethan2.7timesthepublishedguidanceforHVDCtransmissioninsulators.Specificprojectsmaybeabletorealizesomecostsavingsbyusing

40Arrillaga,1998.Page256‐257.

Page 153: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-45

lower‐voltageinsulatorsiftheyaredistantfromcoastalregions(saltspray),activerivers(blowingdust),glaciers(blowingdust),aridregions(lackofcleansingrains),andsimilargeographicorclimaticcharacteristics.

MostHVDClinesarebipolarsystemswithtwohigh‐voltageconductors(FigureC‐13).Atypicaleconomicdesignsolutionforatwo‐conductoroverheadintertielineusessuspensioninsulators.InamonopolarSWERoverheadsystem,themosteconomicaldesigncallsforalinepostinsulatoratopasinglestructure.

Figure C-13 Typical Bipolar HVDC Transmission Line Using Suspension Insulators

HVDCcrossover,NorthDakota.Source:http://upload.wikimedia.org/wikipedia/commons/b/ba/HVDC_Crossover_North‐Dakota.jpg.

Atthespans,voltages,andenvironmentalloadsconsideredforthisapplication,acompositelinepostwitha3.5‐inch‐diameterpultrudedfiberglasscoreandsiliconeshedsarenecessarytowithstandthevertical,lateral,andlongitudinalmechanicalloadsplacedontheinsulator.Aninsulatorsuchaspartno.L4‐SN321‐15UmanufacturedbyNGK,Inc.orsimilarproductsaresuitableforthisapplication.Certainloadconditions,suchasunbalancedsheddingof1‐inchradialiceona1,000‐footspan,exceedtheratedstructuralcapacityofthisinsulator.

Page 154: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-46

Forspecificprojects,thislimitationcanbeaddressedinseveralways(e.g.,lessstringentdesignloads,reducedinsulatormargin,shorterspans,etc.).Manufacturersaredevelopingstrongerlinepostinsulators(4.0‐and4.5‐inchcores)thatwillbeadequateforallloadcombinationsconsideredinthisstudy.Itisestimatedthatthesewillbecommerciallyavailableby2014orthereafter.

Alternateinsulatorconfigurationscanalsobeusedtocircumventthestructurallimitationsofexistinglinepostinsulators.FiguresC‐14throughC‐16presenttwopotentialinsulatorconfigurationsthatusesuspensioninsulatorstoreducetheloadingsonalinepostinsulator.Theseconfigurationscanbeadaptedforuseonanyoftheconceptualoverheaddesignspresentedinthisappendix.Suspensioninsulatorsarelesscostlythanthelinepostinsulators;however,thesemorecomplicatedassemblieswillrequiremorelabortoinstall.

Figure C-14 Typical Tangent Structure Using Post Insulators

CantileveredwoodpoletangentstructureforanACtransmissionline.Postinsulatorsareusedtocarryallthree‐phaseconductors.Thepost‐topinsulatorcarrieslongitudinalandlateralforcesinbending,andthetwosideinsulatorscarryverticalandlongitudinalforcesinbending.TheseapplicationsaresimilartothoseshownonFigureC‐3andFigureC‐4.

Page 155: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-47

Figure C-15 Typical Angle Structure Using Suspension and Post Insulators

GuyedsteelpoleanglestructureforanACtransmissionline.Suspensioninsulatorsareusedtocarrytheconductortension,andapostinsulatorisusedtoholdtheconductoroffofthesupportstructure.Availablepostinsulatorsarenotstrongenoughtobeusedasapost‐topinsulator(asonFigureC‐4orC‐14)inthistypeofapplication.(Polarconsult,

2012)

Page 156: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-48

Figure C-16 Typical Tangent Structure Using Suspension and Post Insulators

Cantileveredwoodpoletangentstructurefora115kVACtransmissionline.Notetheuseofasuspensioninsulatorintensionandpostinsulatorincompressiontocarrytheweightoftheconductor.Thebaseofthepostinsulatorishingedtoallowsomelongitudinalmovementoftheconductor.Thepostinsulatoralsocarriesmostofthelateralwindloadsontheconductor.Thisinsulatorconfigurationcanbeusedforsingle‐ordouble‐wireHVDCcircuitconfigurations.Aback

guycouldbeusedtoreducethenetmomentonthepoleandfoundation.(Polarconsult,2012)

Page 157: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-49

C.6 TESTINGOFOVERHEADDESIGNCONCEPTS

Mostelementsoftheconceptualoverheaddesignsdescribedinthisappendixutilizecommerciallyavailableandacceptedmaterials,designs,andconstructionmethods.CertaincomponentsoftheconceptualdesignspresentedinSectionC.5representinnovationsinoverheadlinedesignthatdonothaveaprovenrecordwithintheutilityindustry.Inordertoevaluatetheperformanceofthesecomponents,theywereinstalledatatestsiteinFairbanks,Alaska.ThissectiondescribestheobjectivesandinstallationoftheFairbanksTestSite.

C.6.1 TestObjectives

TheprimarytestobjectivesoftheFairbanksTestSitearelistedbelow.

1. Demonstrateperformanceandassemblytimeofaspliceforaconstant‐sectionGFRPutilitypole.

2. Demonstrateinstallationandperformanceofmicro‐thermopilepolefoundations.

3. Demonstrateinstallationandperformanceofmicro‐thermopileguyanchors.

4. Demonstrateinstallationandperformanceofscrewguyanchors.

5. DemonstratetheinstallationandperformanceoftheoverallguyedGFRPpolestructure.

C.6.2 TestSite

ThetestsiteislocatedonprivatepropertyoffFarmer’sLoopRoadnorthofCreamers’FieldinFairbanks.Thesiteconsistsofwarmice‐richsiltypermafrostsoils.Thesitehasanorganiclayerconsistingofdeciduousshrubsandblackspruce.Peatwaspresentatdepthsof1to5feetbelowgroundsurface.TheactivelayerinSeptemberextendedtoadepthof3feet,withstandingwaterencounteredwithinthevegetativematnearthesurface.

Geotechnicalconditionsatthesitearecharacteristicofmarginalwarmpermafrostconditions,generallyconsistentwithconceptualgeotechnicalprofile“C”developedbyGolderanddescribedinSectionCofthisappendix.

C.6.3 Installation

Keyitemsinstalledatthetestsitearedescribedinthissection.

C.6.3.1 SoilTemperatureProbes

Thesitehastwosoiltemperaturemonitoringprobes.Eachprobeisa¾‐inchPVCpipeinsertedintoadrillholethatextendsto25feetbelowgrade.Oneholeislocatedadjacent(1.0footaway)tothemicro‐thermopiletripodpolefoundationandwillbeusedtomonitorthethermaleffectsofthethermopilesandvegetationclearing.Thesecondholeislocatedapproximately50feetawayinanundisturbedblacksprucestandandwillbeusedtocollectbaselinesoiltemperaturedata.

C.6.3.2 Glass‐Fiber‐ReinforcedPolymer(GFRP)Pole

Thesitehasone60‐foot‐tallguyedglass‐fiber‐reinforcedpolymer(GFRP)pole.TheGFRPpolehasaroundsection,is12inchesindiameter,andhasa0.5‐inchwall.TheGFRPpoleismanufacturedbyPowertrusions,Inc.TheGFRPpoleconsistsofa40‐footand20‐footsectionconnectedbyafullmoment‐carryingslip‐onexternalsplice.Thesplicedoesnotrequireanyglueorsolventtodevelopbearingormomentcapacity.Bearingiscarriedbyphysicalcontactofthebutt‐endsofthepolesegments.Momentis

Page 158: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-50

carriedthroughmechanicalcontactbetweenthepoleandsplicewalls.Thespliceisheldinplaceby#14¼‐inch‐diameterx1½‐inch‐longzincplatedTekshexwasherheadscrewsdrivenaroundtheperimeterofthespliceintoeachpolesegment.ThepoleattheFairbankssiteisincompression.Powerlinepolessubjecttoupliftwouldneedtodesignthespliceconnectionfortensionloads.

C.6.3.3 GFRPPoleFoundation

TheGFRPpolefoundationisamicro‐thermopiletripodwithanadapterpiecetofitthepoleontothemicro‐thermopiles.ShopdrawingsoftheadapterpiecearepresentedonFigureC‐9throughC‐11.Theadapterpiece:

● Featuresanintegralhingeassemblytoraiseorlowerpolesinthefield,

● Providesgeneroustolerancesforbatteranglesandplacementofthemicro‐thermopiles,and

● Providesfullflexibilityinorientationofthehingeanglerelativetothetripodangle(sothepolecanberaisedorloweredinlinewithaguyanchorregardlessofhowthepolefoundationmicro‐thermopilesareoriented.

C.6.3.4 Guys

TheGFRPpoleissecuredbyfour3/8‐inchextra‐high‐strength(EHS)guylinessetat90degreestoeachotherand45degreestoground.Theguysandguyhardwareisconventional.AFUTEKmodelLSB4000loadcellisriggedintooneguywireoneachaxistomeasureguywiretension.

C.6.3.5 GuyAnchors

FourdifferentguyanchorsareinstalledattheFairbankssite.

1. A25‐foot‐longby1½‐inch‐diametermicro‐thermopile,installedata45‐degreeangletothegroundsurface(directlyin‐linewiththeguy).Thisanchorresistsguytensionsolelywithskinfriction.Theanchorisinstalledwiththetop5feetabovegroundastheradiatorsection.

2. A25‐foot‐longby1½‐inch‐diametermicro‐thermopile,installedata70‐degreeangletothegroundsurface.Thisreducedanglefromverticaliseasiertoinstallbutplacesamomentonthemicro‐thermopile.

3. Astandard8‐inchdouble‐flightscrewanchor.Thescrewanchorwasdriven15feetbelowgroundsurfaceata45‐degreeangle,placingtheanchorflightsapproximately10feetbelowgrade.

4. Astandard6‐inchswampanchor.Theswampanchorisscrewedintothesoilbyadriverodthatisthenwithdrawn.Theanchorattachestotheguywireviaagroundcable.Thistypeofanchorislesssusceptibletofrostheavethanthethreeotheranchorsdescribedabove.

C.6.4 Monitoring

Polarconsultwillcontinuetomonitortheinstallationatthetestsiteforperformance.

1. Monitorseasonalfluctuationsinsoilthermalprofilestoestablishbaselinethermalprofilesandtheperformanceofthemicro‐thermopiles.

2. Monitorguywiretensionsanddifferentialelevationsofguywiresandpolefoundationtoidentifycreepinthefoundations.

3. MonitorperformanceoftheGFRPpoleandsplice.

Page 159: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-51

Figure C-17 Installing Micro-Thermopile for Guy Anchor

ContractorGeoTekAlaska,Inc.drillingaholeforinstallationofamicro‐thermopileata45‐degreebatterangleusingaGeoProbe8040seriesdrillrig.Themicro‐thermopilewillserveasaguyanchorfortheprototypeguyedGFRPpole

installationattheFairbanksTestSite.(Polarconsult,2011).

Page 160: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-52

Figure C-18 Setting Micro-Thermopile Guy Anchor with Sand Slurry Backfill

Settingmicro‐thermopileguyanchorwithasandslurry.(Polarconsult,2011)

Page 161: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-53

Figure C-19 Installing Micro-Thermopile for Guy Anchor

ContractorGeoTekAlaska,Inc.drillingaholeforinstallationofamicro‐thermopileata45‐degreebatterangleusingaGeoProbe8040seriesdrillrig.Themicro‐thermopilewillserveasaguyanchorfortheprototypeguyedGFRPpole

installationattheFairbanksTestSite.(Polarconsult,2011).

Page 162: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-54

Figure C-20 Micro-Thermopiles Staged at Fairbanks Test Site for Installation of Prototype Foundations

1½‐inch‐diameterby25‐foot‐longmicro‐thermopilesusedforpolebaseandguyanchorsystemsforaprototypeguyedGFRPpoleinstalledattheFairbanksTestSite.Threemicro‐thermopilesareusedatthepolebase,andoneeachfortwo

ofthefourguyanchors.(Polarconsult,2011)

Page 163: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-55

Figure C-21 Micro-Thermopile Tripod for Prototype Pole Foundation

Micro‐thermopiletripodforprototypepolefoundation.Thefourthpipeatleftisasoiltemperaturemonitoringwellthatisusedtomonitorthethermal‐affectedzonearoundthethermopiles.Thereisasecondsoiltemperaturemonitoringprobelocatedapproximately40feetfromthepolebase(notshowninphoto)thatisusedtoestablishthebaseline

thermalprofileofthesite.(Polarconsult,2011)

Page 164: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-56

Figure C-22 Installing Helical Screw Anchor for Guy Anchor

ContractorCityElectric,Inc.installingahelicalscrewanchorwithtwo8‐inchflights.Theanchorwasdriven15feetintothegroundata45‐degreebatterangle.Theanchorwillbeusedtosecureoneofthefourguysontheprototype

GFRPpoleinstalledattheFairbanksTestSite.(Polaconsult,2011)

Page 165: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-57

Figure C-23 Guy Attached to Micro-Thermopile Foundation

GuywiresupportingtheinstalledprototypeGFRPpoleattheFairbanksTestSite.Theguyanchorisamicro‐thermopileinstalledata20‐degreebatterangle.Thisguywireincludesaloadcelltomonitorguywiretension.Theloadcellreaderisattachedtothecellandisvisibleinthephoto(blackandyellowdevicebelowtheguywire).Polarconsult,2011.)

Page 166: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-58

Figure C-24 Assembling the Prototype GFRP Pole Splice

ContractorCityElectric,Inc.installingthefieldsplicefortheprototypeGFRPpole.40‐footand20‐footGFRPpolesegmentsweresplicedtocreatethe60‐footpoleerectedatthesite.Thespliceslidesoverthepolesegmentsandcarriesmomentthroughcontactbetweenthepoleandsplicewalls.Verticalloadsarecarriedthroughthebuttendsofthepolesegments.Noglueoradhesiveisnecessaryforthesplicetodevelopthefullmechanicalstrengthofthepole.Thescrews

servetopreventdifferentialmovementbetweenthepoleandsplice.(Polarconsult,2011)

Page 167: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-59

Figure C-25 Installed GFRP Pole, Micro-Thermopiles, and Adapter Plate

DetailofprototypeGFRPpolebaseattheFairbanksTestSite.Thecustom‐designedbaseplateaccommodatesthevariableangleandlocationofthethreemicro‐thermopilesandincludesahingesothepolecanbeloweredifneeded.Thebaseplateallowsforadjustmentofthehingeorientationduringinstallationsoaguyanchorcanbeusedtowinch

thepoledown.(Polarconsult,2011)

Page 168: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-60

Figure C-26 Prototype GFRP Pole Foundation During Installation

DetailofprototypeGFRPpolebaseattheFairbanksTestSite.Theadapterplatewasadjustedduringinstallationsothehingeisorientedinlinewiththeguyanchorinthedistance(orangeflagging).Thisallowsuseoftheguyanchorto

lowerthepolewithawinchifneeded.(Polarconsult,2011)

Page 169: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-61

Figure C-27 Prototype Pole at the Fairbanks Test Site

ViewoftheprototypeguyedGFRPpoleinstalledattheFairbanksTestSite.Thisphotographistakenatadistanceofapproximately200yardsfromthe60‐foottallpole.(Polarconsult,2011)

Page 170: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-62

Figure C-28 Prototype Pole at the Fairbanks Test Site

ViewoftheprototypeguyedGFRPpoleinstalledattheFairbanksTestSite.Thisphotographistakenatadistanceofapproximately25yardsfromthe60‐foottallpole.Thefourguysandthepolesplicearevisibleinthisphotograph

(Polarconsult,2011)

Page 171: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-63

APPENDIXCATTACHMENTS

AttachmentC‐1:ZarlingAeroConsulting(ZAE)ThermalAnalysisofThermopile

Page 172: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-64

Thispageintentionallyblank.

Page 173: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-65

Page 174: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-66

Page 175: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-67

Page 176: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-68

Page 177: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-69

Page 178: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-70

Page 179: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-71

Page 180: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-72

Page 181: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-73

Page 182: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-74

Page 183: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-75

Page 184: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-76

Page 185: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-77

Page 186: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-78

Page 187: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-79

Page 188: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-80

Page 189: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-81

Page 190: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-82

Page 191: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-83

Page 192: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-84

Page 193: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-85

Page 194: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-86

Page 195: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-87

Page 196: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-88

Page 197: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-89

Page 198: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-90

Thispageintentionallyblank.

Page 199: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-91

AttachmentC‐2:ArcticFoundations,Inc.(AFI)ShopDrawings

Page 200: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-92

Thispageintentionallyblank.

Page 201: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-93

AttachmentC.2.1 ArcticFoundations,Inc.(AFI)ShopDrawingforPile

Page 202: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE C-94

AttachmentC.2.2 ArcticFoundations,Inc.(AFI)ShopDrawingforGuyAnchor

Page 203: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-1

APPENDIXD

CONCEPTUALDESIGNFORSUBMARINECABLES

Page 204: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-2

Thispageintentionallyblank.

Page 205: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-3

TABLEOFCONTENTS

APPENDIXDATTACHMENT...............................................................................................................................................5 ATTACHMENTD‐1:CABLETRICITYHVDCTRANSMISSIONSYSTEMSFORRURALALASKAAPPLICATIONSDCPOWERCABLES

FOR1–5MWCONVERTERS............................................................................................................................................5

Page 206: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-4

Thispageintentionallyblank.

Page 207: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-5

APPENDIXDATTACHMENT

AttachmentD‐1:CabletricityHVDCTransmissionSystemsforRuralAlaskaApplicationsDC

PowerCablesfor1–5MWConverters

Page 208: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-6

Thispageintentionallyblank.

Page 209: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-7

Page 210: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-8

Page 211: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-9

Page 212: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-10

Page 213: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-11

Page 214: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-12

Page 215: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-13

Page 216: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-14

Page 217: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-15

Page 218: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-16

Page 219: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-17

Page 220: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-18

Page 221: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-19

Page 222: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-20

Page 223: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-21

Page 224: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-22

Page 225: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-23

Page 226: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-24

Page 227: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-25

Page 228: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-26

Page 229: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-27

Page 230: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-28

Page 231: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-29

Page 232: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-30

Page 233: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-31

Page 234: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-32

Page 235: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-33

Page 236: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-34

Page 237: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE D-35

Thispageintentionallyblank.

Page 238: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-1

APPENDIXE

SWERCIRCUITSANDHVDCSYSTEMGROUNDING

Page 239: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-2

Thispageintentionallyblank.

Page 240: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-3

TABLEOFCONTENTS

E.1 SINGLE‐WIREEARTHRETURN(SWER)CIRCUITS...................................................................................7

E.2 SYSTEMGROUNDING.............................................................................................................................................7

APPENDIXEATTACHMENTS.............................................................................................................................................9 ATTACHMENTE‐1:HVDCGROUNDELECTRODEOVERVIEW...................................................................................................9 ATTACHMENTE‐2:GROUNDINGSTATIONFIGURE...................................................................................................................25

Page 241: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-4

Thispageintentionallyblank.

Page 242: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-5

LISTOFFIGURES

FigureE‐1 GroundingStation....................................................................................................................................27

Page 243: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-6

Thispageintentionallyblank.

Page 244: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-7

 

E.1 SINGLE‐WIREEARTHRETURN(SWER)CIRCUITS

Themosteconomicalapplicationsoflow‐powerhigh‐voltagedirectcurrent(HVDC)systemsinAlaskawillusemonopolarcircuitswithsingle‐wireearthreturn(SWER).AlaskahasadoptedtheNationalElectricSafetyCode(NESC)toregulatethedesignandinstallationofutilitygradeelectricsystems.TheNESCdoesnotallowtheuseofSWERcircuits.Thisruleisbasedonconsiderationsoflifesafety(avoidanceofsteppotentialhazards)andeconomics,asDCSWERcircuitscancauseacceleratedcorrosionofnearbyburiedmetalinfrastructuresuchaspipelines.

SWERcircuitsaresuccessfullyusedonACandDCcircuitsinmanyinternationaljurisdictions.InmanyruralAlaskaapplications,theuseofHVDCSWERcircuitsisasafeandappropriatetechnologythatcansavesignificantcosts.ThereisaprocesstoobtainwaiverstotheNESCrulesthatwillpermittheinstallationofSWERcircuits.TwoACSWERsystemsbuiltinthe1980ssuccessfullyobtainedsuchwaivers.

PolarconsultsubcontractedwiththeManitobaHVDCResearchCentre(MHRC)topreparealetterreportsummarizingthetechnicalandcodeissuesassociatedwiththeappropriateuseofSWERcircuits.ThatreportisincludedasAttachmentE‐1tothisappendix.

E.2 SYSTEMGROUNDING

Aconceptualdesignforalow‐powerHVDCgroundingstationsuitableforusewiththeproposedHVDCtransmissionsystemisincludedintheattachmenttothisappendix.

Page 245: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-8

Thispageintentionallyblank.

Page 246: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-9

APPENDIXEATTACHMENTS

AttachmentE‐1:HVDCGroundElectrodeOverview

Page 247: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-10

Thispageintentionallyblank.

Page 248: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-11

Page 249: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-12

Page 250: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-13

Page 251: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-14

Page 252: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-15

Page 253: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-16

Page 254: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-17

Page 255: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-18

Page 256: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-19

Page 257: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-20

Page 258: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-21

Page 259: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-22

Page 260: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-23

Page 261: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-24

Page 262: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-25

AttachmentE‐2:GroundingStationFigure

Page 263: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-26

Thispageintentionallyblank.

Page 264: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-27

Figure E-1 Grounding Station

Page 265: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE E-28

Thispageintentionallyblank.

Page 266: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-1

APPENDIXF

HVDCPOWERCONVERTERDEVELOPMENT

Page 267: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-2

Thispageintentionallyblank.

Page 268: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-3

 

TABLEOFCONTENTS

F.1 CONVERTERDEVELOPMENT.............................................................................................................................7 F.1.1 INTRODUCTION..................................................................................................................................................................7 F.1.2 CONVERTERSIZINGANALYSIS........................................................................................................................................7 F.1.3 CONVERTERTESTRESULTS...........................................................................................................................................10

F.1.3.1 FiberOpticTriggeringSysteminHigh‐VoltageTank..............................................................10 F.1.3.2 IGBTSwitchesinHigh‐VoltageTank...............................................................................................10

APPENDIXFATTACHMENTS...........................................................................................................................................13 ATTACHMENTF‐1:PPSHVDCPOWERCONVERTERREPORT...............................................................................................13

Page 269: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-4

Thispageintentionallyblank.

Page 270: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-5

LISTOFFIGURES

FigureF‐1 TypicalLoadDurationProfileforanAlaskaVillage....................................................................8

FigureF‐2 PeakLoadsinAlaskaVillages(2007–2009).................................................................................9

Page 271: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-6

Thispageintentionallyblank.

Page 272: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-7

F.1 CONVERTERDEVELOPMENT

F.1.1 Introduction

Thehigh‐voltagedirectcurrent(HVDC)converterdevelopedunderthisprojectisa1‐megawatt(MW)powerconvertercapableofbidirectionalpowerconversionbetweenthree‐phase480voltsalternatingcurrent(VAC)and50kilovolts(kV)HVDC.TheconvertercapacityisappropriatetosupplytheelectricalneedsofmostAlaskavillages.Incontrast,existingHVDCpowerconvertersystemsareonlycosteffectiveatmuchlargertransmissioncapacities,startingatapproximately50MWandextendingupto1,000sofMWsofcapacity.

MultipleHVDCconverterscanbe“paralleled”toachievehigherpowertransmissioncapacitieswhereneeded.BasedonPhaseIIdevelopmentwork,thepriceofacommerciallyproduced1‐MWHVDCpowerconverterisestimatedtobe$250,000.Atleasttwo1‐MWconvertersareneededforacomplete1‐MWHVDCtransmissionsystem.

ThisappendixpresentsPrincetonPowerSystems,Inc.’s(PPS’s)finaldeliverablesforconverterspecification,design,andtestplanunderPhaseIIoftheHVDCtechnologydevelopmentprogram(AttachmentF‐1).

PPShassuccessfullydemonstratedoperationoftheprototypeconvertersatthefull50kVDCandpowerflowinbothinverter(HVDCtoAC)modeandrectifier(ACtoHVDC)modeinacontrolledtestfacilitysetting.Thesetestingeffortsvalidatethedesignandbasicfunctionalityoftheconverter.

Inthecourseoftesting,PPSidentifiedtwohardwareproblemsthatpreventedfull‐powertestingoftheprototypeconverters.PPShasinvestigatedtheseproblemsandidentifiedtheactionsnecessarytocorrectbothproblems.TheproblemsandsolutionsarediscussedinAttachmentF‐1tothisappendix.

PPSiscontinuingtoworkonthehardwaremodificationsneededtocorrectthepriortechnicalproblems.Duetothelonglead‐timetoobtainsuitablereplacementinsulatedgatebipolartransistor(IGBT)switches,theconvertermodificationsandtestingarenotexpectedtobecompleteduntillate2012.PPSwillissueasupplementalreportdetailingtheresultsoffinalPhaseIItestingwhentestingiscompleted.ThissupplementalreportandthefullyoperationalconverterswillbePPS’sfinaldeliverableunderPhaseIIofthisresearchanddevelopment(R&D)project.

F.1.2 ConverterSizingAnalysis

TheelectricalloadcharacteristicsofruralAlaskancommunitiesthatarethetargetofthisprojectwereevaluated.ThecapacityoftheHVDCintertiesystemwasbasedonthelikelypeakloadsandloaddurationprofilesoftheselectedcommunities.

Thedurationofpeakloadsprovidesaneconomicbasisfordesigncapacityoftheintertie.Ingeneral,theintertieisdesignedtominimizethelinelossesatpeakloads.TheloaddurationprofileforHooperBayispresentedonFigureF‐1.ThisprofileisrepresentativeofruralAlaskancommunitieswithapeakloadof760kW,andwillgenerallyapplytoothercommunities.Somecommunities,suchasthosewithfishprocessors,willhaveloadprofilesdifferentthanthatshownonFigureF‐1.

Page 273: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-8

Figure F-1 Typical Load Duration Profile for an Alaska Village

0

100

200

300

400

500

600

700

800

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Time Load is Equaled or Exceeded

Sys

tem

Lo

ad i

n k

W

Polarconsult,201241

ThepeakloadsofruralAlaskacommunitiesparticipatinginthePowerCostEqualization(PCE)programwerereviewedtodeterminetheappropriatepowercapacityfortheHVDCintertiesconsideredforthisstudy.ThedistributionofpeakloadsispresentedonFigureF‐2.

Basedonthisanalysis,a1‐MWpowerintertieisanappropriateconceptualcapacityforthemajorityofruralAlaskainterties.Formaximumreliabilityandflexibility,thepowerconverterspecificationscallfora1‐MWunitcomprisedoftwo500‐kWmodulesoperatinginparallel.Theconvertermodulescanbeconnectedtooperateinparallel,thusprovidingadditionalcapacityuptoafewMWswherenecessary.IntertiesdesignedformorethanafewMWsmaywarrantreevaluationoftheACinterfacevoltage(480volts[V]forthe500‐kWpowerconvertermodule).

41DatageneratedforHooperBayusingtheAlaskaVillageElectricLoadCalculator(NREL,2005)

Page 274: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-9

Figure F-2 Peak Loads in Alaska Villages (2007 – 2009)

0

1000

2000

3000

4000

5000

Point L

ayNak

nek

Bethel

/ Osc

arville

Craig

Kotzeb

ueDillin

gham

Haines

Alakan

uk

Tok / T

anac

ross

Ambler

Galena

Deerin

gPoin

t Hop

eSt. P

aul

Nuiqsu

tWale

sKak

tovik

Selawik

Atmau

tluak

Fort Y

ukon

Kasigl

ukHoo

per B

ay

Tokso

ok BayAnia

kTog

iak

Mounta

in Villa

geChe

vak

Gambe

llKipn

ukNap

askia

kKotl

ikPilo

t Stat

ionBuc

kland

Ouzink

ie

New Stuy

ahok

Shishm

aref

Gustav

usKwigi

llingo

kMars

hall

Healy

Lake

Kongig

anak

Stebbin

sNort

hway

Manok

otak

Mekory

ukTell

erHus

liaElfin

Cov

eNun

apitc

huk

Kokha

nok B

ayTuk

uksa

kSha

ktooli

kBea

ver

Hughe

s

Tenak

ee Spri

ngs

Minto

Nunam

Iqua

Goodn

ews B

ay

Port Alsw

orth

Leve

lock

Pilot P

oint

Eagle

/ Eag

le Villa

geGray

ling

AtkaRub

ySlee

tmute

Manley

Hot

Spring

s

Crooke

d Cree

k

Chuath

baluk

Chignik

Lake

Lime V

illage

Tetlin

Takotn

aVen

etie

Mentas

taCirc

lePed

ro Bay

Igiug

igKarl

ukRed

Dev

ilAda

kCen

tral

Dot La

keEkw

okKak

eKob

ukNap

akiak

Tunun

ak

Community

Pea

k P

ow

er

De

man

d (

kW)

(2) 1 MW HVDC CONVERTERS USED FOR BIPOLAR INTERTIE, ADEQUATE FOR 82% OF COMMUNITIES.

1 MW HVDC CONVERTER, ADEQUATE FOR 76% OF COMMUNITIES.

1 MW HVDC CONVERTER WITH 500KW MODULE FAILURE, ADEQUATE FOR 60% OF COMMUNITIES.

Source: 2009 Power Cost Equalization Data, Alaska Energy Authority

Page 275: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-10

F.1.3 ConverterTestResults

Inthecourseoftestingtheprototypeconverters,PPShassuccessfullydemonstratedoperationatthefull50kVDCandpowerflowinbothinverter(HVDCtoAC)modeandrectifier(ACtoHVDC)mode.Inthecourseoftesting,PPSidentifiedtwohardwareproblemsthatpreventedcompletionofPhaseIItestingoftheprototypeconverters,includingdemonstrationoffullpoweroperation.PPShasinvestigatedtheseproblemsandidentifiedtheactionsnecessarytocorrectbothproblems.Theproblemsandsolutionsaresummarizedbelow.

F.1.3.1 FiberOpticTriggeringSysteminHigh‐VoltageTank

Afiberopticnetworkisusedtotriggerthesolid‐stateIGBTswitchesinsidethehigh‐voltagetank.Testingrevealedproblemswiththetriggeringtimingandreliabilityofthistriggeringsystem.Investigationdeterminedthatthelensesusedinthefiberopticsystemexhibitexcessivelyhighsignalloss,causingtheobservedtimingandreliabilityissues.PPShasidentifiedandtesteddifferentlensesandisproceedingtoreplacethelensesinbothprototypeconvertermodulestosolvethisproblem.

F.1.3.2 IGBTSwitchesinHigh‐VoltageTank

TheIGBTswitchesinthehigh‐voltagetankwerefoundtoenterthermalrunawaywhentheprototypeconverterisoperatedatlow‐powerlevelsininverter(HVDCtoAC)mode.Investigationhasdeterminedthattheseswitchesdonotperforminaccordancewiththemanufacturer’sspecifications.Consultationswiththemanufacturerhasnotproducedanacceptableremedy,andPPShasconcludedthattheseIGBTscannotbeusedforthisapplication.PPShasidentifiedalternateIGBTsthatmeetthetechnicalandeconomiccriteriaofthisproject,andisproceedingtoupgradetheconverterswiththeseswitches.Becausetheswitchesoperateatadifferentvoltagethantheoriginalswitchesandhaveadifferentformfactor,redesignofthehigh‐voltagestageboardsisnecessary.

Becauseofthehardwareproblemsidentified,PPShasnotyetcompletedconvertertesting.FinaltestingispendingreceiptofnewIGBTs.

FigureF‐3showsasimplifiedschematicillustratingthecurrentdevelopmentstatusoftheconverter’sbasicfunctionalmodes.

Page 276: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-11

Figure F-3 Simplified Schematic Illustrating Technical Progress

Page 277: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-12

Thispageintentionallyblank.

Page 278: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-13

APPENDIXFATTACHMENTS

AttachmentF‐1:PPSHVDCPowerConverterReport

Page 279: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-14

Thispageintentionallyblank.

Page 280: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-15

Page 281: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-16

Page 282: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-17

Page 283: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-18

Page 284: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-19

Page 285: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-20

Page 286: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-21

Page 287: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-22

Page 288: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-23

Page 289: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-24

Page 290: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-25

Page 291: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-26

v

Page 292: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-27

Page 293: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-28

Page 294: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-29

Page 295: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-30

Page 296: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-31

v

Page 297: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-32

Page 298: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-33

v

Page 299: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-34

Page 300: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-35

Page 301: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-36

Page 302: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-37

Page 303: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-38

Page 304: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-39

Page 305: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-40

Page 306: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-41

Page 307: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-42

Page 308: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-43

Page 309: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-44

Page 310: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-45

Page 311: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-46

Page 312: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-47

Page 313: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-48

Page 314: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-49

Page 315: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-50

Page 316: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-51

Page 317: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-52

Page 318: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-53

Page 319: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-54

Page 320: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-55

Page 321: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-56

Page 322: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-57

Page 323: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-58

Page 324: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-59

Page 325: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-60

Page 326: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-61

Page 327: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-62

Page 328: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-63

Page 329: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-64

Page 330: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-65

Page 331: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-66

Page 332: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-67

Page 333: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-68

Page 334: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-69

Page 335: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-70

Page 336: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-71

Page 337: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-72

Page 338: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-73

Page 339: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-74

Page 340: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-75

Page 341: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-76

Page 342: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-77

Page 343: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-78

Page 344: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-79

Page 345: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-80

Page 346: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-81

Page 347: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-82

Page 348: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-83

Page 349: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-84

Page 350: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-85

Page 351: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-86

Page 352: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-87

Page 353: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-88

Page 354: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-89

Page 355: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-90

Page 356: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-91

Page 357: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-92

Page 358: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-93

Page 359: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-94

Page 360: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-95

Page 361: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-96

Page 362: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-97

Page 363: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-98

Page 364: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-99

Page 365: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-100

Page 366: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-101

Page 367: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-102

Page 368: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-103

Page 369: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-104

Page 370: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-105

Page 371: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-106

Page 372: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-107

Page 373: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-108

Page 374: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-109

Page 375: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-110

Page 376: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-111

Page 377: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-112

Page 378: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-113

Page 379: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-114

Page 380: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-115

Page 381: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-116

Page 382: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-117

Page 383: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-118

Page 384: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-119

Page 385: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-120

Page 386: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-121

Page 387: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-122

Page 388: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-123

Page 389: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-124

Page 390: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-125

Page 391: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-126

Page 392: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-127

Page 393: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-128

Page 394: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-129

Page 395: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-130

Page 396: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-131

Page 397: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-132

Page 398: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-133

Page 399: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-134

Page 400: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-135

Page 401: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-136

Page 402: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-137

Page 403: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-138

Page 404: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-139

Page 405: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-140

Page 406: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-141

Page 407: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-142

Page 408: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE F-143

Page 409: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-1

 

 

APPENDIXG

HVDCSYSTEMPROTECTION,CONTROLS,ANDCOMMUNICATIONS

Page 410: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-2

Thispageintentionallyblank.

Page 411: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-3

TABLEOFCONTENTS

G.1 INTRODUCTION........................................................................................................................................................7 G.1.1 POINT‐TO‐POINTSYSTEMS.............................................................................................................................................7 G.1.2 MULTITERMINALHVDC(MTDC)SYSTEMS...............................................................................................................7

G.2 PROTECTIVEHARDWARE...................................................................................................................................7

G.3 COMMUNICATIONS.................................................................................................................................................7 G.3.1 FAULTDETECTION............................................................................................................................................................8 G.3.2 INFRASTRUCTURE..............................................................................................................................................................8

G.4 OVERHEADINTERTIECOMMUNICATIONOPTIONS................................................................................9 G.4.1 OPTICALGROUNDWIRE..................................................................................................................................................9 G.4.2 POWERLINECARRIER......................................................................................................................................................9 G.4.3 WRAPPEDFIBER‐OPTICCABLE......................................................................................................................................9 G.4.4 SEPARATETELECOMUNDERBUILD................................................................................................................................9

G.5 UNDERGROUNDCABLEINTERTIEOPTIONS..............................................................................................9

G.6 SUBMARINECABLEINTERTIEOPTIONS....................................................................................................10

G.7 BROADBANDINTEGRATION............................................................................................................................10

APPENDIXGATTACHMENTS...........................................................................................................................................11 ATTACHMENTG‐1:MHRCTASK3,HVDCSTATIONHARDWARERECOMMENDATIONS..................................................11 ATTACHMENTG‐2:MHRCTASK2,MULTI‐TERMINALHVDCTECHNICALREVIEW........................................................25 ATTACHMENTG‐3:MHRCTASK5,CARRIERCOMMUNICATIONS........................................................................................45

Page 412: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-4

Thispageintentionallyblank.

Page 413: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-5

LISTOFTABLES

TableG‐1 CommunicationsOptionswithHVDCInterties.........................................................................G‐8

Page 414: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-6

Thispageintentionallyblank.

Page 415: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-7

G.1 INTRODUCTION

Thisappendixdiscusseselectricalprotection,controls,andcommunicationsrequirementsneededtooperatethehigh‐voltagedirectcurrent(HVDC)systemsdiscussedinthisreport.Therearecertainminimumprotection,control,andcommunicationprovisionsrequiredofanyHVDCsystem.

Initssimplestform,theprotection,controls,andcommunicationsprovisionsmaybemanuallyoperated.Thisapproachissimplertomanageandlesscostlytoinstallandmaintainthanfullyautomatedsystems,butisgenerallylimitedtopoint‐to‐pointinterties.

Theprotection,controls,andcommunicationsneedsofmorecomplexmultiterminalHVDC(MTDC)systemsrequirestheuseofautomatedcontrolsforoperation.Therequirementforautomatedcapabilitiesaremorecostlyandcomplicatedtooperate.

G.1.1 Point‐to‐PointSystems

ManyruralHVDCintertiesmaybenefitfromapoint‐to‐pointHVDCsystem.Low‐power(<1MW)point‐to‐pointmonopolarHVDCsystemscanautomaticallyregulatepowerflowovertheHVDCsystembymonitoringtheHVDCvoltage.Nocommunicationsbetweentheconvertersareneededtoachievethisbasicpowertransferfunction.Existingcommercialtelecommunicationsnetworksinthecommunitiescanbeusedtoprovidesomedegreeofmonitoringandcontrolfunction.

G.1.2 MultiterminalHVDC(MTDC)Systems

MTDCnetworksbydefinitionhavemorethantwoHVDCconverterstationsconnectedtoagivenHVDCline.EachoftheconverterstationsiscapableofaddingorsubtractingpowerfromtheHVDCline.

MTDCnetworksareprojectedtobethelowestcostintertiesolutionformanyoftheruralenergynetworksunderconsideration.Theseregionsincludeinterconnectionofseveralsoutheastcommunities,theadjacentcommunitiesintheYukon‐KuskokwimDelta,andothersintheBristolBayarea.Accordingly,thetechnicalfeasibilityofMTDCnetworksisofparticularinterestforAlaska’sutilityindustry.

G.2 PROTECTIVEHARDWARE

RecommendationspreparedbytheManitobaHVDCResearchCentre(MHRC)discussthegeneralDC‐sideHVDCconverterstationhardwarenecessaryforbasicoperationandprotectionoftheHVDCsystem.ThisinformationispresentedinAttachmentG‐1tothisappendixandistitled“TechnicalNoteonHVDCStationHardware.”

ProtectiveAC‐sidehardwarewillincludefusesorbreakers,disconnects,andcontrolsasneededtointegratewiththelocalgeneratingplant.Project‐specificdesignisnecessaryastheseinterfacescanrangefrombasicandmanuallyoperatedtohighlyintegratedandautomated,dependingontheneedsoftheparticularapplication.ThepowerconvertersdevelopedbyPPSsupportstandardcommunicationprotocolstoallowintegrationwithoverallcontrolsystems.

G.3 COMMUNICATIONS

Communicationsareusedformonitoringofconverterstationstatus,economicdispatchofdistributedgenerationassets,faultdetectionontheHVDCnetwork,andrelatedutilityfunctions.Systemsoftenincludededicatedvoiceanddatacircuitstofacilitatecommunicationsbetweendifferentpartsoftheutilitytransmissionnetwork.

Page 416: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-8

G.3.1 FaultDetection

WithoutdifferentialcurrentmonitoringbetweentheHVDCconverterstations,ifthetotalcurrentintotheHVDCsystem(faultcurrent+loadcurrent)islessthantheratedsystemcurrent(20amperesfora1‐MWintertie),therectifyingconverterwillnotbeabletodistinguishthefaultloadfromanormalloadandwillcontinuetoinputpowerintotheHVDClinetomaintaintheHVDCvoltage.Ifthefaultcurrentishighenoughtoexceedthecapacityoftherectifyingconverter,thentheconverterwilltripandannounceafault.

Theresultisthatalowimpedancefaultcangenerallybedetectedbytheanomalouslyhighpowerdraw,whereasahighimpedancefaultcanremainundetectedindefinitelywiththisscheme.Timelydetectionandcorrectionisthereforedesirablewherepractical.

ACsystemsexperiencesimilarproblemsdetectinghighimpedancefaults,sothistypeofriskisnotwithoutprecedentonutilitysystems.Theremotenessandlackofpeopleinthevicinityofthesetransmissionlinesisafactorthatshouldbeconsideredwhenutilitiesevaluatethisrisk.Aproject‐specificanalysisshouldbeconductedforeveryintertietoevaluatethecostoffaultdetectioncapabilitiesagainsttherisksassociatedwithundetectedfaults.

Detectionofpersistenthighimpedancefaultsrequires,ataminimum,slow‐speedcommunicationbetweentheconverterstationsanddifferentialcurrentmonitoring.Ifthefaultimpedanceissohighthatthefaultcurrentisbelowtheerrorofthedifferentialcurrentdetectionmethod(ascouldbethecaseforadownedconductorlyingonice,forexample),thefaultmayremainunnoticedevenwiththisdetectionregimeinplace.Theonlypracticalwaytoidentifysuchfaultsisbyphysicalinspectionoftheintertieline.FaultdetectionisdiscussedintheMHRCTechnicalNoteonHVDCStationHardwareRecommendationsincludedasAttachmentG‐1tothisappendix.

G.3.2 Infrastructure

AllremoteAlaskacommunitieshaveaccesstobasictelephoneserviceandbroadbandinternetservice.Ataminimum,theseservicesareprovidedthroughgeosynchronoussatelliteplatforms.Dependingontheprojectlocation,communitiesmaybeservedbyexistingmicrowaverelaysystems,copperwirenetworks,fiber‐opticnetworks,oracombinationofthese.

Theslowestcommunicationoptionavailablestatewideisgeosynchronoussatellite‐basedcommunicationswithaninherentlatencyofatleast250millisecondsforone‐waycommunications.Thislatencyarisesfromthetraveltimeforasignaltoreachtheorbitingsatelliteandreturntoearth.SignalprocessingattheEarthstationsoraboardthesatelliteaddtothislatency.

Thiscommunicationsmethodwouldbesufficientforabasicdifferentialcurrentmonitoringprotocolandforcertainsupervisorycontrolanddataacquisition(SCADA)functionsforanHVDCintertie.

Optionsforintegrateddedicatedcommunicationscircuitsarediscussedin‘TechnicalNoteonCarrierCommunications,”preparedbyMHRC,includedasAttachmentG‐3tothisappendix.

Thecost‐effectivenessofsuchoptionswilldependonthetypeofHVDCintertie,andonthespecificconfigurationoftheHVDCline.TableG‐1summarizesthethreebasicHVDCintertieconfigurationsandpotentiallysuitablecommunicationstechnologiesforeach.

Table G-1 Communications Options with HVDC Interties

Intertie Type Communications Option

Page 417: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-9

Overhead Conductor Optical Ground Wire (OPGW) Carrier

Wrapped fiber-optic cable Separate telecom underbuild

Underground Cable Separate fiber-optic cable in same trench Fiber-optic circuit bundled into power cable

Submarine Cable Fiber-optic cable in conductor tube Fiber-optic cable in armor strand

G.4 OVERHEADINTERTIECOMMUNICATIONOPTIONS

G.4.1 OpticalGroundWire

Opticalgroundwire(OPGW)isatypeofelectricalconductorthathasaluminumconductorstrandssurroundingastainless‐steeltubeattheconductor’score.Opticalfibersareroutedthroughthestainless‐steeltube.OPGWiscommonlyusedasanoverheadgroundingwireonACtransmissiontowersforlightningprotection.

Dependingontheapplication,OPGWmaybesuitableforuseasthecurrent‐carryingconductoronanHVDCtransmissionline.Onepotentiallysignificantdrawbackwouldbetheincreasedcomplexityofrepairingconductorbreaksduetothestainless‐steeltubeandopticalfibers.Theneedforspeciallytrainedpersonnelandequipmenttorepairthistypeofconductorcouldsignificantlydelaytherepairofaconductorbreak,reducingthereliabilityofthetransmissionline.

TheMHRCTechnicalNoteincludedasAttachmentG‐3tothisappendixdiscussesOPGWapplicationsinmoredetail.

G.4.2 PowerLineCarrier

Powerlinecarrier(PLC)isameansofusingacurrent‐carryingconductorinanintertiecircuittocarryadatasignalaswell.Acoilisusedtomagneticallyinduceadatawaveformontotheconductor,andasecondcoilisusedtoreceivethewaveform.PLCsystemshavebeenimplementedonHVDCcircuitsandarediscussedintheMHRCTechnicalNoteinAttachmentG‐3.

G.4.3 WrappedFiber‐OpticCable

Opticalfiberpackagesareavailablethatcanbewrappedoveramessengerwire,suchasthepowerconductor.Therearetwopotentialdrawbackswiththisoption.Thefirstisthattheopticalfibercablewouldincreasethewindexposureandicingsurfaceoftheconductor,increasingenvironmentalloadingsontheoverheadsystem.Thesecondisthatthepresenceoftheopticalfibercablewouldcomplicatetherepairofbrokenconductors.

G.4.4 SeparateTelecomUnderbuild

DependingonthetypeofoverheadlineconstructionusedfortheHVDCintertieline,aconventionaltelecommunicationsunderbuildmaybeappropriate.Thiscouldusefiberorcopperdependingonthespecificcircumstances.

G.5 UNDERGROUNDCABLEINTERTIEOPTIONS

Page 418: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-10

ThemoststraightforwardmeansofaddingcommunicationstoanundergroundcableHVDCintertieistoincludeaseparatefiber‐opticorcoppercable.Fiberopticswouldbepreferredifasingle‐wireearthreturn(SWER)circuitisused,asitwouldnotpickupthereturncurrent.Conventionaldesignandconstructionpracticesaresuitableforinstallationofco‐locatedundergroundcommunicationandpowercables.

G.6 SUBMARINECABLEINTERTIEOPTIONS

Therearethreegeneraloptionsforbundlingtelecommunicationswithsubmarinepowercables.Allthreeutilizefiberoptics,andareacceptedpracticeforsubmarinepowerand/ortelecommunicationcables.Thesemethodsare:

● Replacingoneormoreofthearmorwiresonthesubmarinecablewithahollowstainless‐steeltubeandroutingopticalfibersthroughthetube(s).

● Utilizingahollowcoppertubeasthecurrent‐carryingconductorandroutingopticalfiberswithinthecoppertube.Thisisacommoncableconstructionontransoceanicfiber‐opticcables.

● Insertingastainless‐steeltubebetweentwolayersofthesubmarinecable,typicallybetweentheleadsheath(ifsoequipped)andthepolyethyleneoutercablejacket.Opticalfibersareroutedthroughthistube.

G.7 BROADBANDINTEGRATION

ThereisanopportunitytointegratebroadbandcommunicationswithcertainHVDCintertieprojects.Wherefeasible,combiningpowerandtelecommunicationsconnectivityintoasingleprojectcansignificantlyincreasethebenefitsofanintertieprojectanddeliverbothcapabilitiesatalowercostthanpossiblethroughindividualprojects.

Thisopportunityisparticularlypromisingforundergroundandsubmarinecableapplications.Inmanyapplications,theincrementalcostofincludingafiberopticbundlewitheitherpowercableisexpectedtobemodestcomparedtotheresultingbenefits.AttachmentD‐1discussesthisopportunityinthecontextofsubmarinecables.

Page 419: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-11

APPENDIXGATTACHMENTS

AttachmentG‐1:MHRCTask3,HVDCStationHardwareRecommendations

Page 420: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-12

Thispageintentionallyblank.

Page 421: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-13

Page 422: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-14

Page 423: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-15

Page 424: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-16

Page 425: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-17

Page 426: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-18

Page 427: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-19

Page 428: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-20

Page 429: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-21

Page 430: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-22

Page 431: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-23

Page 432: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-24

Thispageintentionallyblank.

Page 433: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-25

AttachmentG‐2:MHRCTask2,Multi‐TerminalHVDCTechnicalReview

Page 434: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-26

Thispageintentionallyblank.

Page 435: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-27

Page 436: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-28

Page 437: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-29

Page 438: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-30

Page 439: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-31

Page 440: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-32

Page 441: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-33

Page 442: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-34

Page 443: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-35

Page 444: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-36

Page 445: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-37

Page 446: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-38

Page 447: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-39

Page 448: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-40

Page 449: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-41

Page 450: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-42

Page 451: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-43

Page 452: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-44

Thispageintentionallyblank.

Page 453: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-45

AttachmentG‐3:MHRCTask5,CarrierCommunications

Page 454: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-46

Thispageintentionallyblank.

Page 455: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-47

Page 456: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-48

Page 457: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-49

Page 458: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-50

Page 459: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-51

Page 460: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-52

Page 461: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-53

Page 462: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-54

Page 463: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-55

Page 464: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-56

Page 465: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-57

Page 466: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-58

Page 467: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-59

Page 468: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-60

Page 469: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-61

Page 470: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE G-62

Thispageintentionallyblank.

Page 471: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-1

APPENDIXH

CANDIDATEHVDCSYSTEMDEMONSTRATIONPROJECTS

Page 472: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-2

Thispageintentionallyblank.

Page 473: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-3

TABLEOFCONTENTS

H.1 INTRODUCTION........................................................................................................................................................7

H.2 DEMONSTRATIONPROJECTOBJECTIVES.....................................................................................................7

H.3 CRITERIAFORDEMONSTRATIONPROJECTSITES...................................................................................8

H.4 POTENTIALDEMONSTRATIONPROJECTS.................................................................................................10 H.4.1 SUMMARYOFPROJECTSCONSIDERED.........................................................................................................................10 H.4.2 HVDCDEMONSTRATIONPROJECTSONEXISTINGACDISTRIBUTIONLINES.......................................................12

H.4.2.1 DillinghamtoAleknagikACLineConversion(DemonstrationOnly)...............................12 H.4.2.2 EurekaACLineConversion(DemonstrationOnly)..................................................................12 H.4.2.3 HopeSubstationtoHopeACLineConversion(DemonstrationOnly).............................12 H.4.2.4 Homer–SeldoviaACLineConversion(DemonstrationOnly)............................................13

H.4.3 HVDCDEMONSTRATIONPROJECTSONNEWACDISTRIBUTIONLINEEXTENSIONS.........................................13 H.4.3.1 GVEAPhillipsRoadLineExtension..................................................................................................14 H.4.3.2 GVEACummingsRoadLineExtension...........................................................................................14 H.4.3.3 MEAtoIndependenceMineLineExtension.................................................................................14

H.4.4 HVDCINTERTIEPROJECTS...........................................................................................................................................15 H.4.4.1 BarrowtoAtqasukHVDCIntertie.....................................................................................................15 H.4.4.2 NometoTellerandBrevigMissionHVDCIntertie....................................................................15 H.4.4.3 PilgrimHotSpringstoNomeHVDCIntertie................................................................................15 H.4.4.4 St.Michaels–StebbinsHVDCIntertie.............................................................................................16 H.4.4.5 St.Mary’stoMountainVillageHVDCIntertie..............................................................................16 H.4.4.6 DillinghamtoManokotakHVDCIntertie.......................................................................................16 H.4.4.7 NewStuyahok–EkwokHVDCIntertie...........................................................................................16 H.4.4.8 Kodiak–OuzinkieHVDCIntertie......................................................................................................16 H.4.4.9 Green’sCreektoHoonahHVDCIntertie........................................................................................17 H.4.4.10 PetersburgtoKakeHVDCIntertie....................................................................................................17 H.4.4.11 GustavustoGlacierBayNationalParkIntertie(HVDCDemonstrationOnly)..............17

H.4.5 PROJECTMAPS.................................................................................................................................................................18

Page 474: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-4

Thispageintentionallyblank.

Page 475: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-5

LISTOFTABLES

TableH‐1 TypesofHVDCDemonstrationProjectsandFactorsforEach................................................9

TableH‐2 PotentialHVDCDemonstrationProjects........................................................................................10

Page 476: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-6

LISTOFFIGURES

FigureH‐1 LocationMapforPotentialDemonstrationProjectSites........................................................11

FigureH‐2 VicinityMapforDemonstrationProjectsnearDillingham.....................................................18

FigureH‐3 VicinityMapforEurekaACLineConversion................................................................................19

FigureH‐4 VicinityMapforHopeACLineConversion...................................................................................20

FigureH‐5 VicinityMapforSeldoviaACLineConversion.............................................................................21

FigureH‐6 VicinityMapforDeltaJunctionACLineExtension....................................................................22

FigureH‐7 VicinityMapforDeltanaACLineExtension.................................................................................23

FigureH‐8 VicinityMapforIndependenceMineACLineExtension.........................................................24

FigureH‐9 VicinityMapforBarrow–AtqasukHVDCIntertie.....................................................................25

FigureH‐10 VicinityMapforDemonstrationProjectsnearNome...............................................................26

FigureH‐11 VicinityMapforSt.Michaels–StebbinsHVDCIntertie...........................................................27

FigureH‐12 VicinityMapforSt.Mary’s–MountainVillageHVDCIntertie..............................................28

FigureH‐13 VicinityMapforNewStuyahok–EkwokHVDCIntertie..........................................................29

FigureH‐14 VicinityMapforKodiak–OuzinkieHVDCIntertie.....................................................................30

FigureH‐15 VicinityMapforGustavusandHoonahHVDCInterties...........................................................31

FigureH‐16 VicinityMapforKake–PetersburgHVDCIntertie....................................................................31

Page 477: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-7

  

H.1 INTRODUCTION

Thisreportincludestheevaluationofpotentialprojectsfordemonstrationofthehigh‐voltagedirectcurrent(HVDC)technologyinPhaseIII.Thiseffortconsistedofthefollowingmajoractivities:

● Definingtheprimaryobjectivesofademonstrationproject;

● Definingthekeycriteriaforcandidateprojects;

● Identifyingpotentialintertieprojects;

● Contactinglocalstakeholderstogatherinformationaboutthoseprojects;and

● EvaluatingtheprojectsforsuitabilityasademonstrationofthisHVDCtechnology.

Thisappendixsummarizesandpresentsthefindingsfromtheseactivities.Aspecificsitehasnotbeenselectedforademonstrationprojectatthistime.Polarconsultwillcontinuetoworkwiththevariousprojectstakeholderstoidentifyaspecificdemonstrationprojectinthefuture.

H.2 DEMONSTRATIONPROJECTOBJECTIVES

PolarconsultworkedwiththeStakeholder’sAdvisoryGroup(SAG),individualstakeholders,Polarconsultsubcontractors,andotherinterestedentitiesoverthecourseofPhaseIItorefinetheobjectivesofthePhaseIIIdemonstrationprojectfortheproposedHVDCsystem.

Definingtheseobjectiveswasamajortopicofdiscussionatthe2ndSAGMeeting,heldinAnchorageonJanuary14,2011.AseriesofconferencecallswereheldwithmembersoftheSAGinJanuaryandFebruary2011torefinetheobjectivesofthedemonstrationprojectandthecandidatesitesidentifiedbyPolarconsult.

Theseeffortsestablishedthefollowingaskeyobjectivesofthedemonstrationproject:

● FacilitateexpeditiousadvancementoftheproposedHVDCsystem.Ademonstrationprojectthatcannotbeimplementedforyearsduetoprohibitivecost,regulatoryimpediments,orsimilarfactorscouldundulydelaycommercialacceptanceofthesystemandwidespreaddeploymentinAlaska.

● Demonstratetostakeholders(Alaskautilities,policymakers,regulators,etc.)thattheHVDCconverterisfunctional,robust,andpracticalunderthelogistical,electrical,andenvironmentaloperatingconditionstypicalofruralAlaskaapplications.

● Demonstratethatinnovativeaspectsofthetransmissionlineconstruction,suchasuseofsingle‐wireearthreturn(SWER)circuitsinpermafrostregions,newoverheadlinedesignsormaterials,andsimilarsystemelementsarereliable,cost‐effective,andappropriateforruralAlaskaintertieapplications.

OneofthekeyinsightsprovidedbytheSAGwasthatthecommercializationplanfortheproposedsystem,includingthedemonstrationphase,shouldbedesignedinameasuredmannerthatincrementallydemonstratesandprovesupthevarioustechnicalaspectsofthesystem.Itwassuggestedthatasingleoverlyambitiousdemonstrationprojectthatfeaturesseveralinnovativetechnologiesincreasestheriskthatanyonenoncriticaltechnicalfailuremaybecomeinterpretedasafailureoftheoverallsystem.

ThegoalofPhaseIIIwillincludefulltestingoftheconvertersystem,includingthemanufacturerandthird‐partyfunctional,compliance,andperformancetestingneededtomovetheconvertertechnology

Page 478: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-8

fromadvancedprototypestoacommercialproduct.PhaseIIIwillalsoincludeafullscalefielddemonstrationoftheHVDCtechnologyonautilitysysteminAlaska.Thespecificprojectdetailsaredependantonthecandidatelocationselectedfortheintertie.PhaseIIIisintendedtobethefinalproof‐of‐conceptproject,tobefollowedbycommercialdeploymentofthesystem.

H.3 CRITERIAFORDEMONSTRATIONPROJECTSITES

PhaseIIIdemonstrationswillpresentafullyfunctionalreal‐worldHVDCtransmissionlineusingtheconvertertechnologydevelopedinthisproject.AvailableinventoriesofAlaskaintertiecandidatesarepresentedinDistributingAlaska’sPower(WHPacific,2008)andRuralAlaskaElectricUtilityIntertiesSurvey(Neubauer,1997).

Polarconsultconductedanextensivereviewofpotentialcandidatedemonstrationprojects,startingfromtheseresourcesandothercurrentinformation.Theresultinglistofpotentialdemonstrationprojectsisnotcomprehensive,astherearenumerousopportunitiesforruralAlaskapowerinterties,butitdoesprovidearepresentativeselectionofgeographicandtechnicalcriteriafordemonstrationsites.Threetypesofdemonstrationprojectswereconsidered,listedbelow.KeyfactorsaboutthesuitabilityofthesetypesofprojectsaresummarizedinTableH‐1.

1. NewRuralAlaskaHVDCIntertie.ThisoptionwouldbeafullyfunctionalHVDCintertiedemonstration.ItwouldconsistofbuildinganewintertiebetweentwoAlaskavillages,orpossiblybetweenalargergridandavillage.

2. NewACDistributionLineExtensionOperatedasHVDCforTrialPeriod.Thisoptionwouldbeanewalternatingcurrent(AC)distributionlineextensionfromanexistingsystemtoanewarea.ThelineextensionwouldbeoperatedasanHVDClineforthedemonstrationperiod,andthenconvertedtoACafterthedemonstrationprojectconcluded.

3. ExistingACDistributionLineExtension,ConvertedtoHVDCforDemonstrationThenSwitchedBacktoAC.ThisoptionwouldconvertanexistingACdistributionlinetoHVDCforthedemonstrationproject.ThelinewouldbeconvertedbacktoACafterthedemonstrationprojectconcluded.

Page 479: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-9

Table H-1 Types of HVDC Demonstration Projects and Factors for Each

Projects

Factors

Permanent HVDC Intertie Between Two Alaska

Villages

(Operate as HVDC)

AC Distribution System Extension

(Operate as HVDC, then convert to AC)

Existing AC Distribution Line

(Convert to HVDC, then revert to AC)

Function Intertie limited to power transmission (no services along intertie route)

Power Capacity

Peak load limited to 500 kW (to utilize existing prototype converters)

Cost & Length Intertie length of 10+ miles

to achieve cost savings over an AC intertie

Minimize intertie length (to maintain affordable budget and help avoid funding delays)

Schedule

3 to 5+ years

Requires (design, permitting, right-of-way,

funding, etc.)

1-3+ years

(May require right-of-way acquisition, design, permitting,

funding, etc.)

+/- 1 year

(Existing right-of-way, should require fewer permits and design,

funding, etc.)

Benefits

1. HVDC demonstration.

2. New intertie lowers utility costs to both communities.

1. HVDC demonstration.

2. Utility/public receive an AC line extension.

1. HVDC demonstration only. Hosting utility incurs costs and customers incur

service interruptions.

Organizational Complexity

Two utilities involved, may require RCA involvement and regulatory oversight.

Single utility involvement (to reduce interconnection or

regulatory issues).

Single utility involvement (to reduce interconnection or

regulatory issues).

Technical

Intertie connections at 480-V bus of existing

power plants.

Intertie connections at distribution voltage. Step

up/down transformers required.

Intertie connections at distribution voltage. Step

up/down transformers required.

kW:kilowatt

RCA:RegulatoryCommissionofAlaska

V:volt

Page 480: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-10

H.4 POTENTIALDEMONSTRATIONPROJECTS

H.4.1 SummaryofProjectsConsidered

TheintertiesprojectsreviewedbyPolarconsultarelistedbycategoryinTableH‐2andshownonFigureH‐1.Moredetailedinformationandpreliminarymapsofpotentialintertieroutesareprovidedonthefollowingpages.

Table H-2 Potential HVDC Demonstration Projects

RuralAlaskaMicrogrids MajorAlaskaGrids

New HVDC Intertie

Build as HVDC; keep as HVDC after demonstration.

Barrow – Atqasuk (NSB) Pilgrim Hot Springs – Nome (NJUS)St. Mary’s – Mountain Village – Pilot

Station (AVEC) Dillingham – Manokotak (NEC) New Stukahok – Ekwok (AVEC) Kodiak – Ouzinkie (KEA - OED)

Kake – Petersburg (IPEC/SEAPA)

Hoonah – Green’s Creek (IPEC/ AEL&P)

AC Line Extension

Build as HVDC; convert to AC after demonstration.

Gustavus – Glacier Bay Nat’l Park (GEC)

Delta Junction (GVEA) Deltana (GVEA)

Independence Mine (MEA)

Existing AC Line Demonstration

Convert to HVDC; revert to AC after demonstration.

Dillingham – Aleknagik (NEC) Glennallen – Eureka (CVEA) Canyon Creek – Hope (CEA)

Homer – Seldovia (HEA)

AcronymsandAbbreviations:

NEC NushagakElectricCooperative,Inc.

NSB NorthSlopeBorough

NJUS NomeJointUtilityService

IPEC InsidePassageElectricCooperative,Inc.

SEAPA SoutheastAlaskaPowerAgency

GEC GustavusElectricCompany

AVEC AlaskaVillageelectricCooperative,Inc.

CEA ChugachElectricAssociation,Inc.

HEA HomerElectricAssociation,Inc.

CVEA CopperValleyElectricAssociation,Inc.

KEA KodiakElectricAssociation,Inc.

OED CityofOuzinkieElectricDepartment

MEA MatanuskaElectricAssociation,Inc.

GVEA GoldenValleyElectricAssociation,Inc.

Page 481: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-11

Figure H-1 Location Map for Potential Demonstration Project Sites

Page 482: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-12

H.4.2 HVDCDemonstrationProjectsonExistingACDistributionLines

ThissectionprovidesoverviewsofpotentialHVDCdemonstrationprojectsthatwouldbeimplementedonexistingACdistributionlines.TheAClinewouldbeconvertedtoHVDCserviceforthedemonstrationproject,andaftertheHVDCdemonstrationiscompleted,thelinewouldberevertedtoACservice.Thecandidateintertiesareorganizedgeographically,movingfromnorthwesttosoutheast.

H.4.2.1 DillinghamtoAleknagikACLineConversion(DemonstrationOnly)

Thisisanexisting,approximately25‐mile‐long,three‐phaseACintertiethatprovideselectricservicetoAleknagikfromNushagakElectricCooperative’sdieselgeneratorsinDillingham(FigureH‐2).ThelineisunderstoodtobeofstandardRuralUtilitiesService(RUS)construction,insulatedto34.5kilovolts(kV)butoperatedasa7.2/12.4‐kVintertie.ThisexistinglinewouldbeconvertedtoHVDCoperationforademonstrationperiod,andthenrevertedtonormalACoperationafterthedemonstrationiscompleted.

TheloadinAleknagikisnotknown.Ifitexceeds500kilovolt‐amperes(kVA),theneitheradditionalintertiecapacityordieselgeneratorsinAleknagikwouldberequired.

Theexistinginsulatorsontheintertieshouldbesufficientforserviceat50kVDC.Becausethelineisinsulatedat34.5kV(approximatelyequalto60kVDC),theremaybeissueswithbuildupofcontaminationunderastaticDCelectricfieldleadingtoarcingovertheinsulators.Ifthisbecameanissue,theinsulatorswouldneedtobecleaned.AnalysisiswarrantedtoseeiftheHVDCintertievoltageshouldbereducedtoavoidthisproblem.VoltagereductionwouldalsodecreasethepowerthroughputcapabilityoftheHVDCconverters.

H.4.2.2 EurekaACLineConversion(DemonstrationOnly)

Thisisanexisting,approximately50‐mile‐long,single‐phase,14.4‐kVdistributionlineownedandoperatedbyCopperValleyElectricAssociation,Inc.(CVEA)servingthecommunitiesandresidentswestofGlennallen,Alaska(FigureH‐3).ThedemonstrationprojectwouldconsistofconvertingasegmentofthislinetoHVDCoperationforthedemonstrationperiod,thenconvertingitbacktoACoperation.

ThegeotechnicalconditionsalongthislinearebelievedtobefavorablefortestingaSWERconfigurationinpermafrostsoilsalthoughanappropriatelinesegmentwouldneedtobeidentifiedforSWERoperation.

ThepeakloadontheHVDCsegmentofthelinewoulddependonwherethedemonstrationwouldtakeplacealongtheline.Apeakloadof167kVAorlesswouldbepreferredtoallowuseofthe500‐kVAprototypeconverters.

PreliminarydiscussionswereheldwithCVEAinFebruary2011regardingthisdemonstrationproject.Aspecificsitewasnotidentified,butCVEAwasgenerallysupportiveofhostingtheHVDCdemonstrationproject,providedthatitdidnotdamageutilityassetsornegativelyimpactcustomersandwasrevenue‐neutraltotheutility(Botulinski,privateconversation,2011).

H.4.2.3 HopeSubstationtoHopeACLineConversion(DemonstrationOnly)

Thisisanexisting,approximately20‐mile‐long,singlephase,14.4‐kVdistributionlineownedandoperatedbyChugachElectricAssociation,Inc.(CEA)servingthecommunityofHopeonTurnagainArmnearAnchorage(FigureH‐4).Hopehasapeakloadofapproximately300kilowatts(kW).CEAisplanningamultipartupgradeofthislinetoaddressreliabilityissues.Thefirstpartofthisupgradeprojectwouldrebuildandrelocateapproximately4milesoftheintertiestartingattheHopeSubstationneartheHope

Page 483: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-13

JunctionontheSewardHighway.CEAestimatesthatthisprojectwouldbereadyforconstructionin2013(Jenkins,privateconversation,2011).Thedemonstrationprojectwouldcoordinatewiththelineupgrade.

Thedemonstrationprojectwouldrequiretransformersoneitherendofthedemonstrationsegmenttoconvertbetween14.4kVandthe480‐VACinterfaceofthepowerconverters.Inaddition,becausethe14.4‐kVlineissinglephase,theconvertercapacitywouldbereducedbyapproximately1/3to167kVA.ThiscouldbeaddressedeitherwithincreasedconvertercapacityoroccasionaloperationoftheexistingdieselgeneratorinHopetomeetpeakloads.

CEAissupportiveofhostingtheHVDCdemonstrationproject,providedthatitdidnotdamageutilityassetsornegativelyimpactcustomersandwasrevenue‐neutraltotheutility.Whilethisintertieappearstechnicallyfeasible,lesscomplicatedHVDCdemonstrationprojectslikelyexistwithinthestate.

H.4.2.4 Homer–SeldoviaACLineConversion(DemonstrationOnly)

ThisisanexistingdistributionlineownedandoperatedbyHomerElectricAssociation,Inc.(HEA),servingthecommunitiesonthesouthsideofKatchemakBayfromHalibutCovetoSeldovia.Thelineisthree‐phase,24.9‐kVACstartinginHomer.ItcrossesKatchemakBaywitha4.5‐mile‐longcableinstalledin2001,andthencontinuesasanoverheadlinetothesouthbaycommunities(FigureH‐5).TheoverheadlineisacombinationofconventionalRUSconstructionandtreecable.Loadonthisdistributioncircuitisapproximately1,100kVA(McDonough,privateconversation,2011).

TheconceptforthisdemonstrationprojectwouldbetooperatetheexistingsubmarinecableasanHVDCcableforthedemonstrationproject.Therearetwochallengeswiththisconcept:

1. Thepeakloadonthecircuitisapproximatelytwicethecapacityoftheprototypeconverters.ThiswillrequireloadsharingbetweenHEAthroughtheHVDClinkanddieselsonthesouthsideofthecable.Thisisnotatechnicalchallenge;however,itwillresultinsignificantcoststhatthedemonstrationprojectbudgetwouldneedtoabsorb.500kWofcontinuousdieselgenerationfora6‐monthdemonstrationperiodwouldcostapproximately$700,000.Abetteralternativeatthispricemaybetobuildtwomore500kWconvertermodules,increasingtheHVDCintertiecapacityto1,000kW.

2. Theexistingsubmarinecableisonlyratedfor24.9kVAC.Thisisapproximatelyequalto43kVDC,lessthanthenominalHVDCsystemvoltageof50kV.Twopossibleremediesexistforthis.IfHEAcanbeassuredthatthecablewilloperateat50kVDCwithoutilleffect,thenthedemonstrationprojectcouldproceed.GiventhatcablesaretypicallysubjectedtoDCvoltagesontheorderof50to100kVduringacceptancetests,itseemslikelythatthiswouldbepossible.Thenatureoftheseassuranceshasnotbeendefined.ThesecondremedyistodecreasetheoperatingvoltageoftheHVDCintertie.PPShasindicatedthattheconvertersoftwarecanbeprogrammedtoreducetheDCvoltage;however,thiswilldecreasethepowerratingoftheconverters.Loweringthevoltagefrom50to40kVwouldlowerthepowerratingofaconvertermodulefromapproximately500to400kVA.

HEAissupportiveofhostingtheHVDCdemonstrationproject,providedthatitdidnotdamageutilityassetsornegativelyimpactcustomersandwasrevenue‐neutraltotheutility.Whilethisintertieappearstechnicallyfeasible,lesscomplicatedHVDCdemonstrationprojectslikelyexistwithinthestate.

H.4.3 HVDCDemonstrationProjectsonNewACDistributionLineExtensions

ThissectionprovidesoverviewsofpotentialHVDCdemonstrationprojectsthatwouldbeimplementedonpurpose‐builtACdistributionlineextensions.AftertheHVDCdemonstrationiscompleted,thelinewouldbeconvertedtoACserviceandwouldbealastingbenefittotheutilityandnewlyservedcustomers.Thecandidateintertiesareorganizedgeographically,movingnorthwesttosoutheast.

Page 484: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-14

H.4.3.1 GVEAPhillipsRoadLineExtension

Thisprojectwouldbeanapproximately1.75‐milesingle‐phaseoverheaddistributionextensiontoserveseveralresidencesattheendofPhillipsRoadinDeltaJunction,withintheGoldenValleyElectricAssociation,Inc.(GVEA)servicearea(FigureH‐6).ThelineextensionwouldbebuiltasastandardACdistributionline,operatedasanHVDCintertiefordemonstrationpurposes,andthenturnedovertoGVEAforsubsequentoperationasanACdistributionline.

GVEAandtheresidencesattheendofthelinewouldbothlikelycontributefundsorin‐kindservicestothelineextension.Totalcontributionisestimatedat$50,000,andthelinebuild,excludinganycostsassociatedwiththeHVDCdemonstration,isbudgetedat$140,000.Aright‐of‐waywouldneedtobeobtainedfortheproject,whichwouldtakeanestimated6to12months.

TheprojectislocatedincloseproximitytotheTrans‐AlaskaPipelineSystem,andassuchwouldlikelynotbesuitablefordemonstrationofSWERoperation.Thepeakloadoftheresidencesattheendofthelineislikelylessthantheapproximately167‐kVAcapacityofthe500‐kWprototypeconvertersinsingle‐phaseoperation.

GVEAisverysupportiveofhostingtheHVDCdemonstrationproject,providedthatitdidnotdamageutilityassetsornegativelyimpactcustomersandwasrevenue‐neutraltotheutility,beyondthein‐kindconstructioncontributionsthatGVEAofferedforthelineextension(Wright,privateconversation,2011).

H.4.3.2 GVEACummingsRoadLineExtension

Thisprojectwouldbeanapproximately4‐to6‐milesingle‐phaseoverheaddistributionextensiontoserveseveralresidencesattheendofCummingsRoadinDeltana,withintheGVEAservicearea(FigureH‐7).ThelineextensionwouldbebuiltasastandardACdistributionline,operatedasanHVDCintertiefordemonstrationpurposes,andthenturnedovertoGVEAforsubsequentoperationasanACdistributionline.

GVEAandtheresidencesattheendofthelinewouldbothlikelycontributefundsorin‐kindservicestothelineextension.Totalcontributionisestimatedat$60,000,andthelinebuild,excludinganycostsassociatedwiththeHVDCdemonstration,isbudgetedat$560,000.Aright‐of‐waywouldneedtobeobtainedfortheproject,whichwouldtakeanestimated6to12months.

Thepeakloadoftheresidencesattheendofthelineislikelylessthantheapproximately167‐kVAcapacityofthe500‐kWprototypeconvertersinsingle‐phaseoperation.

GVEAisverysupportiveofhostingtheHVDCdemonstrationproject,providedthatitdidnotdamageutilityassetsornegativelyimpactcustomersandwasrevenue‐neutraltotheutility,beyondthein‐kindconstructioncontributionsthatGVEAofferedforthelineextension(Wright,2011).

H.4.3.3 MEAtoIndependenceMineLineExtension

Thisprojectwouldbeanapproximately5.5‐mileundergroundACdistributionlinefromtheendofMatanuskaElectricAssociation,Inc.(MEA)’sexistingHatcherPassdistributionlineuptotheIndependenceMineStateHistoricalPark(StatePark)(FigureH‐8).ThelinewouldbebuiltasanACdistributionfeeder,operatedasanHVDClineforthedemonstrationproject,andthenrevertedtoACoperation.

Page 485: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-15

Easementsforthefirstapproximately2milesofthelineextensionarependingfromtheAlaskaDepartmentofNaturalResources(ADNR)andMatanuska‐SusitnaBorough(MSB)foraproposedhydroelectricprojectlocatedalongtheroute.42Neweasementswouldberequiredfortheremainingapproximately3.5milestotheStatePark.TheintertiewouldeliminatetheneedfordieselgenerationattheStateParkduringthesummermonths.ThehydroelectricprojectdeveloperandADNRDivisionofParksandRecreationbothmaysupportthisprojectwithmatchingfunds.

Whencontactedregardingthisproject,theStateParkwassupportive(Biessel,privateconversation,2011).Threeprivateentitieslocatedneartheparkexpressednointerestinconnectingtotheline.Whencontactedregardingthisproject,MEAexpressedconcernsaboutitsstaffavailabilitytosupportthisproject(Kuhn,privateconversation,2011).

H.4.4 HVDCIntertieProjects

ThissectionprovidesoverviewsofpotentialHVDCintertiesbetweenruralAlaskacommunities.Theintertiesareorganizedgeographically,startinginthenorthwestandmovingtothesoutheast.

H.4.4.1 BarrowtoAtqasukHVDCIntertie

This75‐mile‐longoverlandintertiewouldconnectAtqasuk,whichuseshigh‐costdieselforelectricity,toBarrow,whichgenerateselectricityfromlow‐costnaturalgas(FigureH‐9).ThisprojectcouldincludeconversionofAtqasuktoelectricheatingtoachievegreaterbenefits.TheNorthSlopeBoroughiscurrentlystudyingthisintertie.IftheHVDCtechnologyiscommerciallyavailableinatimelymanner,itcouldbeusedonthisintertie.Ifitisnot,theintertiewouldbebuiltasathree‐phaseACline.

H.4.4.2 NometoTellerandBrevigMissionHVDCIntertie

Thisapproximately75‐mile‐longoverlandintertiewouldconnectTellerandBrevigMission—whichbothgenerateelectricitywithdieselfuel—toNome,whichgenerateselectricityfromdieselandsomewind(FigureH‐10).TheAlaskaVillageElectricCooperative,Inc.(AVEC)recentlybuiltanintertiebetweenTellerandBrevigMission.IfthePilgrimHotSpringsgeothermalresourceisdevelopedandislargeenoughtosupplyNomeaswellasTellerandBrevigMission,itcouldsignificantlyreduceelectriccostsinthesevillages.

H.4.4.3 PilgrimHotSpringstoNomeHVDCIntertie

ThegeothermalresourceatPilgrimHotSpringscouldprovideelectricityforNome.Oneofthechallengeswiththisrenewableenergyconceptisthecostoftheapproximately60‐miletransmissionlinebetweenPilgrimHotSpringsandNome(FigureH‐10).UsingthisHVDCtechnologycouldreducethecostsofthisintertie,improvingprojecteconomics.OnepotentialhurdleforthisdemonstrationprojectcandidateisthatthePilgrimHotSpringsresourcehasbeententativelyestimatedat5megawatts(MW).Thisislargerthanthecapacityoftheprototypeconverters,andapproximatelyten500‐kWconverterswouldbeneededateachendoftheintertie.PPShasindicatedthatparallelingthismanyconverterstogetheristechnicallyfeasiblebutthisfunctionhasnotbeenverifiedatthistime.ACEPisassessingthegeothermalresourceatPilgrimHotSprings,whichwillhelpdeterminehowmuchpowercanbederivedfromtheresource(Mager,privateconversation,2011).

42ThedeveloperofthishydroelectricprojectisanaffiliatedinterestofPolarconsultAlaska,Inc.

Page 486: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-16

H.4.4.4 St.Michaels–StebbinsHVDCIntertie

Thisapproximately10‐mile‐longoverlandintertiewouldconnectSt.MichaelsandStebbins,twovillagesservedbytheAVEC,allowingAVECtoeconomizebyconsolidatingbulkfuelandgenerationassetsandoperationsatonevillage(FigureH‐11).Thereisgoodmarineaccesstobothvillages.TherelativelyshortdistanceofthisintertiereducesthesavingsofanHVDCintertiecomparedwithanACintertie.

H.4.4.5 St.Mary’stoMountainVillageHVDCIntertie

Thisapproximately26‐mile‐longoverlandintertiewouldconnectSt.Mary’sandMountainVillageontheYukonRiver,allowingAVECtoeconomizebyconsolidatingbulkfuelandgenerationassetsandoperationsatonevillage(FigureH‐12).Thereisgoodaccesstobothvillages,andanexistingroadbetweenthemwouldfacilitateconstructionoftheoverheadintertie.

H.4.4.6 DillinghamtoManokotakHVDCIntertie

Thisapproximately20‐mile‐longintertiewouldconnectManokotaktoDillingham(FigureH‐2).ThisintertiewouldallowtheDillinghamandManokotakelectricutilitiestoconsolidateoperations,loweringcostsinManokotak,andimprovingtheeconomiesofscaleforbothutilities.Inaddition,Dillinghamiscurrentlystudyingtwohydroelectricresources,LakeGrantandLakeElva,whichwouldprovidestable,low‐costelectricity.Iftheseprojectsarebuilt,ratesinManokotakwouldbesignificantlyreducedwiththisintertie.AnintertiebetweenManokotakandDillinghamhasbeenstudiedinthepast(Polarconsult,1986)buthasnotbeenconstructed.TheproposedHVDCtechnologycouldreducecostsfortheintertie,improvingprojecteconomics.

H.4.4.7 NewStuyahok–EkwokHVDCIntertie

Thisapproximately8‐mileoverlandintertiewouldconnectthesetwoAVECvillages,allowingAVECtoeconomizebyconsolidatingbulkfuelandgenerationassetsandoperationsatonevillage(FigureH‐13).TherelativelyshortdistanceofthisintertiereducesthesavingsofanHVDCintertiecomparedwithaconventionalACintertie.

H.4.4.8 Kodiak–OuzinkieHVDCIntertie

Thisapproximately8‐mile‐longsubmarinecableintertiewouldconnectOuzinkiewiththeKodiakElectricAssociation,Inc.(KEA)grid(FigureH‐14).Ouzinkiegenerateselectricitywithacombinationofhydroanddiesel.KEAgenerateselectricityfromacombinationofhydro,wind,anddiesel.DuetothedifferentgenerationsourcesandeconomyofscaleontheKEAsystem,KEA’selectricratesaresignificantlylowerthanOuzinkie’s.TheintertiewouldbenefitKEAbyincreasingloadandwouldbenefitOuzinkiebyreducingrates.KEAandOuzinkiehavealreadystudiedanoverlandintertiewithashortACcablecrossingofNarrowStrait(Dryden&Larue,2011).Theestimatedcostsoftheshortcablecrossingareasignificantportionofthetotalprojectcost,inpartduetothemobilizationcostsofspecializedequipmentforcableinstallation.Itmaybemorecost‐effectivetoinstallasubmarineHVDCcablefortheentireroute.

ThisintertieappearstobeasuitablecandidateforanHVDCdemonstrationproject.TheeconomicbenefitstoOuzinkieappeartobesignificant(Totemoff,privateconversation,2011).AsubmarineHVDCcableusingthetechnologydevelopedinthisprojectappearstobealessexpensiveoptionthantheoverhead/cablecrossingoption.Ouzinkie’speakloadisapproximately400kW,withinthecapacityoftheprototypeconverters.Furtherconversationswiththeprojectstakeholdersarewarranted.

Page 487: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-17

H.4.4.9 Green’sCreektoHoonahHVDCIntertie

This26‐mile‐longsubmarineintertiewouldconnectHoonahtoAlaskaElectricLightandPowerCompany(AEL&P)’sJuneaupowergrid,providinglower‐costpowertoHoonah(FigureH‐15).TheintertieisagoodlengthforHVDCandwouldprovideaclearbenefittoHoonah.Theintertiehasbeenunderconsiderationforseveralyears,andsignificantengineeringstudieshavealreadybeencompleted.TheintertieisuneconomicusingACtransmissionorexistingHVDCtechnology.TheproposedHVDCtechnologycouldreducecostsfortheintertie,improvingprojecteconomics.

H.4.4.10 PetersburgtoKakeHVDCIntertie

Thisapproximately60‐mile‐longsubmarineandoverlandintertiewouldconnectKakewiththePetersburg‐Ketchikangrid(FigureH‐16).TheintertiewouldallowKaketoconvertfromhigh‐costdieselelectricitytolow‐costhydroelectricity,andwouldbepartoftheproposedsoutheastintertiegrid.UsingHVDCcouldreducecostsbyallowinglongerspans,buriedcable,orincreaseduseofsubmarinecable.Whilea1‐MWmonopolarHVDCintertiewouldbesufficienttoserveKake,futureextensionofthesoutheastintertietoSitkaordevelopmentofnearbyhydropowerresourcescouldincreasetheloadonthisintertietotensofmegawatts.

H.4.4.11 GustavustoGlacierBayNationalParkIntertie(HVDCDemonstrationOnly)

Withthecompletionofthe800‐kWFallsCreekHydroelectricProjectin2009,Gustavusnowhasexcesshydropower.TheheadquartersofGlacierBayNationalPark,locatedapproximately5to10milesfromGustavus,continuestorelyondieselgenerationforelectricity(FigureH‐15).ConnectingtheparkheadquarterswithGustavuswouldallowtheParktoreducefuelconsumptionandoperatingcostsandwouldallowGustavustoincreaseitsratebaseandpowersales,loweringoverallrates.AburiedHVDCcablewouldbepreferabletooverheadAClinesinthepark,whereaestheticsareamajorfactor.Duetotherelativelyshortlength,anHVDCintertiemaynotbecost‐effectivecomparedtoanACintertie.

Page 488: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-18

H.4.5 ProjectMaps

Figure H-2 Vicinity Map for Demonstration Projects near Dillingham

Page 489: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-19

Figure H-3 Vicinity Map for Eureka AC Line Conversion

Page 490: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-20

Figure H-4 Vicinity Map for Hope AC Line Conversion

Page 491: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-21

Figure H-5 Vicinity Map for Seldovia AC Line Conversion

Page 492: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-22

Figure H-6 Vicinity Map for Delta Junction AC Line Extension

Page 493: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-23

Figure H-7 Vicinity Map for Deltana AC Line Extension

Page 494: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-24

Figure H-8 Vicinity Map for Independence Mine AC Line Extension

Page 495: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-25

Figure H-9 Vicinity Map for Barrow – Atqasuk HVDC Intertie

Page 496: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-26

Figure H-10 Vicinity Map for Demonstration Projects near Nome

Page 497: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-27

Figure H-11 Vicinity Map for St. Michaels – Stebbins HVDC Intertie

Page 498: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-28

Figure H-12 Vicinity Map for St. Mary’s – Mountain Village HVDC Intertie

Page 499: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-29

Figure H-13 Vicinity Map for New Stuyahok – Ekwok HVDC Intertie

Page 500: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-30

Figure H-14 Vicinity Map for Kodiak – Ouzinkie HVDC Intertie

Page 501: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-31

Figure H-15 Vicinity Map for Gustavus and Hoonah HVDC Interties

Figure H-16 Vicinity Map for Kake – Petersburg HVDC Intertie

Page 502: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MAY 2012 PAGE H-32

Thispageintentionallyblank.

Page 503: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-1

APPENDIXI

STAKEHOLDERADVISORYGROUPINVOLVEMENTANDMEETINGS

Page 504: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-2

Thispageintentionallyblank.

Page 505: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-3

TABLEOFCONTENTS

I.1 INTRODUCTION........................................................................................................................................................7

I.2 LISTOFSAGMEMBERS.........................................................................................................................................8

I.3 SUMMARYOFSAGROLEANDPOLICIES.......................................................................................................9 I.3.1 POLICIESANDPROCEDURES............................................................................................................................................9

I.3.1.1 Formation......................................................................................................................................................9 I.3.1.2 ScheduledMeetings...................................................................................................................................9 I.3.1.3 Organization.................................................................................................................................................9 I.3.1.4 Communication...........................................................................................................................................9 I.3.1.5 Termination................................................................................................................................................11

I.4 STAKEHOLDERADVISORYGROUP(SAG)MEETINGPRESENTATIONMATERIALS.................12 I.4.1 SAGMEETING#1–FAIRBANKS,ALASKA(APRIL27,2010)................................................................................12 I.4.2 SAGMEETING#2–ANCHORAGE,ALASKA(JANUARY14,2011)........................................................................32 I.4.3 SAGMEETING#3–ANCHORAGE,ALASKA(OCTOBER25,2011).......................................................................53

I.5 HANDOUTSFROMOTHERMEETINGSCONDUCTEDDURINGTHEPROJECT...........................105 I.5.1 SOUTHEASTCONFERENCEMID‐SESSIONSUMMIT–JUNEAU,ALASKA(MARCH2,2010)............................107 I.5.2 EMERGINGENERGYTECHNOLOGYFORUM–JUNEAU,ALASKA(FEBRUARY14,2011).................................113 I.5.3 BROWN‐BAGWORKSESSION–ANCHORAGE,ALASKA(AUGUST29,2011)...................................................125 I.5.4 HVDCCONVERTERDEMONSTRATION–LAWRENCEVILLE,NEWJERSEY(NOVEMBER14,2011).............145

I.6 ADDITIONALMEETINGS.................................................................................................................................151

Page 506: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-4

Thispageintentionallyblank.

Page 507: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-5

LISTOFTABLES

TableI‐1 ListofSAGMembers.................................................................................................................................8

TableI‐2 SummaryofCorrespondencewithSAGMembers......................................................................10

Page 508: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-6

Thispageintentionallyblank.

Page 509: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-7

I.1 INTRODUCTION

ThisappendixprovidesthefollowingdetailedinformationregardingtheStakeholdersAdvisoryGroup(SAG)formedforPhaseIIoftheHigh‐VoltageDirectCurrent(HVDC)DevelopmentProgram:

● ListofSAGmembers;

● SummaryofSAGroleandpolicies;

● SummaryofkeyinformalcorrespondencebetweenSAGmembersandPolarconsultoverthecourseoftheproject;

● HandoutsandtranscriptsfromthethreeSAGmeetings;and

● Handoutsfromothermeetingsandoutreachactivitiesconductedoverthecourseoftheproject.

Meetingtranscriptsareavailableseparately.

Page 510: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-8

I.2 LISTOFSAGMEMBERS

Table I-1 List of SAG Members

Company First Name Last Name Position

Denali Commission Denali Daniels SAG Chair Alaska Center for Energy and Power (ACEP) Gwen Holdmann ACEP Director Alaska Center for Energy and Power (ACEP) Jason Meyer ACEP Project Manager Alaska Center for Energy and Power (ACEP) Brent Sheets SAG Member Polarconsult Alaska, Inc. Joel Groves Project Manager Polarconsult Alaska, Inc. Earle Ausman President Polarconsult Alaska, Inc. David Ausman Vice President Princeton Power Systems, Inc. (PPS) Darren Hammell Executive Vice President Alaska Department of Labor (AKDOL) Daniel Greiner Alt. SAG Member Alaska Department of Labor (AKDOL) Alvin Nagel SAG Member Alaska Division of Community and Regional Affairs (DCRA) Percy Frisby SAG Member Alaska Energy Authority (AEA) David Lockhard SAG Member Alaska Power & Telephone Company (APT) Bob Grimm SAG Member Alaska Power Association (APA) Marilyn Leland SAG Member Alaska Village Electric Cooperative, Inc. (AVEC) Meera Kohler SAG Member Alaska Village Electric Cooperative, Inc. (AVEC) Brent Petrie Alt. SAG Member Bering Straits Native Corporation (BSNC) Jerald Brown SAG Member Bethel Electric Utility (BEC) Bob Charles SAG Member Copper Valley Electric Association (CVEA) Robert Wilkinson SAG Member Dillingham Nels Andersen SAG Member Golden Valley Electric Association, Inc. (GVEA) Brian Newton SAG Member Homer Electric Association, Inc. (HEA) Brad Janorschke SAG Member Inside Passage Electric Cooperative (IPEC) Jodi Mitchell SAG Member Institute of Northern Engineering (INE, UAF) Ron Johnson SAG Member Kodiak Electric Association, Inc. (KEA) Darron Scott SAG Member Kotzebue Electric Association, Inc. (KoEA) Brad Reeve SAG Member Matanuska Electric Association (MEA) Joe Griffith SAG Member Matanuska Electric Association (MEA) Trivia Singaraju Alt. SAG Member Naknek Electric Association, Inc. (NEA) Donna Vukich SAG Member Nat’l. Rural Electric Cooperative Association (NRECA) Tom Lovas SAG Member Nome Chamber of Commerce (NCC) Mitch Erickson SAG Member Nome Joint Utilities (NJUS) John Handeland SAG Member North Slope Borough (NSB) Kent Grinage SAG Member Northwest Arctic Borough (NWAB) Ingemar Mathiasson SAG Member Nushagak Electric Association Mike Favors SAG Member Nuvista Light and Power, Inc. (NLP) Bob Charles SAG Member Southeast Conference (SEC) Robert Venables Alt. SAG Member Southeast Conference (SEC) Shelly Wright SAG Member Southwest Alaska Municipal Conference (SWAMC) Andy Varner SAG Member U.S. Department of Agriculture (USDA) Rural Utilities Service (RUS) Eric Marchegiani SAG Member University of Alaska Fairbanks (UAF) Richard Wies SAG Member

Page 511: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-9

I.3 SUMMARYOFSAGROLEANDPOLICIES

I.3.1 PoliciesandProcedures

TheSAGisanadvisorybodycomprisedofrepresentativesofAlaska’sruralelectricutilityindustryandrelatedprofessionals.ThepurposeoftheSAGistoprovidecomments,feedback,review,andrecommendationstotheHVDCDevelopmentProgram,awardedbytheDenaliCommission(Commission),managedbytheAlaskaCenterforEnergyandPower(ACEP),andcontractedtoPolarconsultAlaska,Inc.(Polarconsult).

I.3.1.1 Formation

TomaintainindependenceoftheSAG,ACEPidentifiedmembersforparticipation,withconsiderationofrecommendationsfromPolarconsultandtheDenaliCommission.AfinalcandidatelistwassentoutforcommenttoPolarconsultandforwardedforapprovaltotheDenaliCommission.

I.3.1.2 ScheduledMeetings

PerthescopeofworkunderUAF–PolarconsultContract#10‐0055,theSAGformallyconvenedthreetimesoverthecourseoftheHVDCProject.Perthescopeofworkandbudget,thecostofconveningthesemeetingswastheresponsibilityofPolarconsult.Fundingformembertravelandparticipationcostswasnotprovided.Themeetingswereconvenedinamannerconducivetoremoteparticipationofmembers.ThemeetingdateswereApril28,2010;December1,2010;andJuly15,2011.

TheagendaforthesemeetingswassetbyACEP,withinputfromPolarconsultandtheDenaliCommissionandfinalapprovalbytheDenaliCommission.

I.3.1.3 Organization

TheSAGshallconsistoftheChair(theDenaliCommission)andmembers.TomaintainequalityontheSAG,individualorganizationsmayholdonlyonememberposition.Upto30SAGmemberswillbeallowed,thefinalnumberdeterminedbasedonthelevelofinterest.Ifatanytimeoverthecourseoftheprojectoneofthemembersresignsorisnolongeractive,ACEPwillinviteanotherindividualtofillthisposition,withtheapprovaloftheDenaliCommission.Membersmaydesignateproxiesfromwithintheirorganizationtoattendmeetings.

ACEPencouragesorganizationsandindividualsnotselectedfortheSAGtoparticipateinformallyinthisproject.Publiccommentisalwayswelcomeandane‐maillistandforumwillbemadeavailableontheACEPprojectwebsite.

I.3.1.4 Communication

Atcertainprojectmilestones,oruponrecommendationfromACEP,Polarconsultshallsolicitcomments,review,andrecommendationstotheHVDCprogram.AllformalcommunicationbetweenPolarconsultandtheSAGshallbethroughtheChair,withinclusionofACEP.PolarconsultisfreetocontactthewholeSAGformallyorcontactindividualSAGmembersinformally,astheneedarises.AllinformalcommunicationwillnotrepresenttheadviceorrecommendationsoftheSAG.Intheinterestsofpromotingmaximumfeedbackfromtheindustry,confidentialcommunicationswillbeacceptedwherethereisademonstratedneedtomaintainconfidentiality.

TableI‐2providesasummaryofcorrespondencewithSAGmembersrelatedtothisproject.

Page 512: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-10

Table I-2 Summary of Correspondence with SAG Members

Date SAG Member Participants Subject Summary

Jan.–Feb. 2010 MEA

Trivi Singaraju (MEA) Gary Kuhn (MEA)

Joel Groves (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

Jan.–Feb. 2010 CVEA Chris Botulinski (CVEA)

Earle Ausman (Polarconsult) Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

Jan.–March 2010

At Large Citizen

Nels Anderson Earle Ausman (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

Jan.–March 2010 CEA

Ed Jenkin (CEA) Dave Ausman (Polarconsult) Joel Groves (Polarconsult)

Earle Ausman (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

Jan.–March 2010 HEA

Brad Zubeck (HEA) Kathy McDonough (HEA) Joel Groves (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

May–June 2010 NWAB Ingemar Mathiasson (NWAB)

Earle Ausman (Polarconsult)

International examples of

electric codes

Mr. Mathiasson used his contacts in Sweden to request examples of international electric codes with

regard to SWER circuits, HVDC, and related rural electric issues.

July–October

2010 AVEC

Brent Petrie (AVEC) Bill Thomson (AVEC) Mark Tietzel (AVEC)

Joel Groves (Polarconsult) Earle Ausman (Polarconsult)

HVDC Converter Specification

Discussions and comments from AVEC on draft specification for

HVDC power converter.

July–October

2010 UAF/ACEP

Richard Wies (UAF) Jason Meyer (ACEP)

Joel Groves (Polarconsult) Earle Ausman (Polarconsult)

HVDC Converter Specification

Discussions and comments from AVEC on draft specification for

HVDC power converter.

August 2010 AVEC Mark Teitzel (AVEC) Joel Groves (Polarconsult)

Conceptual Design of

Overhead Line

Request for examples of environmental loadings used on

previous AVEC interties, performance of these projects.

September 2010 IPEC Peter Bibb (IPEC)

Joel Groves (Polarconsult) Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

October–November

2010 GVEA

Mike Wright (GVEA) Searl Burnett (GVEA)

Earle Ausman (Polarconsult)

Conceptual Design of

Overhead Line

Site visit to review design, performance, and failure modes of

guyed Y and X towers on transmission lines between

Fairbanks and Healy.

November 2010 AVEC

Brent Petrie (AVEC) Joel Groves (Polarconsult)

Earle Ausman (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

December 2010 SEC

Shelly Wright (SEC) Robert Venables (SEC)

Joel Groves (Polarconsult) Earle Ausman (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

January 2011 APT

Bob Grimm (APT) Earle Ausman (Polarconsult) Joel Groves (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

Page 513: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-11

Date SAG Member Participants Subject Summary

January 2011 NWAB

Ingemar Mathiasson (NWAB) Brent Petrie (AVEC)

Joel Groves (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

January 2011 RUS Eric Marchegiani (RUS)

Joel Groves (Polarconsult) Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

January 2011 Multiple Multiple SAG Members Demonstration

Project Sites

Teleconference with SAG members on HVDC demonstration project

sites.

January–March 2011 GVEA

Mike Wright (GVEA) Joel Groves (Polarconsult)

Earle Ausman (Polarconsult)

Demonstration Project Sites

Discussing potential HVDC demonstration project sites.

March 2011 AVEC

Bill Thomson (AVEC) Joel Groves (Polarconsult)

Earle Ausman (Polarconsult) Randy Wachal (MHRC)

HVDC Controls and integration

Discussions among Polarconsult, Manitoba, and AVEC on system controls and integration needs.

May–June 2011 CVEA

Chris Botulinski (CVEA) Earle Ausman (Polarconsult) Joel Groves (Polarconsult)

HVDC Test Site Discussions looking for a test site for HVDC pole and foundations.

June 2011 UAF

Richard Wies (UAF) Jason Meyer (ACEP)

Joel Groves (Polarconsult) Earle Ausman (Polarconsult)

Examples of cold regions design for overhead HVDC

Visit of Chinese delegation regarding design of HVDC line across the

Tibetan Plateau.

June–July 2011 GVEA

Mike Wright (GVEA) Joel Groves (Polarconsult)

Earle Ausman (Polarconsult) HVDC Test Site Discussions looking for a test site for

HVDC pole and foundations

July 2011 AKDOL

Al Nagel (AKDOL) Dave Greiner (AKDOL) Randy Wachal (MHRC)

Joel Groves (Polarconsult)

SWER circuit safety.

Discussions with Alaska Department of Labor regarding HVDC SWER

circuits and soliciting comments on the SWER analysis prepared by

Manitoba.

November 2011 AVEC Pam Lyons (AVEC)

Joel Groves (Polarconsult) Converter

Shipping Cost

AVEC assistance on obtaining shipping costs to move prototype

converters to Alaska.

Nov, 2011 – Jan 2012 AVEC

Meera Kohler (AVEC) Mark Tietzel (AVEC) Brent Petrie (AVEC)

Joel Groves (Polarconsult)

Cost data for past AC projects

Discussions from November 2011 through January 2012 regarding details of cost data for remote

Alaska AC intertie projects built over the past decade.

December 2011 AKDOL

Al Nagel (AKDOL), Dave Greiner (AKDOL), Jason

Meyer (ACEP), Joel Groves (Polarconsult)

SWER circuit safety.

Discussions with Alaska Department of Labor regarding HVDC SWER

circuits and NESC code.

I.3.1.5 Termination

TheSAGshallbeformallyterminatedupontheendoftheprojectissuedfromtheDenaliCommission.

Page 514: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-12

I.4 STAKEHOLDERADVISORYGROUP(SAG)MEETINGPRESENTATIONMATERIALS

I.4.1 SagMeeting#1–Fairbanks,Alaska(April27,2010)

Page 515: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-13

Page 516: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-14

Page 517: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-15

Page 518: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-16

Page 519: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-17

Page 520: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-18

Page 521: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-19

Page 522: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-20

Page 523: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-21

Page 524: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-22

Page 525: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-23

Page 526: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-24

Page 527: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-25

Page 528: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-26

Page 529: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-27

Page 530: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-28

Page 531: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-29

Page 532: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-30

Page 533: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-31

Thispageintentionallyblank.

Page 534: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-32

I.4.2 SAGMeeting#2–Anchorage,Alaska(January14,2011)

Page 535: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-33

Thispageintentionallyblank.

Page 536: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-34

Page 537: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-35

Page 538: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-36

Page 539: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-37

Page 540: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-38

Page 541: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-39

Page 542: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-40

Page 543: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-41

Page 544: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-42

Page 545: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-43

Page 546: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-44

Page 547: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-45

Page 548: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-46

Page 549: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-47

Page 550: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-48

Page 551: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-49

Page 552: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-50

Page 553: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-51

Page 554: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-52

Thispageintentionallyblank.

Page 555: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-53

 

I.4.3 SAGMeeting#3–Anchorage,Alaska(October25,2011)

Page 556: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-54

Thispageintentionallyblank.

Page 557: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-55

Page 558: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-56

Page 559: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-57

Page 560: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-58

Page 561: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-59

Page 562: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-60

Page 563: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-61

Page 564: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-62

Page 565: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-63

Page 566: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-64

Page 567: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-65

Page 568: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-66

Page 569: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-67

Page 570: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-68

Page 571: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-69

Page 572: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-70

Page 573: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-71

Page 574: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-72

Page 575: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-73

Page 576: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-74

Page 577: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-75

Page 578: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-76

Page 579: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-77

Page 580: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-78

Page 581: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-79

Page 582: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-80

Page 583: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-81

Page 584: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-82

Page 585: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-83

Page 586: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-84

Page 587: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-85

Page 588: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-86

Page 589: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-87

Page 590: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-88

Page 591: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-89

Page 592: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-90

Page 593: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-91

Page 594: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-92

Page 595: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-93

Page 596: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-94

Page 597: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-95

Page 598: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-96

Page 599: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-97

Page 600: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-98

Page 601: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-99

Page 602: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-100

Page 603: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-101

Page 604: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-102

Page 605: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-103

Page 606: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-104

Page 607: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-105

I.5 HANDOUTSFROMOTHERMEETINGSCONDUCTEDDURINGTHEPROJECT

Page 608: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-106

Thispageintentionallyblank.

Page 609: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-107

I.5.1 SoutheastConferenceMid‐SessionSummit–Juneau,Alaska(March2,2010)

Page 610: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-108

Thispageintentionallyblank.

Page 611: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-109

Page 612: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-110

Page 613: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-111

Page 614: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-112

Page 615: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-113

 

I.5.2 EmergingEnergyTechnologyForum–Juneau,Alaska(February14,2011)

Page 616: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-114

Thispageintentionallyblank.

Page 617: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-115

Page 618: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-116

Page 619: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-117

Page 620: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-118

Page 621: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-119

Page 622: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-120

Page 623: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-121

Page 624: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-122

Page 625: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-123

Page 626: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-124

Page 627: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-125

I.5.3 Brown‐BagWorkSession–Anchorage,Alaska(August29,2011)

Page 628: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-126

Thispageintentionallyblank.

Page 629: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-127

Page 630: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-128

Page 631: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-129

Page 632: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-130

Page 633: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-131

Page 634: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-132

Page 635: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-133

Page 636: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-134

Page 637: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-135

Page 638: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-136

Page 639: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-137

Page 640: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-138

Page 641: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-139

Page 642: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-140

Page 643: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-141

Page 644: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-142

Page 645: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-143

Page 646: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-144

Page 647: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-145

I.5.4 HVDCConverterDemonstration–Lawrenceville,NewJersey(November14,2011)

Page 648: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-146

Thispageintentionallyblank.

Page 649: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-147

Page 650: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-148

Page 651: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-149

Page 652: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-150

Thispageintentionallyblank.

Page 653: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-151

I.6 ADDITIONALMEETINGS

Page 654: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-152

Thispageintentionallyblank.

Page 655: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-153

ThefollowingadditionalmeetingswereheldduringthecourseofthisprojectregardingaHVDCtransmissionsysteminruralAlaska.

● SoutheastConferenceMid‐SessionSummit–Juneau,Alaska(MARCH2,2010)

● EmergingEnergyTechnologyForum–Juneau,Alaska(February14,2011)

● Brown‐BagWorkSession–Anchorage,Alaska(August29,2011)

Page 656: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE I-154

Thispageintentionallyblank.

Page 657: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE J-1

APPENDIXJ

BIBLIOGRAPHY

Page 658: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE J-2

Thispageintentionallyblank.

Page 659: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE J-3

AlaskaCenterforEnergyandPower(ACEP,2012).AlaskaStrandedRenewables.APreliminaryFrameworkforAssessment.December2011.

AlaskaEnergyAuthority(AEA,2007).FY2008CapitalProjectSummarySheet,Napakiak‐BethelIntertieRightofWayandSiteControlProject.April19,2007.

AlaskaEnergyAuthority(AEA,2010a).DataExportfromthePowerCostEqualizationProgramDatabase.2010.

AlaskaEnergyAuthority(AEA,2010b).AlaskaEnergyPathwaytowardEnergyIndependence.DraftRelease.April2010.

AlaskaJournalofCommerce(AJOC,2001).“NewKatchemakBayCableQuadruplesEnergyPossibilities.:November26,2001.

AlaskaVillageElectricCooperative,Inc.(AVEC,2008).ApplicationforRenewableEnergyFundGrant,Emmonak,Alaska,WindDesignandConstructionProject.November11,2008.

Arrillaga,Josu(Arrillaga,1998).HighVoltageDirectCurrentTransmission.2ndEdition,1998.

CommonwealthNorth(CWN,2012).EnergyforaSustainableAlaska:TheRuralConundrum.February2012.

DepartmentofCommunityandRegionalAffaris(DCRA,2011).CurrentCommunityConditions:FuelPricesAcrossAlaska,ReporttotheDirector.June2010Update.

DenaliCommission(DenaliCommission,2008a).49CIntertieUpgradeNunapitchuktoKasigluk,CloseoutSummaryReport.June2008.

DenaliCommission(DenaliCommission,2008b).27BToksookBay–TununakInterie,CloseoutSummaryReport.June2008.

DenaliCommission(DenaliCommission,2009).21INightmute–ToksookBayIntertie,AwardTransitionandCloseoutSummaryReport.2009.

DenaliCommission(DenaliCommission,2010).DenaliCommissionExpenseCategorySummary,ProjectNumber01117220607Bethel–NapakiakIntertie.June30,2010.

DenaliCommission(DenaliCommission,2011).70CBrevigMissiontoTellerIntertieAwardTransitionandCloseoutSummaryReport.June30,2011.

Dryden&LaRue,Inc.(Dryden&Larue,2011).FeasibilityStudyReport,OuzinkieLineExtensionofMonashkaFeederHighSubStation.2011.

Ibrahim,Sherif(Ibrahim,2000).PerformanceEvaluationofFiber‐ReinforcedPolymerPolesforTransmissionLines.DoctoralThesis,UniversityofManitoba,DepartmentofCivilandGeologicalEngineering.2000.

IdahoNationalEngineeringandEnvironmentalLaboratory(INEEL,1998).Haines‐SkagwaySubmarineCableIntertieProject,HainestoSkagway,Alaska.FinalTechnicalandConstructionReport.November1998.

Page 660: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE J-4

InsidePassageElectricCooperative,Inc.(IPEC,2009).ElectricTransmissionIntertie,Juneau‐Green'sCreekMine‐Hoonah.PresentationtoSoutheastConferencebyJodiMitchell.2009.

Kuffel,E.,Zaengl,W.S.,&Kuffel,J.(KZK,2006).HighVoltageEngineeringFundamentals.2ndEdition,2006.

Naidu,M.S.&Kamaraju,V.(Naidu,1996).HighVoltageEngineering.2ndEdition,1996.

NationalRenewableEnergyLaboratory(NREL,2005).AlaskaVillageElectricLoadCalculator.ExcelComputerProgram.2005.

NeubauerEngineering&TechSvc.,FosterWheelerEnv.Corp.(Neubauer,1997).RuralAlaskaElectricUtilityInterties.

PentonMediaPublications(TDW,2012).Transmission&DistributionWorld:HVDCTransforminganIndustry.April2012Issue.

PolarconsultAlaska,Inc.(Polarconsult,1986).ManokotakTransmissionLineStudy.June1986.

PolarconsultAlaska,Inc.(Polarconsult,2009).PhaseI–PreliminaryDesignandFeasibilityAnalysisFinalReport.

PowerEngineers(PowerEngineers,2004).Juneau‐GreensCreek/HoonahIntertieStudy,LoadFlowandShortCircuitAnalysisFinalReport,Rev1.December30,2004.

Skrotzki,BernhardtG.A.(Skrotzki,1980).ElectricTransmission&Distribution.1980.

Southwire(Southwire,2008).SouthwireSAG10,Version3.10.7.2008.

Thrash,Ridley,Murah,Amy,Lancaster,Mark,&Nuckles,Kim(Thrash,2007).OverheadConductor.2ndEdition,2007.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,1998).SpecificationsandDrawingsfor24.9/14.4kVLineConstruction.Bulletin1728F‐803(D‐803),December1998.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2001).ElectricDistributionLineGuysandAnchors.Bulletin1724E‐153,April2001.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2002).MechanicalLoadingonDistributionCrossArms.Bulletin1724E‐151,November2002.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2003a).UnguyedDistributionPoles‐StrengthRequirements.Bulletin1724E‐150,July2003.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2003b).TheMechanicsofDistributionLineConnectors.Bulletin1724E‐152,July2003.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2003c).DistributionConductorClearancesandSpanLimitations.Bulletin1724E‐154,July2003.

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2005).SpecificationsandDrawingsfor12.47/7.2kVLineConstruction.Bulletin1728F‐804,Oct2005.

Page 661: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE J-5

U.S.DepartmentofAgriculture‐RuralUtilityService(RUS,2009).DesignManualforHighVoltageTransmissionLines.Bulletin1724E‐200,May2009.

WHPacificetal.(WHPacific,2008).DistributingAlaska'sPower:ATechnicalandPolicyReviewofElectricTransmissioninAlaska.December2008.

Page 662: HVDC TRANSMISSION SYSTEM

FINALREPORT,VERSION1.1 POLARCONSULTALASKA,INC.HVDCTRANSMISSIONSYSTEMFORRURALALASKANAPPLICATIONS PHASEII–PROTOTYPINGANDTESTING

MARCH 2012 PAGE J-6

Thispageintentionallyblank.